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Abstract

Natural Language Sentence Matching
(NLSM) has gained substantial attention from
both academics and the industry, and rich
public datasets contribute a lot to this process.
However, biased datasets can also hurt the
generalization performance of trained models
and give untrustworthy evaluation results. For
many NLSM datasets, the providers select
some pairs of sentences into the datasets,
and this sampling procedure can easily bring
unintended pattern, i.e., selection bias. One
example is the QuoraQP dataset, where
some content-independent naı̈ve features are
unreasonably predictive. Such features are
the reflection of the selection bias and termed
as the “leakage features.” In this paper, we
investigate the problem of selection bias on six
NLSM datasets and find that four out of them
are significantly biased. We further propose a
training and evaluation framework to alleviate
the bias. Experimental results on QuoraQP
suggest that the proposed framework can
improve the generalization ability of trained
models, and give more trustworthy evaluation
results for real-world adoptions.

1 Introduction

Natural Language Sentence Matching (NLSM)
aims at comparing two sentences and identifying
the relationships (Wang et al., 2017), and serves
as the core of many NLP tasks such as question
answering and information retrieval (Wang et al.,
2016b). Natural Language Inference (NLI) (Bow-
man et al., 2015) and Semantic Textual Similar-
ity (STS) (Wang et al., 2016b) are both typical
NLSM problems. A large number of publicly
available datasets have benefited the research to
a great extent (Kim et al., 2018; Wang et al.,

* Equal contributions from both authors. This work was
done when Guanhua Zhang was an intern at Tencent.
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Figure 1: Visualization for the distributions of nor-
malized features versus the label in QuoraQP. The
right part (in red) represents the distributions of
duplicated pairs, and the left part (in blue) rep-
resents the distributions of not duplicated pairs.
Best viewed in color.

2017; Tien et al., 2018), including QuoraQP1,
SNLI (Bowman et al., 2015), SICK (Marelli et al.,
2014), etc. These datasets provide resources for
both training and evaluation of different algo-
rithms (Torralba and Efros, 2011).

However, most of the datasets are prepared
by conducting procedures involving a sampling
process, which can easily introduce a selection
bias (Heckman, 1977; Zadrozny, 2004). It would
get even worse when the bias can reveal the label
information, resulting in the “leakage features,”
which are irrelevant to the content/semantic of the
sentences but are predictive to the label. One ex-
ample is the QuoraQP, a dataset on classifying
whether two sentences are duplicated (labeled as
1) or not (labeled as 0), which has been widely
used to evaluate STS models (Gong et al., 2017;
Kim et al., 2018; Wang et al., 2017; Devlin et al.,
2018). In QuoraQP, three leakage features have
been identified, including S1 freq, the number
of occurrences of the first sentence in the dataset;
S2 freq, the number of occurrences of the sec-
ond sentence; and S1S2 inter, the number of
sentences that are paired with both the first and the

1https://data.quora.com/First-Quora-Dataset-Release-
Question-Pairs
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Figure 2: The averages of the labels under different
S1 freq and S2 freq. Red squares indicate that the
averages are close to 1, and blue squares indicate that
the averages are close to 0. Best viewed in color.

second sentences in the dataset for comparison.
Figure 1 shows the distributions of normalized

(negative) Word Mover’s Distance (WMD) (Kus-
ner et al., 2015) and normalized leakage features
versus the labels in QuoraQP. The features are
all normalized to their quantiles. As illustrated,
the leakage features are more predictive than the
WMD, as the differences between the distribu-
tions of positive and negative pairs are more sig-
nificant. Moreover, combining S1 freq and
S2 freq can make even more accurate predic-
tions as illustrated in Figure 2, where we cal-
culate the averages of the labels under different
S1 freq and S2 freq. We find that when both
features’ values are large, the pairs tend to be
duplicated (marked in red), while when one
is large and the other is small, the pairs tend to be
not duplicated (marked in blue).

These leakage features play a critical role in
the QuoraQP competition2. As the evaluations are
conducted with the same biased datasets, models
that fit the bias pattern can take additional advan-
tages over unbiased models, making the bench-
mark results untrustworthy. On the other hand, the
bias pattern doesn’t exist in the real-world, so if a
model fits the bias pattern (intentionally or unin-
tentionally), the generalization performance will
be hurt, limiting the values of these datasets for
further applications (Torralba and Efros, 2011).

In this paper, we study this problem and demon-
strate the impact of the selection bias by a series
of experiments. We focus on the selection bias

2https://www.kaggle.com/c/
quora-question-pairs/discussion/
34355 and https://www.kaggle.com/c/
quora-question-pairs/discussion/33168

embodied in the comparing relationships of sen-
tences, and the main contributions of this paper
are the answers to the following questions:

• Does selection bias exist in other NLSM
datasets? We identify four out of six pub-
licly available datasets that suffer from the
selection bias.

• Would Deep Neural Network (DNN)-based
methods learn from the bias pattern un-
intentionally? We find that Siamese-LSTM
models trained on QuoraQP do capture the
bias pattern.

• Can we help the model learn the useful
semantic pattern from the content with-
out fitting the bias pattern? We propose
an easy-adopting method to mitigate the bias.
Experiments show that this method can im-
prove the generalization performance of the
trained models.

• Can we build an evaluation framework
that gives us more reliable results for real-
world adoption? We propose a more trust-
worthy evaluation method that demonstrates
consistent results with unbiased cross-dataset
evaluations.

The rest of the paper is organized as follows.
Section 2 gives an empirical look at the selection
bias on a variety of NLSM datasets and analyzes
why the leakage features are effective. Section 3
examines whether DNN-based methods fit the bias
pattern unintentionally. Section 4 introduces the
training and evaluation framework to alleviate the
biasedness. Taking QuoraQP as an example, we
report the experimental results in Section 5. Sec-
tion 6 summarizes related work, and Section 7
draws the conclusion.

2 Empirical Study of the Selection Bias

In this section, we investigate the problem of se-
lection bias on six NLSM datasets and then ana-
lyze why the leakage features are effective.

2.1 Quantifying the Biasedness in Datasets
To quantify the severity of the leakage from the
selection bias, we formulate a toy problem for
NLSM. We predict the semantic relationship of
two sentences based on the comparing relation-
ships between sentences. We refer semantic re-
lationship of two sentences as their labels, for ex-
ample, duplicated for STS and entailment

https://www.kaggle.com/c/quora-question-pairs/discussion/34355
https://www.kaggle.com/c/quora-question-pairs/discussion/34355
https://www.kaggle.com/c/quora-question-pairs/discussion/34355
https://www.kaggle.com/c/quora-question-pairs/discussion/33168
https://www.kaggle.com/c/quora-question-pairs/discussion/33168
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Method SNLI MultiNLI QuoraQP MSRP SICK ByteDance
Matched Mismatched NLI STS

Majority 33.7 35.6 36.5 50.00 66.5 56.7 50.3 68.59
Unlexicalized 47.7 44.9 45.5 68.20 73.9 70.1 70.2 75.23

LSTM 77.6∗ 66.9† 66.9† 82.58‡ 70.6� 71.3> 70.2 86.45
Leakage 36.6 32.1 31.1 79.63 66.7 56.7 55.5 78.24

Advanced 39.1 32.7 33.8 80.47 67.9 57.5 56.3 85.73
Leakage vs Majority +8.61 -9.83 -14.79 +59.26 +0.30 0.00 +10.34 +14.07

Advanced vs Majority +16.02 -8.15 -7.40 +60.94 +2.11 +1.41 +11.93 +24.99

Table 1: The accuracy scores of predicting the label with unlexicalized features, leakage features, and advanced
graph-based features and the relative improvements. Result with ∗ is from Bowman et al. (2015). Results with †

are from Williams et al. (2018). Result with ‡ is from Wang et al. (2017). Result with � is from Shen et al. (2018).
Result with > is from Baudiš et al. (2016). Other results are based on our implementations. “%” is omitted.

Sentence1 
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Sentence2 
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1 2 ?

1 3 ?
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2 3 ?
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Figure 3: Illustration of the graph built for Problem 1.
We only use the comparing relationships to build the
graph.

for NLI, and comparing relationship as whether
they are paired for comparison in the dataset. Here
we only consider the index of each sentence, and
the actual content is not used. The formal problem
definition is as follow:

Problem 1 ( Leveraging the Leakage for NLSM).
Given a set of sentence ids S, and a set of
comparing relationships of the sentences C =
{〈si, sj〉}, si, sj ∈ S. The goal is to infer the
semantic relationship between given pairs of sen-
tence ids from S.

This toy problem is indeed an edge classifica-
tion problem (Aggarwal et al., 2016), as we can
construct a graph using the comparing relation-
ships as illustrated in Figure 3. In addition, from
the graph perspective, S1 freq and S2 freq
are the degrees of nodes, and S1S2 inter is
the number of 2-hop paths connecting two nodes.
Learning on the graph for this toy problem follows
a transductive setting (Ji et al., 2010), where the
graph is built with the comparing relationships of
all the examples.

Based on the new problem definition, we
investigate six NLSM datasets, including
SNLI, MultiNLI (Williams et al., 2018), Quo-
raQP, MSRP (Dolan et al., 2004), SICK and

ByteDance3. We apply two different methods
to classify the edges on the graph, including
Leakage which uses the three leakage features
introduced in Section 1 and Advanced which uses
some more advanced graph-based features (Per-
ozzi et al., 2014; Zhou et al., 2009; Liben-Nowell
and Kleinberg, 2007) together with the three
leakage features4. We also report the results
of three baselines, including Majority which
predicts the most frequent label, Unlexicalized
which uses 15 handcrafted features from the
content of sentences (Bowman et al., 2015) (e.g.,
the BLEU score (Papineni et al., 2002) of both
sentences, the length difference between the
two sentences, the percentage of overlap words,
and so on) and LSTM which is a DNN-based
method using sequences of word embeddings.
All classifiers are Random Forests if no specific
configuration is mentioned. The classifiers are
trained with the training set, and we report the
results on the testing set. More detailed settings
are introduced in Appendix A. The results are
reported in Table 1.

Predicting semantic relationships without using
sentence contents seems impossible. However, we
find that the graph-based features (Leakage and
Advanced) make the problem feasible on a wide
range of datasets. Specifically, on the datasets
like QuoraQP and ByteDance, the leakage fea-
tures are even more effective than the unlexical-
ized features. One exception is that on MultiNLI,
Majority outperforms Leakage and Advanced sig-
nificantly. Another interesting finding is that on

3https://www.kaggle.com/c/fake-news-pair-
classification-challenge

4The features are selected carefully to describe the local
structure between two nodes and to prevent the model from
remembering the exact ID of sentences to make inferences.
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Figure 4: The percentage of each label versus
S2 freq in SNLI.

SNLI and ByteDance, advanced graph-based fea-
tures improve a lot over the leakage features, while
on QuoraQP, the difference is very small. Among
all the tested datasets, only MSRP and SICKNLI
are almost neutral to the leakage features. Note
that their sizes are relatively small with only less
than 10k samples. Results in Table 1 raise con-
cerns about the impact of selection bias on the
models and evaluation results.

2.2 Why are the Leakage Features Effective?
As discussed in Section 1, the leakage features
are the reflection of selection bias. Intuitively, if
we construct a dataset for NLSM by randomly
sampling some pairs of sentences, the resulting
dataset would be extremely imbalanced, where
the most of the pairs are neutral for NLI or
not duplicated for STS. Thus, to make the
dataset relatively balanced, a sampling strategy is
often required. If the strategy is not well-designed,
it will introduce a bias pattern into the dataset,
which can be revealed by leakage features. Here
we try to figure out why the leakage features are
effective in aforementioned datasets. Since we
do not have every detail about how they are con-
structed, we only analyze based on SNLI and Quo-
raQP.

During the preparation of SNLI, as introduced
in (Bowman et al., 2015), human workers are
presented with “premise scene descriptions,” and
asked to supply “hypotheses” for each of the
three labels (i.e., entailment, neutral and
contradiction). However, it is found that
some workers are “reusing the same sentence
for many different prompts,” which might cause
SNLI to suffer from selection bias. To validate,
we calculate the percentage of each label ver-
sus S2 freq, and the results are shown in Fig-

Features SNLI QuoraQP SICKSTS ByteDance
S1 freq 33.7 65.90 54.5 68.61
S2 freq 36.6 69.84 52.5 73.03

S1S2 inter 33.7 79.66 50.8 76.63
q S1 freq 36.6 79.62 53.5 77.17
q S2 freq 33.7 79.66 53.0 77.44

q S1S2 inter 36.6 74.75 54.2 74.39
all 36.6 79.63 55.5 78.24

Majority 33.7 50.00 50.3 68.59

Table 2: Ablation experiments of the three leakage fea-
tures on the datasets. “q” means without the feature.
We report the accuracy scores and “%” is omitted.

ure 4. We see that the percentages of the three
labels are similar when S2 freq is small, but as
S2 freq increases, the label is more likely to be
an entailment.

For QuoraQP dataset, the providers state that
“Our original sampling method returned an im-
balanced dataset with many more true examples
of duplicate pairs than non-duplicates. Therefore,
we supplemented the dataset with negative exam-
ples. One source of negative examples were pairs
of “related questions” which, although pertain-
ing to similar topics, are not truly semantically
equivalent.” Our hypothesis is that the way in
which negative samples were supplemented is the
reason why QuoraQP is so biased. For example,
the newly added sentences of “related questions”
may appear in the dataset for limited times, thus
we get the phenomenon in Figure 2, i.e., if two
sentences both appear for many times, the pair is
likely to be duplicated, while if one of them
appears for only a few times, the pair is likely to
be not duplicated.

We conduct ablation experiments on the
datasets where the leakage features are effective,
i.e., SNLI, QuoraQP, SICKSTS and ByteDance.
The results are reported in Table 2. We can see
that S2 freq is more effective in SNLI, and
S1 freq plays a more critical role in SICKSTS,
while in QuoraQP and ByteDance, S1S2 inter
is the most predictive.

Based on the experiments and observations, we
conclude that existing datasets incline to be biased
due to various reasons. More information about
dataset preparations and further study are required
to understand the problem and prevent bias from
being introduced into future datasets.
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Figure 5: Visualization of predicted scores versus the
leakage feature. The boxes represent the upper quar-
tiles to the lower quartiles of predicted scores, and the
lowest datum is the 1.5 IQR of the lower quartile.

3 Do NN Models Fit the Bias Pattern
Unintentionally?

In this section, we investigate whether DNN mod-
els are unintentionally fitting the bias pattern in
addition to the semantic pattern. We train a clas-
sical Siamese-LSTM model5 with the training set
of QuoraQP, and make predictions on a synthetic
dataset. Interestingly, we find that the results are
significantly influenced by the bias pattern.

The synthetic dataset is built in the following
way. We extract the distinct sentences from the
training set of QuoraQP, then compare the sen-
tences with themselves, finally we obtain 517,970
pairs in total. Since the two sentences in the pairs
are identical, the labels are all duplicated.
All three leakage features are the same, i.e., the
numbers of occurrences of the sentence in the
dataset. If the model can perfectly learn the se-
mantic relationships between sentences, the pre-
dictions should be substantially the same for all
the pairs.

To illustrate the predicted scores of duplica-
tion, we visualize them versus the leakage fea-
tures in Figure 5, and the boxplot follows the
Tukey boxplot style (Frigge et al., 1989). Intrigu-
ingly, we find that even though the sentences in
pairs are all identical, the model still tends to give
lower scores of duplication to the pairs with leak-
age features equal to 1. This result is consis-
tent with the bias pattern shown in Figure 2, i.e.,
the data points in the bottom left corner tend to
be not duplicated, compared with the data
points in the top right corner which represent
larger values of S1 freq and S2 freq.

The results indicate that the model is uninten-

5The detailed setting for the model is introduced in Sec-
tion 5.2

tionally capturing the undesired bias pattern that
only exists in the particular dataset. This will
make an adverse effect on the generalization per-
formance of the trained models (to be illustrated in
Section 5.4).

4 Leakage-Neutral Learning and
Evaluation Method

Given a biased dataset, can we eliminate the bias
to train completely unbiased models? Unfortu-
nately, this is very difficult due to that the bias
is related with the labels, and we cannot have ac-
cess to the labels of unselected samples (Zadrozny,
2004). In this paper, we propose to take a step
back and define a leakage-neutral distribution,
which is more close to the real-world than the bi-
ased one. We make a few reasonable assumptions
about it and how the biased dataset is generated
from it. We demonstrate that we can train and
evaluate models unbiased to the leakage-neutral
distribution, with only the biased dataset.

Generation of the biased dataset from leakage-
neutral distribution Assuming that there is a
leakage-neutral distribution D with domain X ×
Y×L×S whereX is the semantic feature space, Y
is the (binary) semantic label space, L is the sam-
pling strategy feature space and S is the (binary)
sampling intention space. The sampling intentions
represent whether dataset providers want to select
a positive sample or a negative sample. For exam-
ple, S = 1 means that the providers want to select
a positive sample here.

We assume that samples (x, y, l, s) are drawn
independently from D , then if s = y (the label
matches the sampling intention), the samples are
selected into the dataset, otherwise, the samples
are discarded. This operation results in the biased
distribution D̂ that are observed from the dataset.

In this section, we use uppercase letters, such as
Y and S, to represent random variables, and low-
ercase letters, such as y and s, to represent specific
values for samples. We use P

D̂
(·) to represent the

probability on D̂ and omit the subscripts for D .

Assumptions about the leakage-neutral dis-
tribution We make the following assumptions
about D . The first one is the leakage-neutral as-
sumption defined as follows,

P (Y |L) = P (Y ),
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which means that the sampling strategy is in-
dependent with the labels, making the leakage-
neutral distribution more close to the real-world.

The second one is that, given L, S is indepen-
dent with X and Y defined as follows,

P (S|X,Y, L) = P (S|L),

which means that the sampling strategy features
can completely control the sampling intentions.

Leakage-neutral learning and evaluation
method Based on the assumptions above, given
a biased dataset, the proposed method works in
the following way.

Firstly, we estimate P
D̂

(Y = 1|l) from the
dataset for all samples. In practice, this can be
achieved by training classifiers and making cross-
predictions. Since we don’t have access to the true
sampling strategy features, we use the leakage fea-
tures from the graph instead, as they are the reflec-
tion of the biased sampling strategy.

Then we can get P (S = 1|l), the conditional
probability of the sampling intention S on D given
l, using the following equation with P (Y = 1)
given.

P (S = 1|l)

=
P (Y = 0)PD̂(Y = 1|l)

P (Y = 0)PD̂(Y = 1|l) + P (Y = 1)PD̂(Y = 0|l) .

(1)

The derivation of Equation (1) is presented in Ap-
pendix B.1.

Afterwards, we use w = 1
P (S=y|l) as the

weights for the samples (note that the labels y are
needed here). Training and evaluating with the
weights can give us the results unbiased to the
leakage-neutral distribution.

The step-by-step procedure for leakage-neutral
learning and evaluation is presented in Algo-
rithm 1. Note that our analyses and the proposed
method are general enough for a variety of bias, as
long as a sampling strategy feature is given, and
can be easily extended to multi-class classification
problems.

Theoretical guarantee of unbiasedness As-
suming that we know P (S = y|l), and they are
greater than zero for any l, the following theorem
shows that we can obtain the loss unbiased to the
leakage neutral distribution after using the sample
weights.

Algorithm 1: Leakage-neutral Training and Evaluation
Input: The dataset {x, y}, the number of fold K for cross
prediction, and the prior probability P (Y = 1).
Procedure:
01 Extract the leakage features l from the dataset.
02 Estimate P

D̂
(Y = 1|l) for all samples by training clas-

sifiers and using K-fold cross-predicting strategy.
03 Calculate P (S = 1|l) for all samples according to

Equation (1).
04 Obtain the weights w = 1

P (S=y|l) for all samples and
normalize the mean of the weights.

05 Train and validate models with the training set and val-
idation set respectively using w as the sample weights.

06 Evaluate the models with the testing set using w as the
sample weights.

Theorem 1 (Unbiased Expectation). For any clas-
sifier f = f(x, l), and for any loss function ∆ =

∆(f(x, l), y), if we use w = P (S=Y )
P (S=y|l) as weights,

then

Ex,y,l∼D̂

[
w∆
(
f(x, l), y

)]
= Ex,y,l∼D

[
∆(f(x, l), y)

]
.

The proof is presented in Appendix B.2. Since
P (S = Y ) is only a number which does not af-
fect the models, we can concentrate on the denom-
inator, i.e., P (S = y|l) and use w = 1

P (S=y|l)
as the weights instead. The loss can be used for
both training and evaluation unbiased to the leak-
age neutral distribution.

5 Experimental Results for the
Leakage-neutral Method on QuoraQP

In this section, we present the experimental re-
sults for leakage-neutral learning on QuoraQP. We
demonstrate that the proposed learning framework
can mitigate the bias and improve the general-
ization performance of trained models. Besides,
the corresponding evaluation method can serve as
a more reliable in-domain benchmark compared
with the biased one.

5.1 Dataset Information and Weight
Generation

We use QuoraQP as our experimental dataset. We
use the same dataset partition as (Wang et al.,
2017).

We use the three leakage features for generat-
ing the weights. We use Random Forest classifiers
to estimate P

D̂
(Y = 1|l), and the 100-fold cross

predictions as the estimated values. P (Y = 1)
is chosen to keep the proportion of the weights of
positive and negative samples unchanged in order
to prevent the influence of prior probabilities, and
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the mean of the weights is normalized to 1. The
minimum weight of all the samples is 0.51, and
the maximum weight is 4953.17.

5.2 Experiment Settings
We implement a classical Siamese-LSTM model
with Keras and Tensorflow (Abadi et al., 2016)
backend. Sequences of the embeddings of word
tokens are fed into the LSTM layer with a hidden
size of 128. Then the representations of both sen-
tences, as well as the dot-production of the rep-
resentations, go through a two Layer MLP where
Batch Normalization (Ioffe and Szegedy, 2015) is
applied after every hidden layer. Dropout (Srivas-
tava et al., 2014) with rate 0.5 is applied after the
last hidden layer. We use the RMSProp (Tiele-
man and Hinton, 2012) optimizer to train all the
parameters. The learning rate starts at 1e-3, and
decays at a fixed rate of 0.2 when performance
does not improve on the validation set. We also
use a gradient clipping of 5.0. The batch size is
set to 256. All the results reported in this section
are the average numbers of ten runs using the same
hyper-parameters with different random initializa-
tions. Our implementation achieves slightly better
performance compared with the results of the orig-
inal Siamese-LSTM from Wang et al. (2017).

We initialize our word embeddings with pre-
trained GloVe 840B 300D vectors (Pennington
et al., 2014), and the embeddings are kept fixed
during training. All the sentences are cut off to
have a maximum of 35 word tokens.

Note that the scale of weights of the different
samples varies greatly. To prevent the model from
jiggling during the mini-batch training, we use a
sampling strategy for model training, i.e., we sam-
ple examples with probabilities proportional to the
weights to get the data for every mini-batch6.

5.3 Evaluation Scheme
To evaluate the effectiveness of leakage-neutral
learning, we use the following strategy in our ex-
periments. Firstly, we train and validate a model
using the data from QuoraQP without any weights.
The model is referred to as Biased Model. Then
we train and validate a model using the data from
QuoraQP with the weights, and the model is re-
ferred to as Debiased Model. These two models
are evaluated with the following methods.

6Codes and weights are published at
https://github.com/arthua196/
Leakage-Neutral-Learning-for-QuoraQP

Method Biased Eva Debiased Eva
Majority 50.00 51.62
Leakage 79.63 54.40

Biased Model 83.97 78.76
Debiased Model 82.90 80.11

Table 3: Evaluation Results with the testing set of Quo-
raQP. We report the accuracy scores and “%” is omit-
ted.

Method Synthetic MSRP SICKSTS
Biased Model 89.46 51.94 64.95

Debiased Model 92.62 56.77 66.05

Table 4: Evaluation Results with the synthetic dataset,
MSRP and SICKSTS dataset. We report the accuracy
scores and “%” is omitted.

• Testing set evaluation. We evaluate the
models with the testing set of QuoraQP. Eval-
uation without the weights is named as Bi-
ased Eva, and evaluation with the weights
is named as Debiased Eva. This can show
how the leakage-neutral evaluation proposed
in Section 4 affect the evaluation results.

• Synthetic dataset evaluation. We evalu-
ate the performance of models with the syn-
thetic dataset introduced in Section 3. Given
the prior probabilities of positive/negative
classes fixed, a better model is supposed to
give higher accuracy, and tended to be less
impacted by the bias pattern.

• Cross-dataset evaluation. We evaluate
that how the models perform on other STS
datasets, i.e., MSRP and SICKSTS. We use
the entire datasets for evaluations. As the
preparation strategies of different datasets are
different, cross-dataset evaluations will not
give additional rewards for the selection bias
of QuoraQP. Although different datasets may
have different contexts, a better model trained
with QuoraQP is still supposed to perform
better.

Among all the evaluation methods, using the
testing set for evaluation without weights (Biased
Eva) is biased, and we will show that the Debiased
Eva is more consistent with the unbiased synthetic
dataset evaluation and cross-dataset evaluations.

https://github.com/arthua196/Leakage-Neutral-Learning-for-QuoraQP
https://github.com/arthua196/Leakage-Neutral-Learning-for-QuoraQP
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Figure 6: Visualization of predicted scores by the Bi-
ased and Debiased Models versus the leakage feature.
Red boxes represent the results by the Biased Model,
and blue boxes represent the results by the Debiased
Model. Best viewed in color.

5.4 Experimental Results

The evaluation results on the testing set of Quo-
raQP are reported in Table 3. From the accuracy
of the method Leakage, we can see that although
the influence isn’t completely eliminated, the eval-
uation result of Debiased Eva is less impacted by
the bias pattern in the original distribution. This
makes the results more reliable for evaluations.
The reason why in the Leakage method the bias
could not be completely eliminated is that we can-
not estimate P (S = y|l) perfectly. A minor error
of P (S = y|l) may result in a significant differ-
ence in the weight especially when the probability
is close to zero, since the multiplicative inverse is
used.

As for the Biased Model and the Debiased
Model, we find that the Biased Model performs
significantly better under the Biased Eva. This
is the effect of fitting the bias pattern in addition
to the semantic pattern, thus taking some extra
advantage that cannot be generalized to real-life
cases. On the other hand, under the Debiased Eva,
we can find that the Debiased Model performs the
best.

Table 4 reports the results on the datasets that
are not biased to the leakage pattern of QuoraQP.
We find that the Debiased Model significantly out-
performs the Biased Model on all three datasets.
This indicates that the Debiased Model better cap-
tures the true semantic similarities of the input
sentences. We further visualize the predictions on
the synthetic dataset in Figure 6. As illustrated, the
predictions are more neutral to the leakage feature.

From the experimental results, we can see that
the proposed leakage-neutral training method is
effective, as the Debiased Model performs signif-
icantly better with Synthetic dataset, MSRP and

SICK, showing a better generalization strength.
Moreover, the Debiased Eva gives results that
are more consistent with the results on unbiased
datasets, thus it can serve as a more reliable in-
domain way to evaluate models trained with Quo-
raQP. As a conclusion, our constructed leakage-
neutral distribution is more close to the real-world
one compared with the biased distribution that is
directly observed from the given datasets.

6 Related Work

In this section, we summarize the related work and
distinguish them from our contributions.

Inverse propensity score for debiasing Usu-
ally, the Inverse Propensity Score (IPS) is used
to reduce the selection bias (Schonlau et al.,
2009; d’Agostino, 1998), where the propensity
score (Rosenbaum and Rubin, 1983) is the prob-
ability that a sample will be selected into the
dataset. Zadrozny (2004) studies the learning
and evaluating of classifiers under sample selec-
tion bias, while his focus was the “missing-at-
random” (MAR) (Little and Rubin, 2014) problem
where the biasedness only depends on the feature
vector x.

For NLSM datasets, the selection bias is “not-
missing-at-random” (NMAR) (Little and Rubin,
2014), thus we cannot hope to estimate the true
propensity scores directly as it requires the labels
of unselected samples (Zadrozny, 2004). In this
paper, we propose to fit a constructed leakage-
neutral distribution, which could be achieved with
only the selected samples that we can access.

Biasedness of datasets Although dataset bias is
often mentioned, the research community is not
putting sufficient attention to it compared with
models and algorithms. Torralba and Efros (2011)
studied the dataset bias for image recognition
datasets, and categorize the bias into Selection
Bias, Capture Bias and Negative Set Bias. Selec-
tion bias is widely studied in the search ranking
field as position bias (Wang et al., 2016a, 2018;
Joachims et al., 2017). Usually the propensity
scores are estimated through online Result Ran-
domization (Joachims et al., 2017). Liang et al.
(2019) studied the biasedness for authentication,
and proposed an additive adversarial learning for
unbiased learning.

In the NLP field, Minka and Robertson (2008)
studied the selection bias in the LETOR datasets,
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and found that Reverse BM25 performs unreason-
ably well due to the selection procedure. Dixon
et al. (2018) studied the potential unfairness for
toxic comments classification due to unintended
bias, and proposed methods to mitigate it by bal-
ancing the training dataset with additional data.
Gururangan et al. (2018) and Poliak et al. (2018)
found that in some NLI datasets, there is bi-
asedness of specific linguistic phenomena, which
makes it possible to classify the relationship of a
pair of sentences, by only looking at one of them.
Sugawara et al. (2018) investigated what makes
questions easier across recent 12 Machine Read-
ing Comprehension (MRC) datasets and the re-
sults suggest that one might overestimate recent
advances in MRC.

In this paper, we study the selection bias em-
bodied in the comparing relationships in NLSM
datasets. To the best of our knowledge, this is the
first study on this kind of selection bias.

7 Conclusion

In this paper, we take a close look at the selection
bias of NLSM datasets and focus on the selection
bias embodied in the comparing relationships of
sentences. To mitigate the bias, we propose an
easy-adopting method for leakage-neutral learning
and evaluations.

However, there is still much to do to form a
clearer scope of this problem. For example, we
still do not know the details of dataset prepara-
tions of many other NLSM datasets, and we can
not say to what extent the assumptions in Sec-
tion 4 hold in QuoraQP and what is the relation-
ship between the leakage-neutral distribution and
the real-world distribution. We suggest for future
NLSM datasets, the providers should pay more at-
tention to this problem. Furthermore, they could
reveal the more detailed strategy of sample selec-
tion, and might publish some official weights to
eliminate the bias.
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A Detailed Settings for the Experiments
in Section 2.1

A.1 Dataset Description

We summarize the statistics of the datasets used in
Section 2 in Table 5.

Dataset Training Testing # classes
SNLI 549k 10k 3

MultiNLI 393k 10k 3
QuoraQP 384k 10k 2

MSRP 4k 2k 2
SICK 5k 5k 2/3

ByteDance 256k 32k 3

Table 5: Information about the datasets.

For SICK, both entailment label and
relatedness score are provided. We use
the sentence pairs with relatedness score
greater than 3.6 as duplicated, and otherwise
not duplicated. This threshold gives roughly
50% of positive pairs and 50% negative pairs.

For ByteDance, since no existing dataset par-
tition is available, we randomly divide the dataset
into a training set, a validation set, and a testing set
in a ratio of 8:1:1. We use the sentences in English
during our experiments.

A.2 Features Used in Unlexicalized
We list the 15 features we used in method Unlex-
icalized in Section 2.1. We use 3 types of unlexi-
calized features (Bowman et al., 2015):

• The BLEU score of both sentences, using n-
gram length from 1 to 4, which are totally 4
features.

• The length difference between the two sen-
tences, as one real-valued feature.

• The number and percentage of overlap words
between both sentences over all words and
over just nouns, verbs, adjectives and ad-
verbs, which are totally 10 features.

A.3 Features Used in Advanced
We list the features we used in method Advanced
in Section 2.1. As mentioned above, if we use a
node to represent a sentence and add an undirected
edge if two sentences are compared in the dataset,
the whole dataset can be viewed as a graph as il-
lustrated in Figure 3. To classify the edges in the
graph, we use 3 types of graph-based features:

• The origin and extended leakage features: de-
grees of both nodes, number of 2-hop and
3-hop paths between the two nodes, number
of 2-hop and 3-hop neighbors of both nodes,
which are totally 8 features.

• The element-wise product and dot product of
Deepwalk (Perozzi et al., 2014) embedding
of the two nodes, all together as 65 features.

• The resource allocation index, Jaccard co-
efficient, preferential attachment score and
Adamic-Adar index (Zhou et al., 2009;
Liben-Nowell and Kleinberg, 2007) of both
two nodes, which are totally 4 features.

B Proof for the Theorems

B.1 Derivation of Equation (1)
Here we present the derivation of Equation (1).

Proof.
PD̂(Y = 1|l)

=P (Y = 1|S = Y, l)

=
P (Y = 1, S = 1|l)

P (Y = 1, S = 1|l) + P (Y = 0, S = 0|l)

=
P (Y = 1|l)P (S = 1|l)

P (Y = 1|l)P (S = 1|l) + P (Y = 0|l)P (S = 0|l)

=
P (Y = 1)P (S = 1|l)

P (Y = 1)P (S = 1|l) + P (Y = 0)P (S = 0|l) .

By solving the above equation, we have the result
in Equation (1).
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B.2 Proof of Theorem 1
Here we present the proof for Theorem 1, i.e., the
unbiased expectation theorem.

Proof.

Ex,y,l∼D̂

[
w∆
(
f(x, l), y

)]
=

∫
P (S = Y )

P (S = y|l)∆(f(x, l), y)dPD̂(x, y, l)

=

∫
∆(f(x, l), y)

P (S = Y )

P (S = y|l)dP (x, y, l|S = Y )

=

∫
∆(f(x, l), y)

P (S = Y )

P (S = y|l)
P (S = y|x, y, l)dP (x, y, l)

P (S = Y )

=

∫
∆(f(x, l), y)dP (x, y, l)

=Ex,y,l∼D

[
∆(f(x, l), y)

]
.

As illustrated above, by adding specific weights
to the samples, we can obtain the loss unbiased to
the leakage neutral distribution D . The unbiased
loss can be used for both training and evaluation.


