Compositional Semantic Parsing Across Graphbanks

Matthias Lindemann® and Jonas Groschwitz* and Alexander Koller
Department of Language Science and Technology
Saarland University
{mlinde| jonasglkoller}@coli.uni-saarland.de

Abstract

Most semantic parsers that map sentences to
graph-based meaning representations are hand-
designed for specific graphbanks. We present
a compositional neural semantic parser which
achieves, for the first time, competitive accura-
cies across a diverse range of graphbanks. In-
corporating BERT embeddings and multi-task
learning improves the accuracy further, setting
new states of the art on DM, PAS, PSD, AMR
2015 and EDS.

1 Introduction

Over the past few years, a wide variety of semantic
graphbanks have become available. Although these
corpora all pair natural-language sentences with
graph-based semantic representations, they differ
greatly in the design of these graphs (Kuhlmann
and Oepen, 2016). Some, in particular the DM,
PAS, and PSD corpora of the SemEval shared task
on Semantic Dependency Parsing (Oepen et al.,
2015), use the tokens of the sentence as nodes and
connect them with semantic relations. By contrast,
the AMRBank (Banarescu et al., 2013) represents
the meaning of each word using a nontrivial con-
cept graph; the EDS graphbank (Flickinger et al.,
2017) encodes MRS representations (Copestake
et al., 2005) as graphs with a many-to-many re-
lation between tokens and nodes. In EDS, graph
nodes are explicitly aligned with the tokens; in
AMR, the alignments are implicit. The graphbanks
also exhibit structural differences in their modeling
of e.g. coordination or copula.

Because of these differences in annotation
schemes, the best performing semantic parsers are
typically designed for one or very few specific
graphbanks. For instance, the currently best sys-
tem for DM, PAS, and PSD (Dozat and Manning,

*Equal contribution

2018) assumes dependency graphs and cannot be
directly applied to EDS or AMR. Conversely, top
AMR parsers (Lyu and Titov, 2018) invest heavily
into identifying AMR-specific alignments and con-
cepts, which may not be useful in other graphbanks.
Hershcovich et al. (2018) parse across different se-
mantic graphbanks (UCCA, DM, AMR), but focus
on UCCA and do poorly on DM. The system of
Buys and Blunsom (2017) set a state of the art on
EDS at the time, but does poorly on AMR.

In this paper, we present a single semantic parser
that does very well across all of DM, PAS, PSD,
EDS and AMR (2015 and 2017). Our system is
based on the compositional neural AMR parser of
Groschwitz et al. (2018), which represents each
graph with its compositional tree structure and
learns to predict it through neural dependency pars-
ing and supertagging. We show how to heuristi-
cally compute the latent compositional structures
of the graphs of DM, PAS, PSD, and EDS. This
base parser already performs near the state of the
art across all six graphbanks. We improve it fur-
ther by using pretrained BERT embeddings (Devlin
et al., 2019) and multi-task learning. With this, we
set new states of the art on DM, PAS, PSD, AMR
2015, as well as (among systems that do not use
specialized knowledge about the corpus) on EDS.

2 Semantic parsing with the AM algebra

The Apply-Modify (AM) Algebra (Groschwitz
et al., 2017; Groschwitz, 2019) builds graphs from
smaller graph fragments called as-graphs. Fig. 1b
shows some as-graphs from which the AMR in
Fig. 1a can be constructed. Take for example the
graph Gyane. Some of its nodes are marked with red
sources, here S and O. These represent ‘argument
slots’ to be filled. The O-source in Gy 1S anno-
tated with type [S], which will be explained below.
Further, in each as-graph, one node is marked as a

4576

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4576—4585
Florence, Italy, July 28 - August 2, 2019. (©2019 Association for Computational Linguistics


{mlinde|jonasg|koller}@coli.uni-saarland.de

(a) AMR (b) Constants Gwant, Geats Gear and Gy
APPg
/N MODy  APPs APPg
APP, MODy
/\ /\ L | |Gany| | Geat | | Guant | | L| |Geat
Guant [Geat| Gen |Gy The shy cat wants | | to eat
(c) AM term (d) AM dependency tree

mod

() MODM (Geat, Gny)

Figure 1: AMR for The shy cat wants to eat with its
AM analysis.

(e) APPo (Gwam, Geal)

special root source, drawn here with a bold outline.

There are two operations in the AM Algebra
that combine as-graphs. First, the apply opera-
tion APPx for a source X, as in APPo (Gywant, Geat)
with the result shown in Fig. le. The operation
combines two as-graphs, a head and an argument,
by filling the head’s X-source with the root of the
argument. Nodes in both graphs with the same
source are unified, i.e. here the two nodes marked
with an S-source become one node. The type an-
notation [S] at the O-source of Gy, requests the
argument to have an S-source (which Gey has).
If the argument does not fulfill the request at a
source’s annotation, the operation is not well-typed
and thus not allowed.

The second operation is modify, as in
MODpM (Gcat, Gshy) with the result shown in Fig. 1f.
Here, Gy is the head and G,y the modifier, and
in the operation, Gy attaches with its M source
at Gyt and loses its own root. We obtain the final
graph with the APPg operation at the top of the
term in Fig. 1c, combining the two partial results
we have built so far.

AM dependency parsing. By tracking the “se-
mantic heads” of each subtree of an AM term as
in Fig. 1c, we can encode AM terms as AM de-
pendency trees (Fig. 1d): whenever the AM term
combines two graphs with some operation, we add
a dependency edge from one semantic head to the
other (Groschwitz et al., 2018).

We can then parse a sentence into a graph by pre-
dicting an as-graph (or the absence of one, written
‘1) for each token in the sentence, along with a
well-typed AM dependency tree that connects them.
This AM dependency tree evaluates deterministi-

cally to a graph. Groschwitz et al. (2018) show how
to perform accurate AMR parsing by training a neu-
ral supertagger to predict as-graphs for the words
and a neural dependency (tree) parser to predict the
AM dependency trees. Here we use their basic mod-
els for predicting edge and supertag scores. Com-
puting the highest-scoring well-typed AM depen-
dency is NP-complete; we use Groschwitz et al.’s
fixed-tree parser to compute it approximatively.

3 Decomposing the graphbanks

A central challenge with AM dependency parsing
is that the AM dependency trees in the training cor-
pus are latent: Strings are annotated with graphs
(Fig. 1a), but we need the supertags and AM depen-
dency trees (Fig. 1d).

Groschwitz et al. (2018) describe a heuristic al-
gorithm to obtain AM dependency trees for AMRs
(decomposition). They first align each node in the
graph with a word token; then group the edges
together with either their source or target nodes, de-
pending on the edge label; choose a source name
for the open slot at the other end of each attached
edge; and match reentrancy patterns to determine
annotations for each source. The dependency
edges follow from these decisions.

Groschwitz et al. worked these steps out only
for AMR. Here we extend their work to DM, PAS,
PSD, and EDS (see Figure 2); this is the central
technical contribution of this paper.

3.1 The graphbanks

Before we discuss the decomposition process, let
us examine the key similarities and differences of
AMR, DM, PAS, PSD and EDS. Most obvious is
that DM, PAS and PSD are dependency graphs
(Figure 2a-c) where the nodes of the graphs are
the words of the sentences, while EDS (Figure 2d)
and AMR use nodes related to, but separate from
the words. Node-to-word alignments are given in
EDS, but not in AMR, where predicting them is
hard (Lyu and Titov, 2018).

In all graphbanks we consider here, the edges ex-
press semantic relations between the nodes. Several
similarities exist: in our example, all graphbanks
have edges from “wants” and “eat” to “cat” that
indicate that the cat is both the wanter and the eater.
These are for example the ‘ARGO’ edges in AMR
and the ‘ACT-arg’ edges in PSD. In fact, all five
graphs show a triangle structure between “want”,
“eat” and “cat” that is characteristic of control verbs.

4577



ARGI1

BV
ARG1 ARG2

=
a) The shy cat wants to eat
~
= Mobp APP,
m APPs
VWAl /—L\
COCD G |7 D
3V RG1 'ARG1 \ARG2 ARG
O COCED| D
The | shy | cat wants to| eat
verb_ARG1
v
&
o)
<
:
Het ARG
&,
The
a
%]
Ay
—
2
The
%]
a
[8a]
~
2

BV ARGI

The shy cat

ARGI\ARG2 ARGI

wants to eat

Figure 2: Semantic representations for The shy cat
wants to eat, each with an AM dependency tree below.

Similarly, all graphs have an edge indicating that
“shy” modifies “cat”, although edge label and edge
direction vary. However, the graphbanks differ not
only in edge directions and labels, but also struc-
turally. For example, DM, PAS and EDS annotate
determiners while AMR and PSD do not. Figure 3
shows a reentrancy structure for a copular “are” in
PAS that is not present in AMR.

3.2 Our decomposition method

We adapt the decomposition procedure of
Groschwitz et al. in the following ways. We sketch
the most interesting points here; full details are in
the supplementary materials.

adj_ ARG

@ © G e
mod ¢ N N
0 @ Giraffes are tall

Figure 3: AMR (a) and PAS (b) for Giraffes are tall.

Alignments are given in EDS and not necessary
in DM, PAS, and PSD.

Grouping. We follow two principles in group-
ing edges with nodes: Edges between heads and
arguments always belong with the head, and edges
between heads and modifiers with the modifier (re-
gardless of the direction into which the edge points).
This yields supertags that generalize well, e.g. a
noun has the same supertag no matter whether it
has a determiner, whether it is modified by adjec-
tives, whether is agent, and so on.

We find that for all graphbanks, just knowing
the edge label is enough to group an edge properly.
Thus, we manually decide for each of the 216 edge
labels of all graphbanks whether the edges with
this label are to be grouped with their target or
source node. For instance, ‘ACT-arg’ edges in PSD
and ‘verb_ARG1’ edges in PAS are argument-type
edges grouped with their source node (they point
from a verb to its agent). ‘RSTR’ edges in PSD and
‘adj_ ARG’ edges in PAS are modifier-type and
grouped with the adjective; the former is grouped
with its target node and the latter with its source.
In DM, ‘ARG’ edges can be both modifier- or
argument-type (they are used for both adjectives
and verbs); grouping them with their source node
is the correct choice in both cases.

Source names. We largely reuse Groschwitz et
al.’s source names, which are loosely inspired by
(deep) syntactic relations, and map the edge labels
of each graphbank to preferred source names. For
example, in PSD we associate ‘ACT-arg’ edges
with S sources (for “subject”). Some source names
are new, such as D for determiners in DM, PAS
and EDS (AMRs do not represent determiners).

Annotations. Groschwitz et al.’s algorithm for
assigning annotations to sources carries over to the
other graphbanks. For patterns that are the same
across all graphbanks, such as the ‘triangle’ created
by the control verb “want” in Figures 1 and 2, we
can re-use the same pattern as for AMR. Thus,
control verbs are identified automatically, and their
sources are assigned annotations which enforce the
appropriate argument sharing.

Interestingly, the original patterns are useful be-
yond their initial design. We found that for phe-

4578



(@)  ara (b)  ACTag ©
and_C ACT-arg

ACT-arg

Johnand Mary sing JohnandMarysing Johnand Mary sing
A

CONJ.member
CONJ.member

CONJ.member
CONJ.member

Figure 4: Coordination in (a) DM and (b, c) PSD.

nomena that cause reentrancies in the new graph-
banks, but not in AMR — such as copula in PAS,
c.f. Figure 3 — there was typically a suitable pat-
tern designed for a different phenomenon in AMR.
E.g. for copula in PAS, the control pattern works.

We thus only update patterns that depend on
edge labels; for instance, coordinations in PAS are
characterized through their ‘coord_ARGx’ edges.

Challenges with coordination. Coordination
in DM (Fig. 4a) is hard to model in the AM alge-
bra because the supertag for “and” would need to
consist only of a single ‘and_c’ edge. We group
the ‘and_c’ edge with its target node (Mary), cre-
ating extra supertags e.g. for coordinated and non-
coordinated nouns.

In PSD, coordinated arguments (John and Mary
in Fig. 4b) have an edge into each conjunct. This
too is hard to model with the AM algebra because
after building John and Mary, there can only be one
node (the root source) where edges can be attached.
We therefore rewrite the graph as shown in Fig. 4c
in preprocessing and revert the transformation in
postprocessing.

Non-decomposable graphs. While some en-
codings of graphs as trees are lossy (Agic et al.,
2015), ours is not: when we obtain an AM depen-
dency tree from a graph, that dependency tree eval-
uates uniquely to the original graph. However, not
every graph in the training data can be decomposed
into an AM dependency tree in the way described
above. We mitigate the problem by making DM,
PAS, and PSD graphs that have multiple roots con-
nected by adding an artificial root node, and by
removing ‘R-HNDL’ and ‘L-HNDL’ edges from
EDS (2.3% of edges). We remove some reentrant
edges in AMR as described in Groschwitz et al.

We remove the remaining non-decomposable
graphs from the training data: 8% of instances in
DM, 6% each for PAS and PSD, 24% for EDS,
and 10% for AMR. The high percentage of non-
decomposable graphs in EDS stems from the fact
that EDS can align multiple nodes to the same
token, creating multi-node constants. If more than
one of these nodes are arguments or are modified
in the graph, this cannot be easily represented with

the AM algebra, and thus no valid AM dependency
tree is available.
We do not remove graphs from the test data.

4 Evaluation

Data. We evaluate on the DM, PAS and PSD cor-
pora of the SemEval 2015 shared task (Oepen et al.,
2015), the EDS corpus (Flickinger et al., 2017) and
the releases LDC2015E86 and LDC2017T10 of the
AMRBank. All corpora are named entity tagged
using Stanford CoreNLP. When tokenization, POS
tags and lemmas are provided with the data (DM,
PAS, PSD), we use those. Otherwise we employ
CoreNLP. We use the same hyperparameters for all
graphbanks, as detailed in the appendix.

Parser. We use the BiLSTM-based arc-factored
dependency parsing model of Kiperwasser and
Goldberg (2016). On the edge existence scores
we use the hinge loss of the original K&G model,
but we use cross-entropy loss on the edge label pre-
dictions; this improved the accuracy of our parser.
We also experimented with the dependency pars-
ing model of Dozat and Manning (2017), but this
yielded lower accuracies than the K&G model.

We feed each word’s BiLSTM encoding into
an MLP with one hidden layer to predict the su-
pertags. We use separate BiILSTMs for the depen-
dency parser and the supertagger but share embed-
dings. For every token, the BiLSTMs are fed a
word embedding, the lemma, POS, and named en-
tity tag. In the basic version of our experiments,
we used pretrained GloVe embeddings (Pennington
et al., 2014) along with trainable embeddings. In
the other version we replace them by pretrained
BERT embeddings (Devlin et al., 2019).

AMR and EDS use node labels which are non-
trivially related to the words. Therefore, we split
each of their supertags into a delexicalized supertag
and a lexical label. For instance, instead of predict-
ing the supertag Gyan in Fig. 1b in its entirety, we
predict the label “want-01" separately from the rest
of the graph. We complement the neural label pre-
diction with a copy function based on the word
form and lemma (see supplementary materials).

We implemented this model and Groschwitz et
al’s fixed-tree decoder within the AllenNLP frame-
work (Gardner et al., 2017). Our code is available
at https://github.com/coli-saar/am-parser.

Results. Table 1 (upper part) shows the results
of our basic semantic parser (with GloVe embed-
dings) on all six graphbanks (mean scores over five

4579


https://github.com/coli-saar/am-parser

DM PAS PSD EDS AMR 2015 AMR 2017

idF ood F idF ood F idF ood F Smatch F EDM Smatch F Smatch F
Groschwitz et al. (2018) - - - - - - - - 70.2 71.0
Lyu and Titov (2018) - - - - - - - - 73.7 74.4 +0.16
Zhang et al. (2019) - - - - - - - - - 76.3 +0.1
Peng et al. (2017) Basic 89.4 84.5 92.2 88.3 77.6 75.3 - - - -
Dozat and Manning (2018) 93.7 88.9 94.0 90.8 81.0 79.4 - -
Buys and Blunsom (2017) - - - - - 85.5 85.9 60.1
Chen et al. (2018) - - - - - - 90.9'2  90.4 -
This paper (GloVe) 90.4 0.2 843 +02 91.4+01 86.6+0.1 78.1+02 745402 87.6+0.1 825401 69.2+04 70.7 0.2
This paper (BERT) 93.9 +t0.1 90.3+01 945+01 92.5+01 82.0+01 815403 90.1+0.1 849 +01 743 +02 75.3 £0.2
Peng et al. (2017) Fredal 90.0 84.9 92.3 88.3 78.1 75.8 - - -
Peng et al. (2017) Freda3 90.4 85.3 92.7 89.0 78.5 76.4 - - -
This paper, MTL (GloVe) 91.24+0.1 857400 922402 88.0+03 789403 762404 882+01 833+01 (704)°+02 71.2+02
This paper, MTL (BERT) ~ 94.1 +0.1 90.5 +0.1 94.7 +0.1 92.8 +0.1 82.1+02 81.6+0.1 90.4+0.1 852401 (74.5) +0.1 75.3 +0.1

Table 1: Semantic parsing accuracies (id = in domain test set; ood = out of domain test set).

runs and standard deviations). Our results are com-
petitive across the board, and set a new state of the
art for EDS Smatch scores (Cai and Knight, 2013)
among EDS parsers which are not trained on gold
syntax information. Our EDM score (Dridan and
Oepen, 2011) on EDS is lower, partially because
EDM evaluates the parser’s ability to align nodes
with multi-token spans; our supertagger can only
align nodes with individual tokens, and we add
alignment spans heuristically.

To test the impact of the grouping and source-
naming heuristics from Section 3.2, we experi-
mented with randomized heuristics on DM. The
F-score dropped by up to 18 points.

BERT. The use of BERT embeddings is highly
effective across the board. We set a new state of
the art (without gold syntax) on all graphbanks
except AMR 2017; note that Zhang et al. (2019)
also use BERT. The improvement is particularly
pronounced in the out-of-domain evaluations, illus-
trating BERT’s ability to transfer across domains.

Multi-task learning. Multi-task learning has
been shown to substantially improve accuracy on
various semantic parsing tasks (Stanovsky and Da-
gan, 2018; Hershcovich et al., 2018; Peng et al.,
2018). It is particularly easy to apply here, because
we have converted all graphbanks into a uniform
format (supertags and AM dependency trees).

We explored several multi-task approaches dur-
ing development, namely Freda (Daumé 111, 2007;
Peng et al., 2017), the Freda generalization of Lu
et al. (2016) and the method of Stymne et al. (2018).
We found Freda to work best and use it for evalua-

!'Uses gold syntax information from the HPSG DeepBank
annotations at training time.

2Weiwei Sun, p.c.

3Not comparable to other AMR 2015 results because train-
ing data contained AMR 2017.

tion. Our setup compares most directly to Peng et
al.’s “Fredal” model, concatenating the output of a
graphbank-specific BILSTM with that of a shared
BiLSTM, using graphbank-specific MLPs for su-
pertags and edges, and sharing input embeddings.

We pooled all corpora into a multi-task training
set except for AMR 2015, since it is a subset of
AMR 2017. We also added the English Universal
Dependency treebanks (Nivre et al., 2018) to our
training set (without any supertags). The results
on the test dataset are shown in Table 1 (bottom).
With GloVe, multi-task learning led to substantial
improvements; with BERT the improvements are
smaller but still noticeable.

5 Conclusion

We have shown how to perform accurate seman-
tic parsing across a diverse range of graphbanks.
We achieve this by training a compositional neu-
ral parser on graphbank-specific tree decomposi-
tions of the annotated graphs and combining it with
BERT and multi-task learning.

In the future, we would like to extend our ap-
proach to sembanks which are annotated with dif-
ferent types of semantic representation, e.g. SQL
(Yu et al., 2018) or DRT (Abzianidze et al., 2017).
Furthermore, one limitation of our approach is that
the latent AM dependency trees are determined by
heuristics, which must be redeveloped for each new
graphbank. We will explore latent-variable models
to learn the dependency trees automatically.

Acknowledgements

We thank Stephan Oepen, Weiwei Sun and
Meaghan Fowlie for helpful discussions and the
reviewers for their insightful comments. This work
was supported by DFG grant KO 2916/2-2.

4580



References

Lasha Abzianidze, Johannes Bjerva, Kilian Evang,
Hessel Haagsma, Rik van Noord, Pierre Ludmann,
Duc-Duy Nguyen, and Johan Bos. 2017. The paral-
lel meaning bank: Towards a multilingual corpus of
translations annotated with compositional meaning
representations. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics.

Zeljko Agié, Alexander Koller, and Stephan Oepen.
2015. Semantic dependency graph parsing using
tree approximations. In Proceedings of the 14th
International Conference on Computational Seman-
tics (IWCS).

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, UIf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for Sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse.

Jan Buys and Phil Blunsom. 2017. Robust incremen-
tal neural semantic graph parsing. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics.

Yufei Chen, Weiwei Sun, and Xiaojun Wan. 2018. Ac-
curate SHRG-based semantic parsing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 408—418, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Ann Copestake, Dan Flickinger, Carl Pollard, and
Ivan A Sag. 2005. Minimal recursion semantics: An

introduction. Research on language and computa-
tion, 3(2-3):281-332.

Hal Daumé III. 2007. Frustratingly easy domain adap-
tation. In Proceedings of the 45th Annual Meeting
of the Association of Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In ICLR.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency
parsing. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics.

Rebecca Dridan and Stephan Oepen. 2011. Parser eval-
uation using elementary dependency matching. In
Proceedings of the 12th International Conference on
Parsing Technologies, pages 225-230.

Dan Flickinger, Jan Haji¢, Angelina Ivanova, Marco
Kuhlmann, Yusuke Miyao, Stephan Oepen, and
Daniel Zeman. 2017. Open SDP 1.2. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics (UFAL), Faculty of
Mathematics and Physics, Charles University.

Matthew Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson H S Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. A deep semantic natural language processing
platform.

Jonas Groschwitz. 2019. Methods for taking seman-
tic graphs apart and putting them back together
again. Ph.D. thesis, Macquarie University and Saar-
land University.

Jonas Groschwitz, Meaghan Fowlie, Mark Johnson,
and Alexander Koller. 2017. A constrained graph al-
gebra for semantic parsing with AMRs. In Proceed-
ings of the 12th International Conference on Com-
putational Semantics (IWCS).

Jonas Groschwitz, Matthias Lindemann, Meaghan
Fowlie, Mark Johnson, and Alexander Koller. 2018.
AMR Dependency Parsing with a Typed Semantic
Algebra. In Proceedings of ACL.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Multitask parsing across semantic representa-
tions. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and Accurate Dependency Parsing Using Bidi-
rectional LSTM Feature Representations. Transac-
tions of the Association for Computational Linguis-
tics, 4:313-327.

Marco Kuhlmann and Stephan Oepen. 2016. Towards
a catalogue of linguistic graph banks. Computa-
tional Linguistics, 42(4):819-827.

Wei Lu, Hai Leong Chieu, and Jonathan Lofgren.
2016. A general regularization framework for do-
main adaptation. In Proceedings of EMNLP.

Chunchuan Lyu and Ivan Titov. 2018. AMR Parsing
as Graph Prediction with Latent Alignment. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations.

4581


http://aclweb.org/anthology/E17-2039
http://aclweb.org/anthology/E17-2039
http://aclweb.org/anthology/E17-2039
http://aclweb.org/anthology/E17-2039
http://aclweb.org/anthology/W13-2322
http://aclweb.org/anthology/W13-2322
https://doi.org/10.18653/v1/P17-1112
https://doi.org/10.18653/v1/P17-1112
https://www.aclweb.org/anthology/P18-1038
https://www.aclweb.org/anthology/P18-1038
http://aclweb.org/anthology/P07-1033
http://aclweb.org/anthology/P07-1033
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
http://aclweb.org/anthology/P18-2077
http://aclweb.org/anthology/P18-2077
http://hdl.handle.net/11234/1-1956
http://www.coli.uni-saarland.de/~jonasg/thesis.pdf
http://www.coli.uni-saarland.de/~jonasg/thesis.pdf
http://www.coli.uni-saarland.de/~jonasg/thesis.pdf
http://aclweb.org/anthology/W17-6810
http://aclweb.org/anthology/W17-6810
http://aclweb.org/anthology/P18-1170
http://aclweb.org/anthology/P18-1170
http://aclweb.org/anthology/P18-1035
http://aclweb.org/anthology/P18-1035
http://aclweb.org/anthology/Q16-1023
http://aclweb.org/anthology/Q16-1023
http://aclweb.org/anthology/Q16-1023
http://aclweb.org/anthology/J16-4009
http://aclweb.org/anthology/J16-4009
http://aclweb.org/anthology/P18-1037
http://aclweb.org/anthology/P18-1037

Joakim Nivre, Mitchell Abrams, Zeljko Agi¢, Lars
Ahrenberg, Lene Antonsen, Katya Aplonova,
Maria Jesus Aranzabe, et al. 2018. Universal depen-
dencies 2.3. LINDAT/CLARIN digital library at the
Institute of Formal and Applied Linguistics (UFAL),
Faculty of Mathematics and Physics, Charles Uni-
versity.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkovd, Dan Flickinger, Jan
Haji¢, and Zdenika UreSova. 2015. Semeval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015).

Hao Peng, Sam Thomson, and Noah A. Smith. 2017.
Deep Multitask Learning for Semantic Dependency
Parsing. In Proceedings of ACL.

Hao Peng, Sam Thomson, Swabha Swayamdipta, and
Noah A. Smith. 2018. Learning joint semantic
parsers from disjoint data. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1492—-1502.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Gabriel Stanovsky and Ido Dagan. 2018. Semantics as
a foreign language. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing.

Sara Stymne, Miryam de Lhoneux, Aaron Smith, and
Joakim Nivre. 2018. Parser training with heteroge-
neous treebanks. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-sql task. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing.

Shen Zhang, Xutai Ma, Kevin Duh, and Benjamin Van
Durme. 2019. AMR parsing as sequence-to-graph
transduction. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

A Edge Attachment and Source
Heuristics

This section presents details of the heuristics dis-
cussed in Section 3 of the main paper, concerning
grouping (edge attachment) and source heuristics.

Tables 2, 3, 4 and 5 show our edge attachment
and source assignment heuristics for DM, PAS,
PSD and EDS respectively. The heuristics are bro-
ken down by the edge’s label in the ‘Label’ column
(“*’ is a wildcard matching any string). A check-
mark (v") in the “To Origin’ column means that all
edges with this label are attached to their origin
node, a cross (X ) means the edge is attached to its
target node. In EDS, all edges go with their origin
in principle, but in order to improve decomposabil-
ity, we attach an edge to its target if the target node
has label udef_q or nominalization.

The graphbanks differ in the directionality of
edges; in particular, modifier relations sometimes
point from the head to the modifier (PSD, AMR)
and sometimes from the modifier to the head (DM,
PAS, EDS). Our edge assignment heuristics ac-
count for that, following the principles for group-
ing. In DM, for instance, we treat the BV edge
(pointing from a determiner to its head noun) as
a modifier edge, and thus, it belongs to the deter-
miner, which happens to be at the origin of the
edge.

The ‘Source’ column specifies which source is
assigned to an empty node attached to an as-graph,
depending on the label of the edge with which the
node is attached. If an as-graph has multiple at-
tached edges with the same label (or labels that map
to the same source), i.e. multiple nodes would ob-
tain the same source, we disambiguate the sources
by sorting the nodes with the same source in an
arbitrary order and appending ‘2’ to the source at
the second node, ‘3’ to the source at the third node
and so on (the source at the first node remains un-
changed). In PSD, where this happens particularly
often, we order the nodes with the same source in
their word order rather than arbitrarily, to get more
consistent AM dependency trees. For example, if
in PSD there are two nodes that are attached to an
as-graph with ‘CONJ.member’ edges (such as in
Figure 4c in the main paper), the edge going to the
left gets assigned an OP source and the edge going
to the right an OP2 source.

Passive and object promotion. Following
Groschwitz et al. (2018), we allow some source
names to be changed or swapped in an as-graph
constant after their original assignments. That is,
after we build a constant according to the edge
grouping and source assignments described above,
we generate multiple variants of the constant that
have different source names. We allow

4582


http://hdl.handle.net/11234/1-2895
http://hdl.handle.net/11234/1-2895
http://aclweb.org/anthology/S15-2153
http://aclweb.org/anthology/S15-2153
http://aclweb.org/anthology/S15-2153
http://aclweb.org/anthology/P17-1186
http://aclweb.org/anthology/P17-1186
https://doi.org/10.18653/v1/N18-1135
https://doi.org/10.18653/v1/N18-1135
http://aclweb.org/anthology/D18-1263
http://aclweb.org/anthology/D18-1263
http://aclweb.org/anthology/P18-2098
http://aclweb.org/anthology/P18-2098
http://aclweb.org/anthology/D18-1425
http://aclweb.org/anthology/D18-1425
http://aclweb.org/anthology/D18-1425

Label To Origin  Source
ARGl v S
ARG2 v (0]
compound v comp
BV v D
poss v poss
*e X coord
ARG3 v 02
mwe X comp
conj X coord
plus X M
ARG4 v 03
all other edges v/ M

Table 2: Heuristics for DM.

Edge label To Origin  Source
det_ARG1 v D
punct_ARGl1 v pnct
coord_ARG; v op;
verb_ ARGl v S
*_ARGlI v (0]
*_ARG2 v 0]

all other edges v M

Table 3: Heuristics for PAS.

e object promotion, e.g. instead of an O3 source
we may also use an O2 or O source, as long
as they don’t exist yet in the constant,

e unaccusative subjects, i.e. an O source may
become an S source if no S source is present
yet in the constant, and

e passive, i.e. switching O and S sources.

This allows more graphs to be decomposed, by al-
lowing e.g. the coordination of a verb in active and
a verb in passive, or the raising of unaccusative
subjects. We also follow Groschwitz et al. (2018)
in the following (quoted directly from their Sec-
tion 4.2): “To make our as-graphs more consistent,
we prefer constants that promote objects as far as
possible, use unaccusative subjects, and no passive
alternation, but still allow constants that do not
satisfy these conditions if necessary.”

Reentrancy heuristics. We update the reen-
trancy patterns of Groschwitz et al. (2017) in the
following way. No coordination node patterns are
allowed in DM (since DM uses edges for coordina-
tion); Coordination nodes in PAS are characterized
via their coord_ARG; edges. In PSD and EDS, any
node that has two arguments that themselves have
a common argument can be a coordination node.
Raising in PAS is done with the coordination
pattern; in the others, a node v where one argu-
ment w has an S source can be a raising node (that

Label To Origin  Source
ACT-arg v S
PAT-arg v o
*-arg (except ACT, PAT) v 00
* member v op
CPR v M
all other edges X M
Table 4: Heuristics for PSD.
Label To Origin  Source
ARG v S
ARG2 v o
BV v D
R-INDEX v opl
L-INDEX v op2
R-HNDL v opl
L-HNDL v op2
ARG* v o
all other edges v/ M

Table 5: Heuristics for EDS.

is, we add an [S]-annotation at the source that the
v-constant has at node w), as long as the edge be-
tween v and w has label

e ARGI or ARG2 in DM,
o PAT-arg in PSD, or
e any label in EDS.

We use the same ‘raising’-style pattern for compar-
atives in PSD, where we use no condition on the
source that is ‘passed along’, but the edge from v
to w must have label ‘CPR’.

Randomized heuristics. The randomized
heuristics we experimented with on the DM set
choose edge grouping (to target or to origin) and
source names for each edge label independently
uniformly at random (but consistently across the
corpus).

B Training and Parsing Details

We reimplemented the graph-based parser of Kiper-
wasser and Goldberg (2016) in AllenNLP. We de-
viate from the original implementation in the fol-
lowing:

e We use a cross-entropy loss instead of a hinge

loss on the edge label predictions.

o We follow Groschwitz et al. (2018) in using
the Chu-Liu-Edmonds algorithm instead of
Eisner’s algorithm.

e We don’t perform word dropout but regular
dropout on the input.

4583



We add a supertagger consisting of a separate Bil-
STM, from whose states we predict delexicalized
graph fragments and lexical labels with an MLP.
Learned embeddings are shared between the BiL-
STM of the supertagger and the dependency parser.

The hyperparameters are collected in table 6. We
train the parser for 40 epochs and pick the model
with the highest performance on the development
set (measured in Smatch for EDS, not in EDM).
We perform early stopping with patience of 10
epochs. Every lemma (and word in the case of
using GloVe embeddings) that occurs fewer than 7
times is treated as unknown.

We use Bucketlterators (padding noise 0.1) and
the methods implemented in AllenNLP for per-
forming padding and masking.

Training with GloVe We use the 200-
dimensional version of GloVe (6B.200d)
along with 100-dimensional trainable embeddings.
We use two layers in the BILSTMs and train with
a batch size of 48.

Training with BERT When using BERT, we re-
place both the GloVe embeddings and the learned
word embedding with BERT. Since BERT does not
provide embeddings for the artificial root of the
dependency tree, we learn a separate embedding.
In some graphbanks (DM, PAS, PSD), we also
have an artificial word at the end of each sentence,
that is used to connect the graphs. From BERT’s
perspective, the artificial word is a period symbol.

When training with BERT, we use a batch size
of 64 and only one layer in the BILSTMs. We
use the “large-uncased” model as available through
AllenNLP and don’t fine-tune BERT.

MTL In our Freda experiments, we have one
LSTM per graphbank and one that is shared be-
tween the graphbanks. When we compute scores
for a sentence, we run it through its graphbank-
specific LSTM and the shared one. We concatenate
the outputs and feed it to graphbank-specific MLPs.
Again, we have separate LSTM for the edge model
(input to edge existence and edge label MLP) and
the supertagging model. In effect, we have two
LSTMs that are shared over the graphbanks: one
for the edge model and one for the supertagging
model.

All LSTMs have the hyperparameters detailed
in table 6. In the case of UD, we don’t use a
graphbank-specific supertagger because there are

Activation function tanh
Optimizer Adam
Learning rate 0.001
Epochs 40
Dim of lemma embeddings 64
Dim of POS embeddings 32
Dim of NE embeddings 16
Minimum lemma frequency 7
Hidden layers in all MLPs 1
Hidden units in LSTM (per direction) 256
Hidden units in edge existence MLP 256
Hidden units in edge label MLP 256
Hidden units in supertagger MLP 1024
Hidden units in lexical label tagger MLP 1024
Layer dropout in LSTMs 0.3
Recurrent dropout in LSTMs 0.4
Input dropout 0.3
Dropout in edge existence MLP 0.0
Dropout in edge label MLP 0.0
Dropout in supertagger MLP 0.4
Dropout in lexical label tagger MLP 0.4

Table 6: Common hyperparameters used in all experi-
ments.

no supertags for UD. We don’t pool the UD tree-
banks together.

In the MTL setup, we select the epoch with the
highest development F-score for DM for evaluation
on all test sets.

Parsing We follow Groschwitz et al. (2018) in
predicting the best unlabeled dependency tree with
the Chu-Liu-Edmonds algorithm and then run their
fixed-tree decoder restricted to the 6 best supertags.
This computes the best well-typed AM dependency
tree with the same shape as the unlabeled tree.

Parsing is usually relatively fast (between 30
seconds and 2 minutes for the test corpora) but very
slow for a few sentences very long sentences in the
AMR test corpora. Therefore, we set a timeout. If
parsing with k supertags is not completed within
30 minutes, we retry with k — 1 supertags. If £ = 0,
we use a dummy graph with a single node. This
happened 4 times over different runs on AMR with
the basic version of the parser and once when using
BERT.

Copy function In order to predict the lexical la-
bel for EDS and AMR, we predict only the dif-
ference to its lemma or word form. For instance,
if the lexical label is “want-01", we try to predict
SLEMMAS-01 instead at the word in question, e.g.
wanted, and restore the full form of the lexical label
in postprocessing.

4584



C Details of Preprocessing and
Postprocessing

DM, PAS and PSD We handle disconnected
graphs with components that contain more than
one node by adding an artificial word to the end of
the sentence. We draw an edge from this word to
one node in every weakly connected component of
the graph. We select this node by invoking Stan-
ford CoreNLP (Manning et al., 2014) to find the
head of the span the component comprises.

Disconnected components that only contain one
word are treated as words without semantic contri-
bution, which we attach to the artificial root (posi-
tion 0) with an IGNORE-edge.

Since the node labels in these graphbanks are the
words of the sentences, we simply copy the words
over to the graph.

We use the evaluation toolkit that was developed
for the shared task: https://github.com/semantic-
dependency-parsing/toolkit.

EDS We only consider connected EDS graphs
(98.5% of the corpus) and follow Buys and Blun-
som (2017) regarding options for the tokenizer ex-
cept for hyphenated words, which we split. Since
EDS nodes are aligned with (character) spans in
the sentence, we make use of this information in
the decomposition. In our approach, however, we
require every graph constant to stem from exactly
one token. In order to enforce this, we assign nodes
belonging to a multi-token span to an atomic span
whose nodes are incident. For consistency, we per-
form this from left to right. We try to avoid creating
graph constants that would require more than one
root source. Where this fails, the graph cannot be
decomposed.

We delete R-HNDL and L-HNDL edges only if
this does not make the graph disconnected. Thus,
we need heuristics for them (see table 5).

Before delexicalizing graphs constants, we need
to identify lexical nodes. A node is considered lex-
ical if has an incoming c-arg edge or if its label is
similar to the aligned word, its lemma or its modi-
fied lemma. We compute the modified lemma by a
few hand-written rules from the CoreNLP lemma.
For instance, Tuesday” is mapped to Tue”. We
also re-inflect adverbs (as identified by the POS
tagger) to their respective adjectives if possible, e.g.
“interestingly” becomes “interesting”. We perform
this step in order to be able to represent the lexical
label of more graph constants as function of the

word which they belong to. The modified lemma
is not used as input to the neural network.

When performing the delexicalization, we re-
place the character span information with place-
holders indicating if this span is atomic (comprises
a single word) or not. We restore the span informa-
tion for every node with a very simple heuristic in
postprocessing: If the span is atomic, we simply
look up the character span in the original string.
For nodes with complex spans, we compute the
minimum of beginnings and the maximum of end-
ings of its children. In terms of evaluation, the span
information is relevant only for EDM. Comparing
the graphs that we restore from our training data to
the gold standard, we find that the upper bound is
at 89.7 EDM F-score. The upper bound in terms of
Smatch is at 96.9 F-score.

We use EDM in an implementation by Buys and
Blunsom (2017).

UD Since UD POS tags are different from the
English PTB tagset, we use CoreNLP to tag the
UD treebanks. We use the English treebanks EWT,
GUM, ParTUT and LinES (Nivre et al., 2018).

AMR We use the pre- and postprocessing
pipeline of Groschwitz et al. (2018). We con-
flate named entities in preprocessing. For instance,
”New York™ is conflated to one token "New_York™.
When such a graph constant is predicted, we restore
the named entity prior to evaluation.

4585


https://github.com/semantic-dependency-parsing/toolkit
https://github.com/semantic-dependency-parsing/toolkit

