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Abstract

Event detection systems rely on discrimina-
tion knowledge to distinguish ambiguous trig-
ger words and generalization knowledge to
detect unseen/sparse trigger words.  Cur-
rent neural event detection approaches fo-
cus on trigger-centric representations, which
work well on distilling discrimination knowl-
edge, but poorly on learning generalization
knowledge. To address this problem, this pa-
per proposes a A-learning approach to dis-
till discrimination and generalization knowl-
edge by effectively decoupling, incrementally
learning and adaptively fusing event represen-
tation. Experiments show that our method
significantly outperforms previous approaches
on unseen/sparse trigger words, and achieves
state-of-the-art performance on both ACE2005
and KBP2017 datasets.

1 Introduction

Event detection (ED) aims to identify triggers of
specific event types. For instance, an ED system
will identify fired as an Attack event trigger in the
sentence “An American tank fired on the Palestine
Hotel.” Event detection plays an important role in
Automatic Content Extraction (Ahn, 2006), Infor-
mation Retrieval (Allan, 2012), and Text Under-
standing (Chambers and Jurafsky, 2008).

Due to the ambiguity and the diversity of natural
language expressions (Li et al., 2013; Nguyen and
Grishman, 2015), an effective approach should
be able to distill both discrimination and general-
ization knowledge for event detection. Discrimi-
nation knowledge aims to distinguish ambiguous
triggers in different contexts. As shown in Figure
1, to identify fired in S4 as an EndPosition trig-
ger rather than an Attack trigger, an ED system
needs to distill the discrimination knowledge from
S1 and S2 that (fired, Attack) usually co-occurs
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Training

i['S1:The airline firedgyaposition that pilot for fault in work.

iL.S2: An American tank fired .. on the Palestine Hotel.

3‘ S3: A heavily armed soldier $hot .k the enemy to death. ‘w

S4:That officer was fired from his job. [:> EndPosition ;

‘ S5: A man was hacked to death by the criminaL[> Attack :

Evaluation

Figure 1: Examples of event instances. Identifing am-
biguous word fired requires discrimination knowledge
and identifing unseen word hacked requires generaliza-
tion knowledge.

with {tank, death, enemy, ...} and (fired, EndPo-
sition) usually co-occurs with {work, fault, job,
...}. Unlike discrimination knowledge, generaliza-
tion knowledge aims to detect unseen or sparsely
labeled triggers, thus needs to be transferred be-
tween different trigger words. For example, to
identify the unseen word hacked in S5 as an At-
tack trigger, an ED system needs to distill the gen-
eralized Attack pattern “[Trigger] to death” from
S3.

Currently, most neural network ED methods
(Chen et al., 2015; Nguyen and Grishman, 2015,
2016; Duan et al., 2017; Yang and Mitchell, 2017)
work well on distilling discrimination knowledge,
but poorly on distilling generalization knowledge.
Table 1 shows the performances of several mod-
els on both sparsely (OOV/OOL) and densely
(Other) labeled trigger words. These models work
well on densely labeled trigger words, i.e., they
have a good discrimination ability. But they per-
form poorly on unseen/sparsely labeled trigger
words, i.e., they have a poor generalization abil-
ity. This is because these approaches are mostly
trigger-centric, thus hard to be generalized well
to sparse/unseen words. Furthermore, the lack of

4366

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4366—4376
Florence, Italy, July 28 - August 2, 2019. (©2019 Association for Computational Linguistics



Models | OOV OOL Other
DMCNN | 34.3 8.8 76.1
Bi-LSTM | 35.3 9.3 75.5

ELMo 31.3 9.0 75.7

Table 1: F1 Scores of previous approaches on differ-
ent types of triggers (ACE2005), where OOV words
are the out-of-vocabulary words in the training corpus,
OOL words are the out-of-label words, i.e., an instance
whose (word, event type) never occurs in the training
corpus but the word is not OOV. DMCNN (Chen et al.,
2015) refers to dynamic multi-pooling based CNN; Bi-
LSTM (Duan et al., 2017) refers to bidirectional LSTM
based RNN. ELMo refers to the fixed task-independent
word representations proposed by Peters et al. (2018).

large-scale training data also limits the generaliza-
tion ability of learned models. Table 1 also shows
the performance of using general pre-trained word
representation — ELMo (Peters et al., 2018). We
can see that, this task-independent lexical-centric
representation achieves nearly the same perfor-
mance to task-specific representations.

In this paper, we propose a A-representation
learning approach, which can incrementally dis-
till both discrimination and generalization knowl-
edge for event detection. A-representation learn-
ing aims to decouple, learn, and fuse alterable A-
parts for event representation, instead of learning
a single comprehensive representation. Specif-
ically, we decouple an event representation rqq
into three parts roy = ry, @ rq @ ry (Section 2),
where r,, is the pre-trained word representation of
trigger words, ry is the lexical-specific event rep-
resentation which captures discrimination knowl-
edge for distinguishing ambiguous triggers, r, is
the lexical-free event representation which cap-
tures generalization knowledge for detecting un-
seen/sparse triggers, and € is the fusion function
to fuse different parts. Here rg and ry are the A-
parts of our representation, i.e., they are indepen-
dently learned starting from r,, and are intended
for capturing incremental knowledge for event de-
tection. To incrementally learn the A-parts rqy and
rg, we propose a A-learning framework (Section
3), i.e., a lexical enhanced A-learning algorithm
is designed to learn the discrimination knowledge
ry which is both event-related and lexical-relevant
part, and a lexical adversarial A-learning is de-
signed to learn the generalization knowledge r,
which is event-related but lexical-irrelevant part.
Finally, a lexical gate fusion mechanism € (Sec-

EndPosition
Lexical
Gate Fusion
A-Learnin Enhanced Adversarial
e A-Leaming A-Learning
T ,4 £
Decoupled

Representations

K
Al > ‘A
Lexical-Specific Lexical-Free
Representation Representation
Tq r,

That officer was{f_;r_egll:from his job.

Trigger
Candidate

Figure 2: The framework of our A-learning approach.
Dashed lines indicate the learning process; solid lines
indicate the event detection process.

tion 2.3) is proposed to adaptively fuse these
learned representations. Figure 2 shows the archi-
tecture of our method.

We conduct experiments' on two standard
event detection datasets: ACE2005? and TAC
KBP 2017 Event Nugget Detection Evaluation®
(KBP2017). Experimental results show that the
proposed method significantly improves the per-
formance on sparsely labeled triggers, and retains
a high performance on densely labeled triggers.

The main contributions of this paper are:

1. We propose a new representation learning
framework - A-learning, which can incremen-
tally distill both discrimination and generalization
knowledge during representation learning. Since
the ambiguity and the diversity problem of nat-
ural language expressions are common in NLP,
our framework can potentially benefit many other
NLP tasks.

2. We design a new event detection approach.
By effectively decoupling, independently learn-
ing, and adaptively fusing event representation,
our approach works well on both sparsely and
densely labeled triggers and achieves the state-
of-the-art performance on both ACE2005 and
KBP2017 datasets.

2 Decoupling Lexical-Specific and
Lexical-Free Representations for Event
Detection

To distill both discrimination and generalization
knowledge, this section decouples event represen-

'Our source code is openly available at
https://www.github.com/luyaojie/delta-learning-for-ed.
“https://catalog.ldc.upenn.edu/LDC2006T06
3https://tac.nist.gov/2017/KBP/data.html
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tation into three parts: r.y = r,PrsPry,
where r,, is the word representation of trigger
words, such as word embeddings/ELMo (noted
that r,, is fixed during all our training process);
rq is a lexical-specific event representation which
captures discrimination knowledge; r is a lexical-
free representation which captures generalization
knowledge. By decoupling event representations,
rq and r, will be independently learned using our
A-learning algorithm in Section 3. Finally, a
gate mechanism is proposed to adaptively fuse the
above representations for event detection.

Formally, an event detection instance is a pair
of trigger candidate and its context, i.e., x =
(t, c¢), where t is a trigger candidate, and ¢ =
{c_my .y C_1,C1, ...y €y } 18 its context. For exam-
ple, (fired, “That officer was _ from his job.”) is an
instance for candidate fired.

Following previous work (Nguyen and Grish-
man, 2015; Liu et al., 2018a), given an instance
x, we embed each token ¢; as t; = [Pw; Pp; Pe)s
where p,, is its word embedding, p, is its posi-
tion embedding, and p. is its entity tag embed-
ding. Therefore tg is the representation of trigger
candidate. In this paper, lexical-specific model @4
and lexical-free model ®, use independent em-
beddings.

2.1 Lexical-Specific Representation

Lexical-specific representation aims to capture
discriminative information for distinguishing am-
biguous trigger words. For example, we want our
representation to capture {officer, job, ...} clues
for distinguishing (fired, EndPosition) from (fired,
Attack), and {tank, soldiers, ...} for distinguishing
(fired, Attack) from (fired, EndPosition).

To capture discriminative clues for trigger can-

didates, we design a lexical-centered context se-
lection attention. And we refer it as ATT-RNN and
describe it as follows.
Lexical-Centered Context Selection. To select
discriminative context words, the attentive context
selection mechanism models the association be-
tween the trigger candidate and its context words.
For instance, we want our attention mechanism to
capture the association between “work™ and fired
in S1, and between “tank” and fired in S2.

Concretely, we first feed [t_,, ..., t0, ..., tm]
into a bidirectional GRU to get all tokens’ context-
aware token encoding [h_,,, ..., hg, ..., h;,]. Then
our attention mechanism models (trigger, context

word) pair’s relevance with a Multi-Layer Percep-
tron (MLP), and uses a softmax function normal-
izing relevance scores to attention weights:

o = exp(MLP([hg; hz])) (1)

> jec exp(MLP([ho; hy]))

Given the attention weights, the lexical-specific
context representation is summarized as ¢y =
> icc @i - h;. And the final lexical-specific rep-
resentation of instance z is the concatenation of
its token representation hg and the lexical-specific
context representation ¢y, i.e., rqy = [ho; co.

The lexical-specific representation can effec-
tively disambiguate trigger words by capturing
(trigger, context word) associations. However, this
representation is lexical-specific, thus hard to gen-
eralize well to sparse/unseen words.

2.2 Lexical-Free Representation

In contrast to lexical-specific representation,
lexical-free event representation r, aims to cap-
ture generalization knowledge for ED, which can
be transferred between different trigger words. For
example, we want to capture the trigger word-
irrelevant knowledge such as “[Trigger] to death”
being a strong trigger pattern for Attack event,
which can be used to detect many different trig-
ger words, such as fired, hacked, beat. In this way,
even an unseen trigger candidate ¢ can be easily
identified by leveraging such knowledge.

Obviously, the lexical-free event representation
r, should be lexical-irrelevant, but event-specific.
To this end, we represent all tokens in x as t;,
then employ a lexical-independent context selec-
tion module for r,. We simply use DMCNN
(Chen et al., 2015) as our lexical-independent con-
text selection module, but design a new adversar-
ial A-learning algorithm in Section 3.2 which can
eliminate lexical-relevant information from r,.
Lexical-Independent Context Selection. To se-
lect lexical-independent but event-relevant context
words, we employ the same CNN architecture as
Chen et al. (2015). For instance, we want to cap-
ture “to death” and “criminal” being relevant for
Attack event in S5.

Given token sequence [t_,, ..., to, ..., tm], @ h-
width convolutional layer captures local context
feature 1; from t;.; 1 p_1: I; = tanh(w - t;.00-1 +
b), where w is the convolutional filter, and b is the
bias term. To summarize important signals from
different pieces of a sentence, a dynamic pooling
layer (Chen et al., 2015) is used to produce the left
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and right context features 1/¢/t, 1795t
19/t = max1;,1"9" = max 1 2
j<0 7 >0 7 @
Finally, we concatenate the left context feature
1/t and the right context feature 1"°9"* as our
lexical-free representation r,, = [I'¢/t;17191],

2.3 Lexical Gate Mechanism for
Representation Fusion

The above two representations are complementary
to each other: ry captures discrimination knowl-
edge, and r, captures generalization knowledge.
However, simple concatenation is not effective
for event detection: for frequently labeled trigger
words in training data, lexical-specific representa-
tion is more useful; and for sparsely labeled or un-
seen trigger words, lexical-free representation is
more helpful. Based on this observation, our sys-
tem needs to rely more on ry to detect frequent
candidate fired, but more on r, to detect the OOV
candidate hacked. That is, we need to adaptively
fuse different representations for different words,
rather than simply concatenate them.

To adaptively fuse lexical-specific representa-
tion ry, lexical-free representation r, and word
representation r,,, we design a lexical gate mech-
anism to fuse different representations: r.q; =
ry Prq@Pry, where P is the fusion gate, and
req is the final event representation. Concretely,
we first map these representations to a universal
space:

r'q = fspecsv(Ta)
r/g = fFreeHU(rg) (3)
r/w = fLem'—)U(rw)

where fSpecHU(‘)’ fFree%U(') and fLe:m'%U(')
are linear layers with a nonlinear function; then

we fuse them via the gated mechanism:
8i = fusa(r's),i € {d, g, w}
exp(8i) “4)
> je{dg.w} ©XP(&;)
g; (i € {d,g,w}) correspondingly indicates the
confidence of the evidences provided by r'y, r'f
and r';; g; and g; have the same dimensions as r’;;

fu—c(+) is a linear layer with a nonlinear func-
tion. Finally, we combine all representations:

gi =

Ted =84 O r/d + g9 © I'/g + 8w © I'/w (5)
where © is element-wise multiplication.

After fusion, r.; will be fed to the event de-
tection classifier, which computes a classification

1/0 EventType EventType 1/0

t t
Binary Event Event Binary
.- Lexical Detection Detection Lexical -
,/’ Classifier Classifier  Classifier Classifier \\

\
1
+ Lexi —Lexi,
1 1
1 1
1 1
1 1
\ 1
\ . . . 1
\ |Lexical-specific Lexical-free | /
\ . . 4
4| Representation Representation [©
Learning Learning

(t, c) t/w t/w (t,¢)

(a) Lexical-Enhanced (b) Lexical-Adversarial

Figure 3: The framework of our A-learning algo-
rithms.

probability for each event type y; (including NIL
for not a trigger):

exp(W¢ « Teq + bt)
Z?:l exp(Wi - Teq + bt)
where w; is the weight vector, and b, is the bias

term. In this way, we identify trigger words of all
pre-defined event types.

P(yi|r) = (6)

3 Distilling Discrimination and
Generalization knowledge via
A-Learning

This section describes our A-learning framework,
which can learn lexical-specific representation rg4
and lexical-free representation r, independently.
To distill discrimination knowledge to ry, we de-
sign a lexical-enhanced A-learning algorithm. To
distill generalization knowledge to r,, we design a
lexical adversarial A-learning algorithm. Finally,
we fine-tune the full event detection model in Fig-
ure 2.

3.1 Distilling Discrimination Knowledge via
Lexical-Enhanced A-Learning

This section describes our lexical-enhanced A-
learning algorithm for lexical-specific represen-
tation ry. To ensure r; be both event-relevant
and lexical-specific, we use two types of supervi-
sion signals: first, we want the learned represen-
tation rg can predict its event type y with the help
of word representation r,,; second, we want the
learned r4 can also predict its trigger word ¢. For
example, we want the learned ry of the instance
(fired, An solider _ to death) can predict both its
event type Attack and its trigger word fired.
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To achieve the above goal, we remove the
lexical-free part in Figure 2 and show the lexical-
enhanced A-learning framework in Figure 3 (a).
The input of our lexical-enhanced learning frame-
work is a triple (¢, ¢, w), where t is the trigger, c
is its context, and w is a sampled word. The out-
put is two-fold: the event classifier will output the
event type of (¢, ¢), and the auxiliary lexical classi-
fier will output 1 if £ = w and O otherwise. In this
way, the event classifier can propagate the event
type supervision signal to our lexical-specific rep-
resentation learning component, and the auxiliary
lexical binary classifier ensures that the learned
representation rg is lexical-specific.

Specifically, for each ED instance x = (¢, ¢),
we generate a positive lexical-enhanced training
instance (¢, ¢, t) with label (y, 1), and n negative
instances® (¢, ¢, w) with label (y, 0), where w is a
word randomly sampled from context c.

For each ED instance z = (¢,c¢) in the train
dataset D, the event classifier loss is:
['event = - Z logP<yk|xk) (7)
(zg,yx)ED

and the lexical binary classifier loss is:

Elezical = Z - 10gP(1|l’k,t)
€D
n (8)
— ) "log P(0]a, wp;)
j=1
Therefore, the loss function of lexical-enhanced
A-learning is:

Eenhance = ﬁevent + Elem‘cal (9)

By adding the auxiliary lexical classification task,
this learning algorithm will ensure the learned
representation be both event-related and lexical-
relevant.

3.2 Distilling Generalization Knowledge via
Lexical-Adversarial A-Learning

In contrast to lexical-specific representation rg,
the lexical-free representation r, needs to elimi-
nate lexical-specific information, so that it can be
transferred between different words. To achieve
this goal, we adopt adversarial techniques and de-
sign a lexical-adversarial A-learning algorithm.
Specifically, we remove the lexical-specific part
in Figure 2 and show the lexical-adversarial A-
learning framework in Figure 3 (b). We can see

“In this paper, we set n. = 1.

that, the input and the output of our adversarial A-
learning framework are still (¢, ¢, w) and (y, 1/0).
The event classifier is used to propagate the event
type supervision signal to our lexical-free repre-
sentation learning component, so that r, will cap-
ture event related information. The difference be-
tween Figure 3 (a) and 3 (b) is that they use dif-
ferent auxiliary tasks: Figure 3 (a) uses a lexical-
enhanced auxiliary task, and Figure 3 (b) uses a
lexical-adversarial auxiliary task.

To eliminate lexical-specific information, we
design a two-player min-max game (Goodfellow
et al., 2014) for the lexical-adversarial auxiliary
task. Given (¢, ¢, w), our binary lexical classifier
© pereri attempts to predict whether ry is specific
to w, but the lexical-free model ®, tries to pro-
duce r, to confuse © pereqi- The min-max objec-
tive function for lexical-adversarial A-learning is:

Lominmaz = Z —log P(1|xg,t)

€D
n
—ZlogP(O]:rk,wkj) (10)
j=1
6 = min max Loinmaz

eDeLezi 6{]

In this way, we can remove the lexical-specific in-
formation from ry.

The above adversarial loss leads two different
optimized directions for @, and © pere.i, Which
can be implemented by a gradient reversal layer
(Ganin et al., 2016) during backpropagation. That
18, Lminmaz 18 jointly optimized with the main ED
task objective Leyent, While gradients from adver-
sarial loss are reversed with the factor A\,4, when
they reach r,. By this means, we can unify the
optimized directions of these components. There-
fore, the loss function of our lexical-adversarial
A-learning is:

ﬁad’uersary = Levent + Eminmax (1D

Following Liu et al. (2019), we divide the
lexical-adversarial A-learning into two stages:

1. In the pretraining stage, we first update ©,
using the main ED task objective, then freeze @,
and update © p.e.; using the Equation 10.

2. In the adversarial learning stage, we update
parameters using Equation 11.

In practice, we find that the factor A4, is sen-
sitive to the even of min-max game. A large A4,
is easy to make the binary lexical classifier to be
weak (the binary classfication accuracy tends to
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50%). In this paper, \uq, is set as 173, and the
accuracy of our binary lexical classifier ® perey;
always keep over 75% in the adversarial learning
stage.

By adding the auxiliary lexical-adversarial task,
this learning algorithm will ensure the learned rep-
resentation be event-related but lexical-irrelevant.

3.3 Full Model Fine-Tuning

Given the pre-trained lexical-specific representa-
tion model ®, and the pre-trained lexical-free rep-
resentation model ©,, we finally fine-tune the full
model ® in Figure 2 by optimizing the event clas-
sification loss function:

5(9) = Levent + )\reg : ||®H2 (12)

where A4 is the weight coefficient of regulariza-
tion item and © indicates all parameters. £(©)
can be optimized using mini-batch based stochas-
tic gradient descent algorithms, such as Adadelta
(Zeiler, 2012).

4 Experiments

4.1 Experimental Settings

Dataset. We conduct experiments on two stan-
dard English event detection datasets: ACE2005
and KBP2017.

ACE2005 (LDC2006T06) contains 599 docu-
ments annotated with 33 event types. Following
previous studies (Liao and Grishman, 2010; Li
et al., 2013; Chen et al., 2015; Liu et al., 2017,
2018a), we use the same 529/30/40 train/dev/test
document splits in our experiments. We use
ACE2005 as the primary dataset, as the same as
previous studies (Nguyen and Grishman, 2018).

KBP2017 (LDC2017ES55) contains 500 docu-
ments with RichERE annotations for TAC KBP
2017 evaluation. For model training, we use pre-
viously annotated RichERE datasets, including
LDC2015E29, LDC2015E68, LDC2016E31 and
TAC KBP 2015-2016 Evaluation datasets. Fol-
lowing previous work (Lin et al., 2018a), we ran-
domly sample 20 documents from the 2016 evalu-
ation dataset as the development set.

We evaluate different event detection sys-
tems using precision, recall, and F1l-score. For
ACE2005, we compute these criteria as the same
as previous work (Li et al., 2013; Chen et al,,
2015). For KBP2017, because TAC KBP2017 al-
lows each team to submit 3 different runs, to make
our results comparable with the evaluation results,

we select 3 best runs of each system on the de-
velopment set and report the best test performance
among them using the official evaluation toolkit>,
which is referred as Best3 in previous work (Lin
etal., 2018a).

Baselines. We compare our approach with three
types of baselines:

Feature based Approaches rely on rich hand-
designed features, including: MaxEnt (Li et al.,
2013) which employs hand-designed features and
uses Max-Entropy Classifier; Combined PSL (Liu
etal., 2016b) — the best reported feature-based sys-
tem which combines global and latent features us-
ing Probabilistic Soft Logic framework.

Representation Learning based Approaches
employ neural networks to automatically extract
features for event detection, including: DMCNN
(Chen et al., 2015) which uses CNN as sentence
feature extractor and concatenates sentence fea-
ture and lexical feature for event detection clas-
sifier; NC-CNN (Nguyen and Grishman, 2016)
which extends traditional CNN by modeling skip-
grams for exploiting non-consecutive k-grams; Bi-
RNN (Nguyen et al., 2016) which embeds each to-
ken using additional dependency features for bi-
directional RNN feature extractor, and jointly ex-
tracts triggers with its arguments.

External Resource based Approaches aim to
enhance event detection with external resources,
including: SA-ANN-Arg (Liu et al., 2017) which
injects event arguments information via super-
vised attention mechanism; GCN-ED (Nguyen
and Grishman, 2018) which exploits syntactic in-
formation to capture more accurate context using
Graph Convolutional Networks (GCN); GMLATT
(Liu et al., 2018a) which exploits the multi-lingual
information for more accurate context modeling;
HBTNGMA (Chen et al., 2018) which fuses both
sentence-level and document-level information,
and collectively detects different events in a sen-
tence.

For our approach and all baselines, we adopt
the pre-trained word embedding using Skip-gram
6 and the open released ELMo models’. We also
report the performance of ELMo as a baseline for
demonstrating the performance of universal pre-
trained representations. All hyper-parameters are
tuned on development set.

Shitps://github.com/hunterhector/EvmEval
®https://code.google.com/archive/p/word2vec
"https://allennlp.org/elmo
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P R F1

Feature based Approaches

MaxEnt 745 59.1 659
Combined-PSL 753 644 694
Representation Learning based Approaches
DMCNN 75.6 63.6 69.1
Bi-RNN 66.0 73.0 693
NC-CNN - - 71.3
External Resource based Approaches
SA-ANN-Arg (+Arguments) 78.0 663 71.7

GMLATT (+Multi-Lingual) 78.9 669 724
GCN-ED (+Syntactic) 779 68.8 73.1
HBTNGMA (+Document) 779 69.1 733
Our Approach

ELMo 75.6 623 683
Aconcat 71.8 708 71.3
Aggncat 73.7 719 728
Aoy 74.0 705 722
AELMo 763 719 74.0

Table 2: Experiment results on ACE 2005. For a fair
comparison, the results of baselines are adapted from
their original papers.

4.2 Overall Performance

Table 2 shows the overall ACE2005 results of all
baselines and our approach. For our approach, we
show the results of four settings: our approach
using word embedding as its word representa-
tion r,, — Ays2y; our approach using ELMo as
ry - AErae; our approach simply concatenating
[rg,Ty,Ty] as instance representation - A§O"eat,
From Table 2, we can see that:

1. By distilling both discrimination and
generalization knowledge, our method achieves
state-of-the-art performance. Compared with
the best feature system, A9, and Agr, gain
2.8 and 4.6 F1-score improvements. Compared to
the representation learning based baselines, both
A2, and Ay, outperform all of them. No-
tably, A g1 outperforms all the baselines using
external resources.

2. By incrementally distilling generalization
knowledge, our method can achieve both high
recall and high precision. Our method obtains a
high recall — 71.9, which outperforms most meth-
ods by a large margin, and retains a high precision
—76.3. We believe this is because the generaliza-
tion knowledge is incrementally distilled using A-
learning, so there is no need to make the precision-
recall tradeoff during training.

3. The lexical gate provides an effective
mechanism for adaptively fusing discrimina-

P R F1

Top 3 in TAC 2017 ED Track

3rd in TAC 2017 54.27 46.59 50.14
2nd in TAC 2017 52.16 48.71 50.37
Istin TAC 2017 56.83 55.57 56.19
Our Approach

Aoy 62.84 50.36 5591
AErryo 62.30 53.77 57.72

Table 3: Experiment results on TAC KBP 2017 evalua-
tion datasets.

tion and generalization knowledge. Compared
with the naive fusion baselines - A" A o,
and A gy, correspondingly gain 0.9 and 1.2 F1
improvements. This means that an adapative fu-
sion mechanism can get benefits from both dis-
crimination and generalization knowledge, rather
than make tradeoff between them.

4. Although universal pre-trained repre-
sentations can achieve a good performance,
task-specific representations are still crucial.
Compared with the strong universal representa-
tion baseline ELMo, our task-specific event detec-
tion representations all achieve a significant per-
formance improvements. This also verifies that
A-learning is an effective way for incrementally
learning task-specific representation.

Table 3 further compares our method with the
Top 3 systems in TAC 2017 Event Detection Track
(Mitamura et al., 2017). Because these teams
had no access to gold entity information during
evaluation, we exclude entity embedding in our
KBP2017 experiments for a fair comparison. We
can see that, the proposed method can significantly
outperform the best ED systems in TAC 2017, de-
spite these systems are ensemble models which
have leveraged various external resources.

4.3 Detailed Analysis

To analyze the effect of our method in detail, Table
4 shows the performance of our method on differ-
ent types of trigger words, including:

OOV (out-of-vocabulary) and OOL (out-of-
label) are of the same as in Table 1.

Sparse instance means the event trigger rate of
the given word P(e|w) = #;E(i:)’) is less than 10%
in training corpus, i.e, < 10% occurrences of word
w are labeled with the event type e (NIL includ-
ing).

Dense means all other instances except OOV,
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OOL and Sparse.

Let €P be our lexical gate, Table 4 shows the re-
sults of following settings: rq € ry, ry @ ry, and
ri@r,Pr, (.e., our full model). To demon-
strate the effects of A-learning, Table 4 also
shows the results of the non-A-learning version of
ri@ry, rg@PryandryPryPr,. In this set-
ting, rqy and r, are trained without using auxiliary
tasks. From Table 4, we can see that:

1. Previous approaches work well on dis-
tilling discrimination knowledge, but poorly on
distilling generalization knowledge. Previous
approaches achieve high F1l-scores on Dense in-
stances, but their performance on sparsely labeled
instances is poor. The task specific representation
(ATT-RNN and DMCNN) merely achieves a sim-
ilar performance with the general word represen-
tation r,, (ELMo).

2. A-learning is effective for incrementally
distilling knowledge. Compared with its non-
A-learning version, ry r,, can distill general-
ization knowledge, i.e., gains 8.5, 12.3 and 9.8
F1 improvements on OOV, OOL and Sparse in-
stances. And ry €P r,, can distill more discrimina-
tion knowledge than its non-A-learning version.

3. The decomposition strategy, i.e, learn-
ing and fusing independent knowledge is ef-
fective for representation learning. Through
decomposition, r, @ r,, can capture generaliza-
tion knowledge, ry € r,, can capture discrimina-
tion knowledge, which are complementary to each
other. Starting from r,,, our method can incre-
mentally distill knowledge in both r; and r, via
A-learning. By fusing the independent knowl-
edge in ry and r, via an effective lexical gate,
rqi@r,@r, achieves the best performance on
OOV, OOL and Dense instances.

5 Related Work

Event Detection. In recent years, neural ap-
proaches have achieved significant progress in
event detection. Most neural approaches focus on
learning effective instance representations (Chen
et al., 2015; Nguyen and Grishman, 2015, 2016;
Nguyen et al., 2016; Feng et al., 2016; Ghaeini
etal., 2016; Lin et al., 2018b). The main drawback
of these methods is that they mostly only learn
a single and lexical-specific representation, which
works well on distilling discrimination knowledge
but poorly on generalization knowledge.

Some approaches enhance representation learn-

Representations OOV OOL Sparse | Dense
ATT-RNN 38.7 6.2 36.7 717
DMCNN* 324 9.0 43.1 77.6

ELMo 313 9.0 47.1 78.0

rg@Pry, (wo A) 40.0 8.8 50.0 78.7
rg@ry, (wo A) 47.1 111 54.6 78.8
ra@r,Pr, WoA) | 400 114 528 | 788

r.Dro 323 123 431 | 79.1
r, Pr., 556 234 644 | 782
r.®r,Dr, 574 267 556 | 80.0

Table 4: The results (F1-scores) of different represen-
tations (ELMo as word representation r,,) on different
types of trigger words. For a fair comparison, different
from standard DMCNN (Chen et al., 2015) in Table 1
and Table 2, DMCNN* excludes lexical feature but in-
cludes entity feature.

ing using external resources. One strategy is to
employ extra knowledge for better representation
learning, such as document (Duan et al., 2017;
Chen et al., 2018; Liu et al., 2018b), syntactic
information (Nguyen and Grishman, 2018; Sha
et al., 2018; Orr et al., 2018; Liu et al., 2018c¢),
event arguments (Liu et al., 2017), knowledge
bases (Yang and Mitchell, 2017; Lu and Nguyen,
2018) and multi-lingual information (Liu et al.,
2018a). The other strategy is generating addi-
tional training instances from extra knowledge
bases (Liu et al., 2016a; Chen et al., 2017) or news
paragraph clusters (Ferguson et al., 2018). Our
method does not use any external resources, which
could be a good complementary to these methods.

Representation Learning via Auxiliary Learn-
ing. In recent years, many auxiliary learning
techniques have been proposed for better repre-
sentation learning. Self-supervised learning learns
representation by designing auxiliary tasks rather
than using manually labeled data. Examples in-
clude colorization in vision tasks (Doersch and
Zisserman, 2017), language modeling in text tasks
(Rei, 2017). Adversarial learning attempts to fool
models through malicious input (Kurakin et al.,
2016), it has been broadly used in many scenar-
ios, e.g., domain adaptation (Zeng et al., 2018),
knowledge distillation (Qin et al., 2017) and at-
tribute cleaning (Elazar and Goldberg, 2018).

Some adversarial-based techniques have been
used for event detection. Hong et al. (2018) over-
comes spurious features during training via self-
regularization. Liu et al. (2019) distills extra
knowledge from external NLP resources using a
teacher-student network. This paper employs ad-
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versarial A-learning algorithm to eliminate lexi-
cal information in event representation so that both
discrimination and generalization knowledge can
be incrementally distilled.

6 Conclusions

This paper proposes a new representation learn-
ing framework — A-learning, which can distill
both discrimination and generalization knowledge
for event detection. Specifically, two effective
A-learning algorithms are proposed to distill dis-
crimination and generalization knowledge inde-
pendently, and a lexical gate mechanism is de-
signed to fuse different knowledge adaptively. Ex-
perimental results demonstrate the effectiveness of
our method. Representation learning is a funda-
mental technique for NLP tasks, especially for re-
solving the ambiguity and the diversity problem of
natural language expressions. For future work, we
plan to investigate new auxiliary A-learning algo-
rithms using our A-learning framework.
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