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Abstract

In this work, we focus on complex question

semantic parsing and propose a novel Hierar-

chical Semantic Parsing (HSP) method, which

utilizes the decompositionality of complex

questions for semantic parsing. Our model

is designed within a three-stage parsing archi-

tecture based on the idea of decomposition-

integration. In the first stage, we propose

a question decomposer which decomposes a

complex question into a sequence of sub-

questions. In the second stage, we design

an information extractor to derive the type

and predicate information of these questions.

In the last stage, we integrate the generated

information from previous stages and gener-

ate a logical form for the complex question.

We conduct experiments on COMPLEXWE-

BQUESTIONS which is a large scale com-

plex question semantic parsing dataset, results

show that our model achieves significant im-

provement compared to state-of-the-art meth-

ods.

1 Introduction

Semantic parsing is a task which maps natural

language utterances into logical forms such as

SQL queries that can be executed based on re-

lational databases or knowledge bases directly.

Semantic parsing is a long-standing and difficult

problem in natural language processing. In re-

cent studies, researchers usually treat natural lan-

guage descriptions/questions as input and use dif-

ferent sequence-to-sequence frameworks to gener-

ate logical forms (Xu et al., 2017; Dong and Lap-

ata, 2016). However, these methods ignore the de-

compositionality of a complex question which is

usually composed of a set of sub-questions, the un-

derstanding of each sub-question could contribute

to the semantic parsing of the original complex

question.

Figure 1 gives an example of a complex ques-

tion and its logical form. The related sub-

questions in stage-1 and the corresponding pred-

icate (relation) information of each sub-question

in stage-2 could help to obtain the logical form of

the complex question in stage-3.

Stage 1 :

Stage 2 :

Stage 3 :

When was Obama’s daughter born?

Who is Obama’s daughter? When was #entity# born?

people.person.children people.person.date_of_birth

Question:

QD

IE

SP

Figure 1: Example of question decomposition(QD), in-

formation extraction(IE) and semantic parsing(SP).

Question decomposition is important and many

previous work utilize the decompositionality of

complex questions to help question understand-

ing. Kalyanpur et al. (2012) propose to use a suite

of decomposition rules for question decomposi-

tion. The drawback of rule-based methods is that

it needs experts to design rules and the rules are

usually with low coverage and hard to be extended

to other domains and tasks. Talmor and Berant

(2018) propose a neural question decomposition

approach to answer complex questions. They use

the pointer network (Vinyals et al., 2015) to gen-

erate splitting points in the complex question and

separate the complex question into a sequence of

simple questions. This neural-based method alle-

viates the cost of manually designed rules or fea-

tures. However, sometimes decomposing a com-

plex question by splitting points may not find best

sub-questions, and thus lose some information.

For example, the sub-question “Who is Obama’s

daughter?’ can not be generated by the splitting

points of the complex question in Figure 1. To

address the above problem, we propose to use a

more flexible neural generative question decom-
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poser to directly generate complete and natural

sub-questions based on an input complex question,

without word order and content restrictions.

To parse a complex question into its corre-

sponding logical form, we propose a hierarchical

semantic parsing (HSP) model which is designed

as a hierarchical neural sequence-to-sequence ar-

chitecture. The underline idea of our HSP model

is decomposition and integration. Specifically, as

shown in Figure 1, our HSP model first decom-

poses a complex question into sub-question se-

quence with a question decomposer (QD), and

then extracts key semantic information based on

the generated sub-questions and the original com-

plex question with an information extractor (IE).

Finally, HSP model integrates the previously gen-

erated auxiliary information and generates the log-

ical form of the complex question. Our HSP

model can be seen as a multi-stage reasoning pro-

cess, with each stage focusing on different level of

information and reducing the search space of log-

ical forms step-by-step by integrating previously

generated information.

The main contributions of this paper are three-

fold:

1. We propose an effective and flexible question

decomposition method;

2. We propose a hierarchical semantic pars-

ing model based on a sequence-to-sequence

paradigm which incorporates a question de-

composer and an information extractor;

3. Experimental results demonstrate that the

proposed model achieves a significant im-

provement in semantic parsing performance.

2 Related Work

2.1 Semantic Parsing

Typically, traditional semantic parsing models

(Zettlemoyer and Collins, 2005; Mooney, 2007;

Liang et al., 2011; Cai and Yates, 2013; Artzi et al.,

2013; Kwiatkowski et al., 2013; Berant et al.,

2014; Yih et al., 2015; Yao, 2015) are learned

based on carefully designed features. For instance,

Kwiatkowski et al. (2011) propose a combinatory

categorical grammar induction technique for se-

mantic parsing with different levels of features.

Liang et al. (2011); Reddy et al. (2014) build se-

mantic parsers without relying on logical form an-

notations but through distant supervision. Xiao

et al. (2016); Yin and Neubig (2017) use syntax

information to improve semantic parsing models.

Fan et al. (2017) apply a transfer learning method

in semantic parsing. To alleviate the cost of feature

engineering, neural semantic parsing approaches

have attracted significant attention (Jia and Liang,

2016; Dong and Lapata, 2016; Herzig and Berant,

2017; Gardner et al., 2018; Goldman et al., 2018;

Chen et al., 2018; Dong et al., 2018; Dong and

Lapata, 2018). For example, Jia and Liang (2016)

propose a framework to introduce data recombi-

nation and train a sequence-to-sequence model for

semantic parsing. Dong and Lapata (2018) pro-

pose to firstly parse a question to a coarse logi-

cal form then a fine-grained one based on a neu-

ral architecture. However, these approaches miss

the opportunity to utilize question decomposition

information for complex question semantic pars-

ing. In this work, we leverage a sequence-to-

sequence architecture and design a neural hierar-

chical sequence-to-sequence model to capture the

syntactic structure, e.g., question decomposition

information of complex questions.

2.2 Question Decomposition

Question decomposition has been successfully

used in complex question answering (Kalyanpur

et al., 2012; Iyyer et al., 2016; Talmor and Be-

rant, 2018; Song et al., 2018). Kalyanpur et al.

(2012) propose a framework using decomposi-

tion rules to identify facts in complex questions

based on lexicon-syntactic features. The model

then leverages the identified facts alone with a

question rewriting component and a candidate re-

ranker to generate final ranked answer list. Their

work rely on feature engineering and manually de-

signed rules which is difficult to be adapted to ap-

plications in other domains. Iyyer et al. (2016)

propose a method for complex question answer-

ing based on tables. To answer complex ques-

tions, they split each complex question into several

inter-related simple questions by crowd-sourcing,

and design an end-to-end neural model to predict

the answer based on the simple questions. Talmor

and Berant (2018) propose a splitting-based ques-

tion decomposition model to find splitting points

in the original complex question and decompose

it into a sequence of sub-questions. They then

use a machine reading comprehension method to

get the answers of each sub-question and com-

pose the answers to obtain answer of the complex
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Question When was Obama’s daughter born?

DR Who is Obama’s daughter? # When was #entity# born?

SR composition # people.person.children # people.person.date of birth

Table 1: Example of intermediate representations, #entity# in one sub-question represents a placeholder, and the

real word is filled in by the answer of another sub-question.

question. Sub-questions obtained by this method

are usually incomplete. In this work, we pro-

pose a neural generative question decomposition

approach to directly generate complete and natu-

ral sub-questions, which also improves the perfor-

mance of complex question semantic parsing.

3 Model

In this section, we introduce the architecture of

our hierarchical semantic parsing model. The

model receives complex question inputs and gen-

erates logical forms. It combines the sequence-

to-sequence paradigm with a hierarchical parsing

mechanism in a differentiable way and can be

trained end-to-end.

3.1 Model Overview

Our model treats complex questions and logical

forms as sequences, learns to generate logical

forms for questions. We denote a complex ques-

tion as x = {x1, · · · , x|x|}, and logical form as

y = {y1, · · · , y|y|}.

To better model and generate logical forms,

our model utilizes two types of intermediate rep-

resentations: the decomposed representation(DR)

and the semantic representation(SR). DR consists

of decomposed simple questions and SR contains

key information of the original complex ques-

tion including question type and all predicates

in the question. An example of the two inter-

mediate representations format is shown in Ta-

ble 1. Decomposed representation is denoted as

z = {z1, · · · , z|z|} and semantic representation is

denoted as w = {w1, · · · , w|w|}. Each training

sample is a < x, y, z, w > quad.

3.2 Basic Architecture

First we illustrate the basic structure of our model:

a parsing unit. A parsing unit consists of an

encoder network and a decoder network, based

on the multi-head attention encoder/decoder of

Transformer (Vaswani et al., 2017). Its input has

two parts: the input sequence and additional in-

formation, and the output is the parsed target se-

quence. The input sequence and target sequence

are text utterances, and additional information is

a sequence of vectors representing encoding for

some kind of auxiliary information.

In this subsection, we represent the in-

put sequence of the paring unit as a =
{a1, · · · , a|a|}, input additional information as e =
{e1, · · · , e|e|}, ei ∈ Rn, and output sequence as

o = {o1, · · · , o|o|}.

3.2.1 Encoder
On the encoder side, the parsing unit encodes the

input sequence a to context aware representation

h = {h1, · · · , h|a|}, hi ∈ Rm. We introduce the

Transformer encoder (Vaswani et al., 2017) here.

The encoder first maps the sequence to word

representations and then generates the output us-

ing a L layer Transformer encoder. The total pro-

cess is denoted by:

h = fenc(a) = fproc
enc (f emb

enc (a)) (1)

3.2.2 Decoder
The decoder receives encoder output h and input

additional information e, first fuses the two en-

coded representations by concatenating them to

get fused representation [h, e].

At decoder time step t, with fused represen-

tation [h, e] and previous decoded output o<t =
{o1, · · · , ot−1}, decoder calculates conditional

probability P (ot|o<t, [h, e]).

First decoder embedding function f emb
dec maps

previous decoder outputs o<t to word embeddings

and add positional encoding to get decoder word

representations. Like the encoder, decoder also

stacks L identical layer and the word representa-

tions are then fed to these layers along with fused

representation [h, e]. If we represent the l-th layer

output vector of position j as klj and represent l-th

layer previous output as kl≤j = {kl1, · · · , klj}, the

decoder layer output is klj = Layer(kl−1
≤j , [h, e]).

Given the last layer output kLj , the probability

of current word P j
vocab(w) on target vocabulary
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Stage 1 Stage 2 Stage 3

Figure 2: Model Overview, L1, L2, L3 represent length of the corresponding decoder’s output, and N repre-

sents the decoder layer number. Yellow rectangles denote input and output sequence, orange rectangles denote

intermediate output utterances, and gray ones are encoded representations. DR and SR represent decomposed

representation and semantic representation respectively.

V = {w1, · · · , w|v|} is calculated as the following

equation, where Wo, bo is parameters:

P j
vocab(w) = Softmax(Wo · aLj + bo) (2)

The decode process is triggered with the start

of sequence token “[BOS]” and terminated on the

end of sequence token “[EOS]”.

3.2.3 Copy Mechanism
To tackle out-of-vocabulary words, we incorporate

copy mechanism (Gu et al., 2016) in the decoder.

At decode time step t, first we calculate the at-

tention distribution over source sequence a using

the bilinear dot product of last layer decoder out-

put kLt and encoder output h, as Eq. 3 4 shows.

uit = kLt Wqhi (3)

αt = Softmax(ut) (4)

Then we calculate copy probability P t
copy ∈

[0, 1] as following equation. Wq,Wg, bg are learn-

able parameters:

P t
copy = σ(Wg · [kLt , h, e] + bg) (5)

Using P t
copy we calculate the weighted sum of

copy probability and generation probability to get

the final predicted probability of extended vocab-

ulary V + X , where X is set of out of vocabulary

words in source sequence a:

Pt(w) = (1− P t
copy)Pvocab(w) + P t

copy

∑

i:wi=w

αi
t

(6)

The decoding process is formulated by Eq. 7.

Note here that we use f t
dec to represent one time

step of the decoder with the copy mechanism pro-

cess. For brevity we roll all time steps of the de-

coder, using Eq. 8 to denote P (b|[h, e]).

ot = f t
dec(f

emb
dec (o<t), [h, e]) (7)

o = fdec([h, e]) (8)

Following is the loss function of the basic archi-

tecture with parameters θ, b∗t is the target word in

time step t:

L(θ) = 1

T

T∑

t=1

− logP (ot = o∗t |a, e, o<t) (9)

3.3 Hierarchical Semantic Parsing
We now introduce HSP based on the above basic

architecture, HSP is a bottom up multi-stage pars-

ing process. Figure 2 illustrates the typical three

stage HSP structure of our model, each stage pro-

cess is similar to the basic architecture we elabo-

rate above.

As illustrated in the model overview subsec-

tion, we denote the input question as x and the
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output logical form as y. The train objective of

the basic architecture in Eq. 9 directly minimizes

the cross entropy between conditional probabil-

ity P (y|x) and true probability of target sequence

P (y∗). HSP mechanism turns the process into a

multi-stage process by splitting the objective to

several conditional probabilities’ products. For

our three stage HSP model shown in Figure 2,

the objective is P (y|x, z, w)P (w|x, z)P (z|x), in

which z and w represent decomposed representa-

tion and semantic representation respectively.

3.3.1 Question Decomposer
On the first stage of HSP, we design a question

decomposer to decompose the complex question

to simple question sequences. The input of the

question decomposer is the complex question x,

and the output is the decomposed representation z.

The model first maps the input x to context aware

representations h using the question encoder h =
fenc1(x), at this stage no additional information

is given, so fused representation is identical to

h. Then with a decomposed decoder, the decom-

posed representation is predicted: z = fdec1(h).
In Figure 2 the decoding process is unrolled to

time steps and surrounded by a dotted frame, at

each time step previous outputs are shifted right

and fed into the decoder. The beginning of the blue

line pointing to the decoder is fused representation

used by the decoder, for question decomposer it is

the question embedding.

3.3.2 Information Extractor
The second stage of HSP extracts key information

of complex questions, from the complex question

itself and the decomposed simple questions. The

input sequence of the information extractor is de-

composed representation, additional information

is question embedding, and the target output se-

quence is semantic representation. The encoder

process encodes decomposed representation z us-

ing sub-question encoder: hz = fenc2(z). The

fused representation [h, hz] is then fed into the se-

mantic decoder to decode semantic representation:

w = fdec2([h, h
z]). In Figure 2, the ⊕ notation on

the top denotes the representation fusing process.

3.3.3 Semantic Parser
The final stage of the HSP model is a seman-

tic parser. It receives the context aware embed-

ding of complex question and decomposed repre-

sentation, and semantic representation sequence.

It encodes the semantic representation hw =
fenc3(w), concatenates the three part of represen-

tation [h, hw, hz], and logical form are predicted

conditioned upon the fusing representation: y =
fdec3([h, h

w, hz]).

While the loss function of the basic architec-

ture is as shown in Eq. 9, the training objective

of HSP model is to minimize following loss func-

tions as Eq. 10, where L1 = − logP (z|x), L2 =
− logP (w|x, z) and L3 = − logP (y|x, z, w) de-

notes losses of three stages. λ1, λ2 in the equation

are two hyperparameters.

LHSP (θ) = λ1 · L1 + λ2 · L2 + L3 (10)

During inference, the model uses a three stage

inference process, first getting the prediction of

decomposed representation ẑ = argmaxzP (z|x),
and then predicting semantic representation ŵ =
argmaxwP (w|x, z), finally predicting logical

form ŷ = argmaxyP (y|x, z, w). Each sequence

is obtained using a greedy search method like

beam search.

From a cognitive view, HSP can be seen as an-

other form of attention mechanism, it helps the

model concentrate on the most important seman-

tic part first, and fills other skeletons step by step.

From the point of modeling, HSP simplifies the

generation by splitting the semantic part with log-

ical form grammars, which simplifies the model-

ing task of each process. The HSP mechanism can

also be regarded as a kind of information flow, the

information parsed on the previous stages can pro-

vide a soft constraint for the generation process at

a later stage.

Note that we just introduce one particular form

of HSP for semantic parsing in this section. HSP

is actually a mechanism that is highly flexible;

its structure can be applied to any sequence-to-

sequence framework and used in many structured

sequence generation tasks.

4 Experiment

4.1 Settings

During our experiments, we build a vocabulary

for complex questions, all intermediate represen-

tations and logical forms. The vocabulary con-

tains up to 30K words, constructed from all words

with more than 4 occurrences in the corpus. All

out-of-vocabulary words are represented by UNK.
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Our model uses pre-trained 6B tokens 300 di-

mensional Glove word embeddings (Pennington

et al., 2014), for vocabulary words which do not

have pre-trained embeddings(including three spe-

cial words: UNK, BOS and EOS), we assign them

uniform randomized values. During training, we

update all word embeddings.

Our model also uses a pre-trained Stanford-

CoreNLP POS model (Manning et al., 2014) in

the encoder embedding process. We use categor-

ical POS annotations and map them to POS em-

bedding vectors of dimension 30, the POS embed-

ding vectors are initialized from uniform distri-

bution U(−0.1, 0.1) and updated during training.

The POS embeddings are concatenated with word

embeddings to generate word representations.

We fix hidden size of all encoder and decoder

units to 300. The encoder and decoder of all HSP

models are stacked by 6 identical layers. We train

the model using Adam optimizer with β1 = 0.9,

β2 = 0.98 and ε = 10−9 and use dynamic learn-

ing rate during training process. For regulariza-

tion, we use dropout (Srivastava et al., 2014) and

label smoothing (Szegedy et al., 2016) in our mod-

els and set the dropout rate to 0.2, set the label

smoothing value to 0.1.

During training, we train our models using

minibatches of 128 samples, all models are trained

for at most 20,000 steps, selecting the best model

based on development set performance. After one

model is trained, we use beam search of beam size

16 to generate logical form sequences.

The implementations of our model would be re-

leased for further study1.

4.2 Dataset

To evaluate the performance of our model on se-

mantic parsing, we conduct experiments on Com-

plexWebQuestions(v1.0) dataset (Talmor and Be-

rant, 2018) released here2, which is built on the

WebQuestions dataset (Berant et al., 2014) and

consists of samples of complex question, decom-

posed question sequence and sparql format logi-

cal form. ComplexWebQuestions is a large scale

semantic parsing dataset and contains 27734 train-

ing samples, 3480 development and 3475 test sam-

ples.

The dataset has four types of complex

questions: composition (46.7%), conjunctions

1https://github.com/cairohy/hsp
2https://www.tau-nlp.org/compwebq

(42.4%), superlatives (5.3%) and comparatives

(5.6%). Each question is either the combination

of two simple questions, or an extension of a sim-

ple question. We identify entities in logical forms

and replace them with placeholders during train-

ing and inference.

4.3 Results

We measure model performance by calculating the

accuracy of generated logical forms, and compare

performance of our approach(HSP) with various

competitive baselines. In table 2, SP Unit de-

note for the semantic parsing unit, it uses the ba-

sic structure of HSP model with no intermediate

representations, cooperates POS embedding, copy

mechanism and Glove word embedding together

with the Transformer.

Table 2 presents all models’ accuracy on de-

velopment and test set. Note that we treat SP

Unit as the performance baseline and calculate

other models’ accuracy gain or decline compared

to it, recorded in parentheses in the table. SP

Unit gets 59.91% accuracy on test set, 8.91%

higher than Pointer-Generator which matches 51%

golden sparql queries. We also observe that the

performances of SEQ2SEQ and SEQ2TREE are

lower than Pointer-Generator, the two models get

47.3% and 49.68% accuracy on test set. We think

the reason is that Pointer-Generator’s copy mech-

anism helps logical form generation. Transformer

achieves 53.41% on the test set which is also

6.5% lower than SP Unit but higher than Pointer-

Generator. This group of experiment proves

that semantic parsing on ComplexWebQuestions

is difficult for traditional sequence-to-sequence

models, and SP Unit is more effective than some

previous systems. The reason is that by combining

self-attention with copy mechanism, POS embed-

ding and other modules, SP Unit has good model-

ing ability for logical forms of complex questions.

Coarse2Fine obtains 53.52% accuracy on the

test set which is 1.84% lower than SP Unit. Our

HSP model outperforms SP Unit by 6.27% ac-

curacy which is a wide margin (with SP Unit as

a baseline, the relative improvement of HSP is

10.5%). It proves the effectiveness of HSP mecha-

nism. Compared to other neural semantic parsing

models, HSP achieves significant improvement,

proving that incorporate sub-questions and key in-

formation together boost logical form generation

effectively. We think the key reason is that ques-
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Model Dev (%) Relative perf Test (%) Relative perf

SEQ2SEQ (Dong and Lapata, 2016) 50.22 -11.47 47.30 -12.61

SEQ2TREE (Dong and Lapata, 2016) 51.87 -9.82 49.68 -10.23

PointerGenerator (See et al., 2017) 53.10 -8.59 51.00 -8.91

Transformer (Vaswani et al., 2017) 56.78 -4.91 53.41 -6.50

Coarse2Fine (Dong and Lapata, 2018) 58.59 -3.10 58.07 -1.84

SP Unit 61.69 / 59.91 /

HSP w/o DR 66.09 +4.40 63.16 +3.25

HSP w/o SR 67.32 +5.63 64.48 +4.57

HSP(Switch) 68.13 +6.44 65.29 +5.38

HSP 68.79 +7.10 66.18 +6.27

Table 2: Logical form accuracy on development and test set of ComplexWebQuestions dataset. The second column

and forth column of the table show relative performance compared to the SP Unit on dev set and test set separately.

tion decomposition turns the complex question

into simple questions and then solves simple ques-

tions in a divide-and-conquer manner, which sim-

plify representation learning process of the model

in each stage.

4.3.1 Ablation Analysis

As the above part of Table 2 shows, we conduct an

ablation study on HSP to analyze the importance

of each component in HSP. We use four HSP ab-

lation models for experiments. HSP(Switch): A

three stage model which switches the order of in-

termediate parsing targets, first parsing semantic

representation and then decomposing the original

question; HSP w/o SR: HSP without semantic rep-

resentation, HSP degrades to a two stage model;

HSP w/o DR: Remove decomposed representa-

tion from HSP, it degrades to a two stage model;

SP Unit: Remove all intermediate representations,

HSP degrades to SP Unit.

First, we compare the HSP model with

HSP(Switch), we observe that HSP outperforms

HSP(Switch) by 0.89%, suggesting that parsing

the intermediate representations in a bottom up

way is more effective. Then we analyze the effect

of different intermediate representations by re-

moving semantic representation or sub-questions

from HSP, resulting in performance degradation

of 1.7% and 3.02% separately. Results prove that

the question decomposition stage is most critical

in HSP process. Finally, without any intermediate

representations(the model degrades to a SP unit

model), performance drops by 6.27% compared to

our full HSP model.

4.4 Discussion and Analysis

4.4.1 Performance on Different Question
Types

To evaluate the impact of question types on model

performances, we calculate logical form accuracy

on each type of questions of test set. Results are

shown in Figure 3. Note that the test set consists

of roughly 45% composition questions, 45% con-

junction questions, 5% comparative questions and

5% superlative questions.

0

10

20

30

40

50

60

70

80

Composition Conjunction Comparative Superlative

Ac
cu

ra
cy

HSP Transformer Coarse2Fine

Figure 3: Model performances on different question

types.

As Figure 3 shows, HSP has highest accuracy

on the four type of question samples among the

three models. Moreover, the accuracy of Trans-

former on composition and conjunction questions

is comparable to that of Coarse2Fine and lower

than HSP, showing that the HSP mechanism helps

improve modeling capability. Finally, compared

to Transformer, the accuracy of Coarse2Fine and

HSP in comparative and superlative questions has

been significantly improved, because these two

models utilize additional information to enhance

the robustness of the model, thus obtaining better

results on types with much fewer training samples.
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Figure 4: Model performances with different amount

of training data.

4.4.2 Performance on Different Training
Data Volumes

In Figure 4, we depict the trends of test set accu-

racy with different portions of training data. The

results of this experiment demonstrate that the per-

formance of the HSP exceeds the other two base-

lines, regardless of the amount of training data.

Moreover, as training data volume increases, the

performance improvement that HSP can achieve

is higher than the other two models. We think the

reason is that as the training resources increase,

HSP learns better question decomposer and infor-

mation extractor and generates more accurate sub-

questions and key information, which help HSP

semantic parser to obtain better logical form re-

sults.

4.5 Question Decomposition Results

To further evaluate the effectiveness and gener-

alization ability of our HSP model, we conduct

question decomposition experiment with an HSP

model variant and compare its performance to sev-

eral neural models. We use case-insensitive Bleu-

4 (Papineni et al., 2002) and Rouge-L (Lin, 2004)

as evaluation metrics for question decomposition.

For all models, the input is the complex question,

and the output is decomposed sub-question se-

quence with the same format as decomposed rep-

resentation.

Table 3 shows the question decomposition re-

sults of different models. PointerNetwork refers

to the model (Talmor and Berant, 2018) on split-

ting the complex question into sub-questions us-

ing splitting points predicted by a pointer network

model (Vinyals et al., 2015). HSP(SR) refers to

a two-stage HSP model for which we use seman-

tic representation as intermediate representation.

We observe that compared to PointerNetwork, the

other two models obtain much better results, prov-

Model Dev Test

PointerNetwork 31.3 / 55.2 31.9 / 55.7

PointerGenerator 55.5 / 69.3 55.0 / 69.0

HSP(SR) 81.2 / 90.6 78.9 / 88.7
w/o SR 78.9 / 88.5 76.3 / 86.8

w/o POS 78.3 / 88.1 75.8 / 86.3

w/o Glove 77.2 / 87.4 75.4 / 85.6

w/o Copy 73.7 / 86.5 71.3 / 84.6

Table 3: Bleu-4/Rouge-L scores on ComplexWe-

bQuestions dataset, question decomposition task.

ing that compared to decomposing complex ques-

tion by finding splitting points in the question, our

neural generative question decomposer is more ef-

fective. The Pointer-Generator follows the set-

tings in semantic parsing experiments, and it ob-

tains 55.0 Bleu-4 and 69.0 Rouge-L scores, which

are lower than HSP. With the help of semantic

representation and HSP model, HSP(SR) achieves

81.2/90.6 Bleu-4/Rouge-L scores on the test set,

much higher than the two baselines.

We also perform ablation experiments on ques-

tion decomposition to measure the impact of dif-

ferent modules, the results are also shown in Ta-

ble 3. We examine four main modules in the

HSP model: semantic representation(SR), POS

embedding(POS), pre-trained Glove word embed-

ding(Glove) and copy mechanism(Copy), and in-

crementally remove these modules from HSP(SR).

Results show that without semantic representation

in HSP, the model’s Bleu-4 score decreases 2.6

points and the Rouge-L score decreases 1.9 points.

The decrease of Bleu-4 score by removing HSP is

only lower than removing the copy mechanism(4.1

points), and Rouge degradation is highest among

the four ablation models. It indicates that HSP

mechanism is vital for the model.

5 Conclusion

In this work, we propose a novel hierarchical se-

mantic parsing (HSP) model based on sequence-

to-sequence paradigm. Experiments show that

compared to several previous systems, HSP ef-

fectively improves performance. We also design

a neural generative question decomposer which

achieves much higher performance than splitting-

based question decomposition approach. Further

experiments also prove that the proposed neural

generative question decomposer also benefits from

the HSP mechanism.
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