
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4609–4618
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

4609

Second-Order Semantic Dependency Parsing with End-to-End Neural
Networks

Xinyu Wang, Jingxian Huang, Kewei Tu∗

School of Information Science and Technology,

ShanghaiTech University, Shanghai, China

{wangxy1,huangjx,tukw}@shanghaitech.edu.cn

Abstract

Semantic dependency parsing aims to iden-

tify semantic relationships between words in

a sentence that form a graph. In this paper,

we propose a second-order semantic depen-

dency parser, which takes into consideration

not only individual dependency edges but also

interactions between pairs of edges. We show

that second-order parsing can be approximated

using mean field (MF) variational inference

or loopy belief propagation (LBP). We can

unfold both algorithms as recurrent layers of

a neural network and therefore can train the

parser in an end-to-end manner. Our experi-

ments show that our approach achieves state-

of-the-art performance.

1 Introduction

Semantic dependency parsing (Oepen et al.)

aims to produce graph-structured semantic depen-

dency representations of sentences instead of tree-

structured syntactic dependency parses. Exist-

ing approaches to semantic dependency parsing

can be classified as graph-based approaches and

transition-based approaches. In this paper, we

investigate graph-based approaches which score

each possible parse of a sentence by factorizing

over its parts and search for the highest-scoring

parse.

Previous work in graph-based syntactic depen-

dency parsing has shown that higher-order pars-

ing generally outperforms first-order parsing (Mc-

Donald and Pereira, 2006; Carreras, 2007; Koo

and Collins, 2010; Ma and Zhao, 2012). While

a first-order parser scores dependency edges in-

dependently, a higher-order parser takes relation-

ships between two or more edges into considera-

tion. However, most of the previous algorithms

for higher-order syntactic dependency tree pars-

ing are not applicable to semantic dependency
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graph parsing, and designing efficient algorithms

for higher-order semantic dependency graph pars-

ing is nontrivial. In addition, it becomes a com-

mon practice to use neural networks to compute

features and scores of parse graph components,

which ideally requires backpropagation of parsing

errors through the higher-order parsing algorithm,

adding to the difficulty of designing such an algo-

rithm.

In this paper, we propose a novel graph-based

second-order semantic dependency parser. Given

an input sentence, we use a neural network to com-

pute scores for both first and second-order parts

of parse graphs and then apply either mean field

variational inference or loopy belief propagation

to approximately find the highest-scoring parse

graph. Both algorithms are iterative inference al-

gorithms and we show that they can be unfolded

as recurrent layers of a neural network with each

layer representing the computation in one itera-

tion of the algorithms. In this way, we can con-

struct an end-to-end neural network that takes in

a sentence and outputs the approximate marginal

probability of every possible dependency edge.

During training, we maximize the probability of

the gold parses by using standard gradient-based

methods. Our experiments show that our approach

achieves state-of-the-art performance in semantic

dependency parsing and outperforms our baseline

with 0.3% and 0.4% labeled F1 score and previ-

ous state-of-the-art model with 1.3% and 1.4% la-

beled F1 score for in-domain and out-of-domain

test sets respectively. Our approach shows more

advantage over the baseline when there are fewer

training data and when parsing longer sentences.

2 Semantic Dependency Parsing

Broad-Coverage Semantic Dependency Parsing

was first defined in SemEval-2014 task 8 (Oepen
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Figure 1: Illustration of our model architecture.

et al.) aiming at recovering semantic dependency

relationships in sentences of the WSJ corpus. It

was extended in SemEval-2015 task 18 (Oepen

et al., 2015) with an additional out-of-domain

dataset (the Brown corpus). A semantic depen-

dency parse is different from a syntactic depen-

dency parse in that the dependency edges are an-

notated with semantic relations (e.g., agent and pa-

tient) and form a directed acyclic graph instead

of a tree. The Broad-Coverage Semantic Depen-

dency Parsing provides three different formalisms:

DM, PAS and PSD. Previous work has found that

PAS is the easiest to learn and PSD is the most

difficult as it has the largest set of labels.

3 Approach

Our model architecture (shown in Figure 1) fol-

lows that of Dozat and Manning (2018). Given an

input sentence, we first compute word representa-

tions using a BiLSTM, which are then fed into two

parallel modules, one for predicting the existence

of every edge and the other for predicting the label

of every edge. The label-prediction module makes

predictions of each edge independently and hence

is a first-order decoder. The edge-prediction mod-

ule is what our approach differs from that of Dozat

and Manning (2018). The module scores both first

and second-order parts and then goes through mul-

tiple recurrent inference layers to predict edge ex-

istence.

3.1 Part Scoring

Given a sentence with n words [w1, w2, ..., wn],
we feed a BiLSTM with their word embeddings

and POS tag embeddings.

oi = e
(word)
i ⊕ e

(postag)
i

R = BiLSTM(O)

where oi is the concatenation (⊕) of the word and

POS tag embeddings of word wi, O represents

[o1, . . . ,on], and R = [r1, . . . , rn] represents the

output from the BiLSTM.

To score first-order parts (edges) in both the

edge-prediction module and the label-prediction

module, we use two single-layer feedforward net-

works (FNNs) to compute a head representation

and a dependent representation for each word and

then apply a biaffine function to compute the

scores of edges and labels.

Biaff(v1,v2) := vT
1 Uv2 + b

h
(edge-head)
i = FNN(edge-head)(ri)

h
(edge-dep)
i = FNN(edge-dep)(ri)

h
(label-head)
i = FNN(label-head)(ri)

h
(label-dep)
i = FNN(label-dep)(ri)

s
(edge)
ij = Biaff (edge)(h

(edge-dep)
i ,h

(edge-head)
j ) (1)

s
(label)
ij = Biaff (label)(h

(label-dep)
i ,h(label-head)

j ) (2)

In Eq. 2, the tensor U in the biaffine function is

(d × c × d)-dimensional and is diagonal (for any
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Figure 2: Second-order parts used in our model.

i 6= j, ui,c,j = 0), where d is hidden size and c is

the number of labels. In Eq. 1, the tensor U in the

biaffine function is d× 1× d-dimensional.

In the edge-prediction module, we further score

second-order parts. We consider three types of

second-order parts: siblings (sib), co-parents (cop)

and grandparents (gp) (Martins and Almeida,

2014), as shown in Figure 2. For a specific type
of second-order part, we use single-layer FNNs to

compute a head representation and a dependent

representation for each word. For grandparent

parts, we additionally compute a head_dep repre-

sentation for each word.

type ∈ {sib, cop, gp}

h
(type-head)
i = FNN(type-head)(ri)

h
(type-dep)
i = FNN(type-dep)(ri)

h
(gp-head_dep)
i = FNN(gp-head_dep)(ri)

We then apply a trilinear function to compute

scores of second-order parts. A trilinear function

is defined as follows.

Trilin(v1,v2,v3) := vT
3 v

T
1 Uv2

where U is a (d × d × d)-dimensional tensor. To

reduce the computation cost, we assume that U

has rank d and can be represented as the prod-

uct of three (d× d)-dimensional matrices U1, U2

and U3. We can then compute second-order part

scores as follows.

gi :=Uivi i ∈ [1, 2, 3]

Trilin(v1,v2,v3) :=
d

∑

i=1

g1i ◦ g2i ◦ g3i (3)

s
(sib)
ij,ik ≡ s

(sib)
ik,ij = Trilin(sib)(h(head)

i ,h
(dep)
j ,h

(dep)
k )

(4)

s
(cop)
ij,kj ≡ s

(cop)
kj,ij = Trilin(cop)(h(head)

i ,h
(dep)
j ,h(head)

k )

(5)

s
(gp)
ij,jk = Trilin(gp)(h(head)

i ,h
(head_dep)
j ,h

(dep)
k )

(6)

where ◦ represents element-wise product. We re-

quire j < k in Eq. 4 and i < k in Eq. 5.
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Figure 3: An example of our factor graph for a sentence

with four words. The node <TOP> is the top of de-

pendency graph. The boolean variable (i, j) indicates

whether the directed edge (i, j) exists. For simplicity,

we only depict factors connected to node (1, 2).

3.2 Inference

In the label-prediction module, s
(label)
i,j is fed into a

softmax layer that outputs the probability of each

label for edge (i, j). In the edge-prediction mod-

ule, computing the edge probabilities can be seen

as doing posterior inference on a Conditional Ran-

dom Field (CRF). The corresponding factor graph

is shown in Figure 3. Each Boolean variableXij in

the CRF indicate whether the directed edge (i, j)
exists. We use Eq. 1 to define our unary potential

ψu representing scores of an edge and Eqs. (4-

6) to define our binary potential ψp. We define a

unary potential φu(Xij) for each variable Xij .

φu(Xij) =

{

exp(s
(edge)
ij ) Xij = 1

1 Xij = 0

For each pair of edges (i, j) and (k, l) that form a

second-order part of a specific type, we define a

binary potential φp(Xij , Xkl).

φp(Xij , Xkl) =

{

exp(s
(type)
ij,kl ) Xij = Xkl = 1

0 Otherwise

Exact inference on this CRF is intractable. We

resort to iterative approximate inference algo-

rithms as described below, which produce the pos-

terior distributionQij(Xij) of for each edge (i, j).
We can then predict the parse graph by including
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every edge (i, j) such thatQij(1) > 0.5. The edge

labels are predicted by maximizing the label prob-

abilities computed by the label-prediction module.

Mean Field Variational Inference

Mean field variational inference approximates a

true posterior distribution with a factorized vari-

ational distribution and tries to iteratively mini-

mize their KL divergence. We can derive the fol-

lowing iterative update equations of distribution

Qij(Xij).

F
(t−1)
ij =

∑

k 6=i,j

Q
(t−1)
ik (1)s

(sib)
ij,ik +Q

(t−1)
kj (1)s

(cop)
ij,kj

+Q
(t−1)
jk (1)s

(gp)
ij,jk +Q

(t−1)
ki (1)s

(gp)
ki,ij

(7)

Q
(t)
ij (0) ∝ 1

Q
(t)
ij (1) ∝ exp{s

(edge)
ij + F

(t−1)
ij }

The initial distributionQ
(0)
ij (Xij) is set by normal-

izing the unary potential φu(Xij). We iteratively

update the distributions for T steps and then out-

put Q
(T )
ij (Xij), where T is a hyperparameter.

Loopy Belief Propagation

Loopy belief propagation iteratively passes mes-

sages between variables and potential functions

(factors). Because our CRF contains only unary

and binary potentials, we can merge each variable-

to-factor message and its subsequent factor-to-

variable message into a single variable-to-variable

messageMkl→ij , representing message from edge

(k, l) to edge (i, j). The update function of the

messages in each iteration is:

Q
(t−1)
ij (Xij) = φu(Xij)

∏

ab∈Nij

M
(t−1)
ab→ij(Xij)

M
(t)
kl→ij(0) ∝

∑

xkl

Q
(t−1)
kl (xkl)/M

(t−1)
ij→kl(xkl)

M
(t)
kl→ij(1) ∝ Q

(t−1)
kl (0)/M

(t−1)
ij→kl(0)

+ exp(s
(type)
ij,kl )Q

(t−1)
kl (1)/M

(t−1)
ij→kl(1)

We initialize the messages with M
(0)
kl→ij = 1. We

iteratively update the messages and distributions

for T steps and then output Q
(T )
ij (Xij).

Inference as Recurrent Layers

Zheng et al. (2015) proposed that a fixed number

of iterations in mean field variational inference can

be seen as a recurrent neural network that is pa-

rameterized by the potential functions. We follow

the idea and unfold both mean field variational in-

ference and loopy belief propagation as recurrent

neural network layers that are parameterized by

part scores.

The time complexity of our inference procedure

is O(n3), which is lower than the O(n4) com-

plexity of the exact quasi-second-order inference

of Cao et al. (2017) and on par with the complex-

ity of the approximate second-order inference of

Martins and Almeida (2014).

3.3 Learning

Given a gold parse graph y⋆ of sentence w, the

conditional distribution over possible edge y
(edge)
ij

and corresponding possible label y(label)
ij is given

by:

P (y
(edge)
ij |w) = softmax(Q

(T )
ij (Xij))

P (y(label)
ij |w) = softmax(s(label)

ij )

We define the following cross entropy losses:

L(edge)(θ) = −
∑

i,j

log(Pθ(y
⋆(edge)
ij |w))

L(label)(θ) = −
∑

i,j

✶(y
⋆(edge)
ij ) log(Pθ(y

⋆(label)
ij |w))

where θ is the parameters of our model, ✶(y
⋆(edge)
ij )

denotes the indicator function and equals 1 when

edge (i, j) exists in the gold parse and 0 other-

wise, and i, j ranges over all the words in the sen-

tence. We optimize the weighted average of the

two losses.

L = λL(label) + (1− λ)L(edge)

where λ is a hyperparameter.

4 Experiments

4.1 Hyperparameters

We tuned the hyperparameters of our baseline

model from Dozat and Manning (2018) and our

second-order model on the DM development set.

We followed Dozat and Manning (2018) using

100-dimensional pretrained GloVe embeddings

(Pennington et al., 2014) and transformed them to

be 125-dimensional. Words and lemmas appeared

less than 7 times are replaced with a special un-

known token. We use the same dataset split as in

previous approaches (Martins and Almeida, 2014;

Du et al., 2015) with 33,964 sentences in the train-

ing set, 1,692 sentences in the development set,



4613

Hidden Layer Hidden Sizes

Word/Glove/Lemma/Char 100
POS 50
GloVe Linear 125
BiLSTM LSTM 3*600
Char LSTM 1*400
Unary Arc/Label 600
Binary Arc 150

Dropouts Dropout Prob.

Word/GloVe/POS/Lemma 20%
Char LSTM (FF/recur) 33%
Char Linear 33%
BiLSTM (FF/recur) 45%/25%
Unary Arc/Label 25%/33%
Binary Arc 25%

Optimizer & Loss Value

Baseline Interpolation (λ) 0.025
Second-Order Interpolation (λ) 0.07
Adam β1 0
Adam β2 0.95

Learning rate 1e−2

LR decay 0.5

L2 regularization (MF/LBP) 3e−9/3e−8

Weight Initialization Mean/Stddev

Unary weight (Eq. 1) 0.0/1.0
Binary weight (Eq. 3) 0.0/0.25

Table 1: Hyperparameter for baseline and second-order

models in our experiment.

1,410 sentences in the in-domain test set and 1,849

Brown Corpus sentences in the out-of-domain test

set. We additionally removed sentences longer

than 60 in order to speed up training, which re-

sults in 33,916 training sentences. The final hy-

perparameters of our baseline and second-order

model are shown in Table 1. Following Dozat

and Manning (2018), we used Adam (Kingma and

Ba, 2014) for optimizing our model, annealing the

learning rate by 0.5 for every 10,000 steps, and

switched the optimizer to AMSGrad (Reddi et al.,

2018) after 5,000 steps without improvement. We

trained the model for 100,000 iterations with batch

sizes of 6,000 tokens and terminated training early

after 10,000 iterations with no improvement on the

development sets.

4.2 Main Results

We compare our model with previous state-of-the-

art approaches in Table 2. Du et al. (2015) is a

hybrid model. A&M is from Almeida and Martins

(2015). PTS17 proposed by (Peng et al., 2017) and

Basic is single task parsing while Freda3 is a mul-

titask parser across three formalisms. WCGL18

(Wang et al., 2018) is a neural transition-based

model. D&M (Dozat and Manning, 2018) is a

graph-based model and "Baseline" is the first-

order model from Dozat and Manning (2018) that

was trained by ourselves. For our model, we used

mean field variational inference and loopy belief

propagation for 3 iterations.

In the basic setting, on average our model out-

performs the best previous one by 1.3% on the in-

domain test set and 1.3% on the out-of-domain test

set. With lemma and character-based embeddings,

our model leads to an average improvement of

0.3% and 0.6% over previous models. Our model

also outperforms the baseline by 0.2% − −0.5%
on average with different settings and test sets.

Dozat and Manning (2018) found that on the PAS

dataset their model cannot benefit from lemma and

character-based embeddings and hence speculated

that they may have approached the ceiling of the

PAS F1 score. As shown in our experiments on

the PAS dataset, our model cannot benefit from

lemma and character-based embeddings either, but

it obtains higher F1 scores, which suggests that the

ceiling may not have been reached.

Note that while we do not force our parser to

predict a directed acyclic graph, we found that

only 0.7% of the test sentences have cycles in their

parses.

4.3 Analysis

Small Training Data

To evaluate the performance of our model on

smaller training data, we repeated our experiments

with randomly sampled 70%, 40% and 10% of the

training set. Table 3 shows the F1 scores averaged

over 5 runs (each time with a new randomly sam-

pled training subset). It can be seen that the advan-

tage of our model over the baseline increases sig-

nificantly when the training data becomes smaller.

We make the following speculation to explain this

observation. The BiLSTM layer in the baseline

and our model is capable of capturing high-order

information to some extent. However, without

prior knowledge of high-order parts, it may require

more training data to learn this capability than a

high-order decoder. So with small training data,

the baseline loses the capability of utilizing high-

order information, while our model can still rely

on the decoder for high-order parsing.

Performance on Different Sentence Lengths

We want to study the impact of sentence lengths

on first-order parsing and our second-order pars-

ing. We split the test sets of all the formalisms into

five subsets with different sentence length ranges
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DM PAS PSD Avg

ID OOD ID OOD ID OOD ID OOD

Du et al. (2015) 89.1 81.8 91.3 87.2 75.7 73.3 85.3 80.8

A&M, (2015) 88.2 81.8 90.9 86.9 76.4 74.8 85.2 81.2

WCGL, (2018) 90.3 84.9 91.7 87.6 78.6 75.9 86.9 82.8

PTS17: Basic 89.4 84.5 92.2 88.3 77.6 75.3 86.4 82.7

PTS17: Freda3 90.4 85.3 92.7 89.0 78.5 76.4 87.2 83.6

D&M, (2018): Basic 91.4 86.9 93.9 90.8 79.1 77.5 88.1 85.0

Baseline: Basic 92.6 88.0 94.1 91.0 80.6 78.5 89.1 85.8

MF: Basic 93.0 88.4 94.3 91.5 80.9 78.9 89.4 86.3

LBP: Basic 92.9 88.4 94.3 91.5 81.0 78.8 89.4 86.2

D&M, (2018): +Char +Lemma 93.7 88.9 93.9 90.6 81.0 79.4 89.5 86.3

Baseline: +Char +Lemma 93.7 89.4 94.1 90.9 81.0 79.5 89.6 86.6

MF: +Char +Lemma 94.0 89.7 94.1 91.3 81.4 79.6 89.8 86.9

LBP: +Char +Lemma 93.9 89.5 94.2 91.3 81.4 79.5 89.8 86.8

Table 2: Comparison of labeled F1 scores achieved by our model and previous state-of-the-arts. The F1 scores of

Baseline and our models are averaged over 5 runs. ID denotes the in-domain (WSJ) test set and OOD denotes the

out-of-domain (Brown) test set. +Char and +Lemma means augmenting the token embeddings with character-level

and lemma embeddings.

DM PAS PSD Avg

ID OOD ID OOD ID OOD ID OOD

Baseline: 70% 92.0 87.0 93.8 90.6 79.8 77.7 88.5 85.1

MF: 70% 92.4 87.5 93.9 90.8 80.2 78.0 88.8 85.4

LBP: 70% 92.3 87.4 94.0 90.9 80.2 78.1 88.8 85.5

Baseline: 40% 90.8 85.5 93.2 89.6 78.4 76.4 87.4 83.8

MF: 40% 91.2 86.0 93.4 90.0 78.9 76.7 87.8 84.2

LBP: 40% 91.2 86.0 93.5 90.0 78.9 76.8 87.9 84.3

Baseline: 10% 86.1 80.0 90.8 86.4 73.5 71.2 83.4 79.2

MF: 10% 86.9 81.0 91.3 87.1 74.5 72.1 84.2 80.1

LBP: 10% 86.8 80.9 91.3 87.0 74.5 72.3 84.2 80.1

Table 3: Comparison of labeled F1 scores achieved by our model and our baseline on 10%, 40%, 70% of the

training data. We report the average F1 score over 5 runs with different randomly sampled training data.

and evaluate our model and the baseline on them.

Figure 4 shows that our model has more advan-

tage over the baseline when sentences get longer,

especially when sentences are longer than 40. One

possible explanation is that BiLSTM has difficulty

in capturing long-range dependencies in long sen-

tences, which leads to lower performance on the

first-order baseline; but such long-range depen-

dencies can still be captured with second-order

parsing. It can also be seen that on long sen-

tences, our model has more advantage over the

baseline for the out-of-domain test set than for the

in-domain test set, which suggests that our model

has better generalizability especially on long sen-

tences.

Mean Field vs. Loopy Belief Propagation

We compare mean field variational inference and

loopy belief propagation algorithms in Table 4.

We tuned the hyperparameters of our model for

each algorithm and iteration number separately.

We find that in general mean field variational in-

ference has very similar performance to loopy be-

lief propagation. In addition, with more iterations,

the performance of mean field variational infer-

ence steadily increases while the at the second it-

eration.

Ablation Study

We study how different types of second-order

parts defined in Section 3.1 affect the performance

of our parser. We trained our model with each
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Figure 4: Relative improvements over our baseline in different sentence length intervals with different training

data sizes. We report the average F1 score improvements over all the formalisms with 5 runs for each.

Iteration ID OOD

MF

1 92.78 88.38

2 92.86 88.37

3 92.98 88.44

LBP

1 92.88 88.29

2 92.84 88.17

3 92.88 88.36

Table 4: Comparison of labeled F1 scores of mean field

and loopy belief propagation with different iteration

numbers on the DM dataset.

ID OOD

Baseline 92.60 87.98

+Siblings 92.85 88.31

+Co-parents 92.80 88.23

+Grandparents 92.84 88.24

Table 5: The performance comparison between three

types of second-order parts on the DM dataset.

type of second-order parts without the other two

types on the DM dataset using mean field varia-

tional inference and the result is shown in Table 5.

While all the three types of second-order parts can

be seen to improve the parsing performance over

the baseline, the sibling parts lead to the largest

performance gain on both the in-domain test set

and the out-of-domain test set.

4.4 Case Study

We provide a parsing example in Figure 5 to show

how our second-order parser with 3 iterations of

mean field variational inference works. Before the

first iteration, the marginal distributions of edges

Qij is initialized with unary potentials and thus

is exactly what a first-order parser would pro-

duce. In the subsequent iterations, the distribu-

tions are updated with binary potentials taken into

account. For each version of the distributions, we

can extract a parse graph by collecting edges with

probabilities larger than 0.5. From Figure 5, we

can see that erroneous edges are gradually fixed

through iterations. Edge (were, Poles) sends

a strong negative co-parents message to edge

(<TOP>, Poles) in the first iteration, so the latter

has a lower probability in subsequent iterations.

Edge (were, Poles) also sends a strong positive

grandparent message to edge (<TOP>, were) to

enhance its probability, and the latter sends an

increasingly positive message back to the for-

mer in subsequent iterations. In the second and

third iterations, (were, Poles) sends positive sib-

ling messages and (<TOP>, were) sends positive

grandparent messages to enhance probabilities of

edges (were, They) and (were, not), which fi-

nally leads to the correct parse.

4.5 Running Speed

Our model have a time complexity ofO(d2u+d
2
b+

n3) while the first order model of Dozat and Man-

ning (2018) has a time complexity of O(d2u + n2)
in scoring and decoding (where du and db are the

hidden sizes of the biaffine layer and trilinear layer

and n is the sentence length). We compare these

models with respect to training speed and parsing
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(1) 1st iteration

<TOP>

They
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They were not Poles

(2) 2nd iteration

<TOP>

They

were

not

Poles

They were not Poles

(3) 3rd iteration

<TOP>

They

were

not

Poles

They were not Poles

(4) Final prediction

They were not Poles

<TOP> <TOP>

(1) 1st iteration

They were not Poles

<TOP>

(2) 2nd iteration

They were not Poles

<TOP>

(3) 3rd iteration

They were not Poles

<TOP>

(4) Final prediction

Figure 5: An example of message passing (left) and the corresponding graph parses (right) in our second-order

parser with mean field variational inference. We regard terms in Eq. 7 as messages sent from other arcs. Blue

arcs and red arcs on the left represent positive messages (which encourage the target edge to exist) and negative

messages (which discourage the target edge to exist) respectively. Lightness of the arc color represents the message

intensity. Blackness of each nodes represents the probability of edge existence. A Node with a double circle means

the corresponding edge is predicted to exist. Messages with low intensities are omitted in the graph. Dotted arcs

and red arcs on the right represent missed predictions and wrong predictions compared to the golden parse. The

period in the sentence is omitted for simplicity.

(sents/sec) train parse long short

Baseline 730 904 334 1762

MF 472 722 240 1485

LBP 258 300 88 1246

Table 6: Training and parsing speed (sentences/second)

comparison of the baseline and our model (3 iterations

for our second-order parser). long means the parsing

speed on sentences longer than 40 and short means the

parsing speed on sentences no longer than 10.

speed on an Nvidia Tesla P40 server. The result is

shown in Table 6. Mean field variational inference

slows down training and parsing by 35% and 20%

respectively compared with the baseline. How-

ever, loopy belief propagation slows down training

and parsing by 65% and 67% respectively com-

pared with the baseline.

4.6 Significance Test

We trained 25 basic models of our approach

and the baseline with the same hyperparameters

in Table 1 on each formalism. Student’s t-test

shows that our second-order model outperforms

our baseline model on all the formalisms with a

significance level of 0.005.

5 Related Work

5.1 Semantic Dependency Parsing

Semantic dependency parsing can be classified

as transition-based approaches and graph-based

approaches. Wang et al. (2018) proposed a

transition-based parser for semantic parsing, while

Du et al. (2015) proposed a hybrid parser that ben-

efits from both transition-based approaches and

graph-based approaches. Peng et al. (2017) pro-

posed a graph-based approach that trains on all

the three formalisms simultaneously and Peng
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et al. (2018) further proposed to learn from dif-

ferent corpora. Dozat and Manning (2018) pro-

posed a graph-based simple but powerful neural

network for semantic dependency parsing using

a bilinear or biaffine (Dozat and Manning, 2016)

layer to encode the interaction between words.

Most of these approaches proposed first-order

dependency parser while Martins and Almeida

(2014) proposed a way to encode higher-order

parts with hand-crafted features and introduced

a novel co-parent part for semantic dependency

parsing. They used discrete optimizing algorithm

alternating directions dual decomposition (AD3)

as their decoder. Cao et al. (2017) also proposed

a quasi-second-order semantic dependency parser

with dynamic programming. Our model con-

tains second-order information comparing with

the first-order approaches and benefits from end-

to-end training comparing with other second-order

approaches.

5.2 Higher-Order Dependency Parsing

Higher-order parsing has been extensively studied

in the literature of syntactic dependency parsing.

Much of these work is based on the first-order

maximum spanning tree (MST) parser of McDon-

ald et al. (2005) which factorizes a dependency

tree into individual edges and maximizes the sum-

mation of the scores of all the edges in a tree. Mc-

Donald and Pereira (2006) introduced a second-

order MST that factorizes a dependency tree into

not only edges but also second-order sibling parts,

which allows interactions between adjacent sib-

ling words. Carreras (2007) defined second-order

grandparent parts representing grandparental rela-

tions. Koo and Collins (2010) introduced third-

order grand-sibling and tri-sibling parts. A grand-

sibling part represents a grandparent with two

grandchildren and a tri-sibling part represents a

parent with three children. Ma and Zhao (2012)

defined grand-tri-sibling parts for fourth-order de-

pendency parsing.

Many previous approaches to higher-order de-

pendency parsing perform exact decoding based

on dynamic programming, but there is also re-

search in approximate higher-order parsing. Mar-

tins et al. (2011) proposed an alternating direc-

tions dual decomposition (AD3) algorithm which

splits the original problem into several local sub-

problems and solves them iteratively. They em-

ployed AD3 for second-order dependency parsing

to speed up decoding. Smith and Eisner (2008)

and Gormley et al. (2015) proposed to use belief

propagation for approximate higher-order parsing,

which is closely related to our work.

While higher-order parsing has been shown to

improve syntactic dependency parsing accuracy,

it receives less attention in semantic dependency

parsing. Martins and Almeida (2014) proposed

second-order semantic dependency parsing and

employed AD3 for approximate decoding. Cao

et al. (2017) proposed a quasi-second-order parser

and used dynamic programming for decoding with

time complexity of O(n4).

5.3 CRF as Recurrent Neural Networks

Zheng et al. (2015) are probably the first to pro-

pose the idea of unfolding iterative inference al-

gorithms on CRFs as a stack of recurrent neural

network layers. They unfolded mean field varia-

tional inference in a neural network designed for

semantic segmentation. There is a lot of subse-

quent work that employs this technique, especially

in the computer vision area. For example, Zhu

et al. (2017) proposed a structured attention neural

model for Visual Question Answering with a CRF

over image regions and unfolded both mean field

variational inference and loopy belief propagation

algorithms as recurrent layers.

6 Conclusion

We proposed a novel graph-based second-order

parser for semantic dependency parsing. We

constructed an end-to-end neural network that

uses a trilinear function to score second-order

parts and finds the highest-scoring parse graph

by either mean field variational inference or

loopy belief propagation algorithms unfolded as

recurrent neural network layers. Our exper-

imental results show that our model outper-

forms previous state-of-the-art model and has

higher accuracies especially on out-of-domain

data and long sentences. Our code is pub-

licly available at https://github.com/

wangxinyu0922/Second_Order_SDP
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