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Abstract

Cognitive task analysis (CTA) is a type of
analysis in applied psychology aimed at elic-
iting and representing the knowledge and
thought processes of domain experts. In CTA,
often heavy human labor is involved to parse
the interview transcript into structured knowl-
edge (e.g., flowchart for different actions).
To reduce human efforts and scale the pro-
cess, automated CTA transcript parsing is de-
sirable. However, this task has unique chal-
lenges as (1) it requires the understanding of
long-range context information in conversa-
tional text; and (2) the amount of labeled data
is limited and indirect—i.e., context-aware,
noisy, and low-resource. In this paper, we pro-
pose a weakly-supervised information extrac-
tion framework for automated CTA transcript
parsing. We partition the parsing process into
a sequence labeling task and a text span-pair
relation extraction task, with distant supervi-
sion from human-curated protocol files. To
model long-range context information for ex-
tracting sentence relations, neighbor sentences
are involved as a part of input. Different types
of models for capturing context dependency
are then applied. We manually annotate real-
world CTA transcripts to facilitate the evalua-
tion of the parsing tasks1.

1 Introduction

Cognitive task analysis (CTA) is a powerful tool
for training, instructional design, and develop-
ment of expert systems (Woods et al., 1989; Clark
and Estes, 1996) focusing on yielding the knowl-
edge and thought processes from domain experts
(Schraagen et al., 2000). Traditional CTA methods
require interviews with domain experts and pars-
ing the interview transcript (transcript) into struc-
tured text describing processes (protocol, shown
in Fig. 1). However, parsing transcripts requires

1Code is available at: https://github.com/cnrpman/procedural-extraction

Figure 1: An example of CTA interview transcript
and the human parsed structured text (protocol). In
the protocol, splitting by the highlighted line numbers
indicating the sources in transcript, phrases in proto-
col (called protocol phrases) are abstractive descrip-
tion of actions in the transcript. In the transcript, the
highlighted numbers are line numbers, and the bolded
are text spans matched by protocol phrases. The high-
lighted line numbers are provided by human parsing
which provide constraint on mapping protocol phrases
back to the transcript, but they are noisy and pointing
back to a large scope of sentences, instead of the text
span we want to extract.

heavy human labor, which becomes the major
hurdle of scaling up CTA. Therefore, automated
approaches to extract structured knowledge from
CTA interview transcripts are important for expert
systems using massive procedural data.

A natural realization of automated CTA is to ap-
ply relation extraction (RE) models to parse in-
terview text. However, the key challenge here is
the lack of direct sentence-level supervision data
for training RE models because the only avail-
able supervision, protocols, are document-level
transcripts summaries. Furthermore, the infor-
mation towards relations between procedural ac-
tions spreads all over the transcripts, which bur-

https://github.com/cnrpman/procedural-extraction
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Figure 2: The framework of Automated CTA Transcripts Parsing. Text spans are extracted via the sequence
labeling model, then the relations between text spans are extracted by the text span-pair relation extraction model
(span-pair RE model). In the end we assemble the results into structured knowledge (flowchart) for CTA.

dens the RE model to process global informa-
tion of the text. One previous work (Park and
Motahari Nezhad, 2018) studies extracting pro-
cedure information on well-structured text using
OpenIE and sentence pair RE models. In this
work, however, we focus on unstructured conver-
sational text (i.e., CTA interview transcripts) for
which OpenIE is inapplicable.

To address the above challenges, we develop
a novel method to effectively extract and lever-
age weak(in-direct) supervision signals from pro-
tocols. The key observation is that these protocols
are structured in the phrase level (c.f. Fig. 1). We
split each protocol into a set of protocol phrases.
Each protocol phrase is associated with a line
number that points back to one sentence in the
original transcript. Then, we can map these pro-
tocol phrases back to text spans in transcript sen-
tences and obtain useful supervision signals from
three aspects. First, these matched text spans pro-
vide direct supervision labels for training text span
extraction model. Second, the procedural relations
between protocols phrases are transformed into re-
lations between text spans within sentences, which
enables us to train RE models. Finally, the local
contexts around text spans provide strong signals
and can enhance the mention representation in all
RE models.

Our approach consists of following steps: (1)
parse original protocol into a collection of protocol
phrases together with their procedural relations,
using a deterministic finite automation (DFA); (2)
Match the protocol phrases back to the text spans
in transcripts using fuzzy matching (Pennington
et al., 2014; Devlin et al., 2018); (3) Generate text
span extraction dataset and train a sequence label-
ing model (Finkel et al., 2005; Liu et al., 2017)
for text span extraction; (4) Generate text span-
pair relation extraction (span-pair RE) dataset and
fine-tune pre-trained context-aware span-pair RE

model (Devlin et al., 2018). With the trained mod-
els, we can automatically extract text spans sum-
marizing actions from transcripts along with the
procedural relations among them. Finally, we as-
semble the results into protocol knowledge, which
lays the foundation for CTA.

We explore our approaches from manifold as-
pects: (i) We experimented different fuzzy match-
ing methods, relation extraction models and se-
quence labeling models; (ii) We present mod-
els for solving context-aware span-pair RE; (iii)
We evaluate the approach on real-world data with
human annotations, which demonstrates the best
fuzzy matching method achieves 47.1% men-
tion level accuracy, best sequence labeling model
achieves 38.18% token level accuracy, and best
text span-pair relation extraction model achieves
74.4% micro F1.

2 Related Work

Our work is closely related to procedural extrac-
tion, however we focus on conversational text
from CTA interviews which is in a low-resource
setting and no sentence-by-sentence label is avail-
able.
Cognitive task analysis. Cognitive task analysis
is a powerful tool for extracting knowledge and
thought processes of experts widely used in dif-
ferent domains (Schraagen et al., 2000; Seamster
and Redding, 2017). Yet, it is time-consuming and
not scalable. Recent years, with the development
of natural language processing, techniques are in-
troduced to aid human expertise (Zhong et al.,
2015; Roose et al., 2018). Li et al.(2013) used
learning agent to discover cognitive model in spe-
cific domains. Chaplot et al.(2018) explored mod-
eling cognitive knowledge in well-defined tasks
with neural models. However, for the most gen-
eral setting that extract cognitive processes from
interviews, we still need substantial expertise to
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interpret the interview transcript.
Procedural extraction. Recent advances in
machine reading comprehension, textual entail-
ment (Devlin et al., 2018) and relation extraction
(Zhang et al., 2017) shows the contemporary NLP
models have the capability of capturing causal re-
lations in some degree. However, it is still an
open problem to extract procedural information
from text. There were some attempts to extract
similar procedural information on well-structured
instructional text from how-to community. Park
and Motahari Nezhad (2018) treated procedural
extraction as a relation extraction problem on sen-
tence pair extracted by pattern matching. They
used OpenIE for pattern extraction and hierarchi-
cal LSTM to classify relation labels of sentence
pairs.
Pre-trained language representations. Recent
researches showed that language models generi-
cally trained on massive corpus is beneficial to var-
ious specific NLP tasks (Pennington et al., 2014;
Devlin et al., 2018). Language representation has
been an active area of research for years. Tons
of effective approaches have been developed from
feature-based approaches (Ando and Zhang, 2005;
Mikolov et al., 2013; Peters et al., 2018) to fine-
tuning approaches (Dai and Le, 2015; Alec Rad-
ford and Sutskever, 2018; Devlin et al., 2018).

3 Framework

Our automated CTA transcript parsing frame-
work takes interview transcripts as input and out-
puts structured knowledge consisting of summary
phrases. The framework, visualized in Fig. 2, in-
cludes two parts: (1) summary text spans extrac-
tion and (2) text span-pair relation extraction. The
extracted knowledge will then be structured using
a flowchart and supports automated CTA.

3.1 Text Spans Extraction

Since CTA interview transcripts are conversational
text while structured knowledge are formed of
summary phrases describing actions in transcripts
(c.f. Fig. 1), we need to first summarize transcript
sentences. An intuitive idea is to first leverage
off-the-shelf text summarization methods (Shen
et al., 2007; Nallapati et al., 2016; Liu et al., 2018).
However, CTA is a low-resource task and thus
we do not have enough training data for learning
seq2seq-based text summarization models. There-
fore, in this work, we formulate the summariza-

tion of transcript sentences as a sequence labeling
task (Liu et al., 2017) and treat the best summa-
rized text span in a transcript sentence as its corre-
sponding summary phrase.

Given a sentence in transcripts, we denote the
sentence as x = {xi} where xi is the token at
position i. The text spans extraction task aims to
obtain the prediction pt representing the summary
text span t of the transcript sentence x using a se-
quence labeling model pt = Ms(x), where t is
a continuous subset of x labeled by pt = {pti}
with IOBES schema. To train the model, we uti-
lize weakly-supervised sequence labels created in
Sec. 4.3.

3.2 Text Span-Pair Relation Extraction
Structural relations between text spans are re-
quired to assemble summary text spans into struc-
tured knowledge. To extract structural informa-
tion, following the previous study (Park and Mo-
tahari Nezhad, 2018), we formalize text span-pair
relation extraction as a sentence pair classification
problem. A directed graph Gt = (T ,Rt) is used
to represent the structured knowledge parsed from
a CTA transcript, consisting of nodes for summary
text spans in the transcript (T = {ti}) and edges
for procedural information (Rt = {(uti,vti, rti)}
where uti,vti ∈ T are summary text spans and
rti is the procedural relation from text span uti

to text span vti). A span-pair RE model rti =
Mr(uti,vti), ∀uti,vti ∈ T is then applied to ex-
tract relations between all summary text spans T
in the transcript. We train the model using the
span-pair RE dataset generated in Sec. 4.4.

To capture the long-range context dependency,
we enrich the text span representation t based on
its surrounding contexts and feed the enhance span
representation tc into the relation extraction model
Mr. Examples are shown in Fig. 3.

3.3 Context-aware Models for Text
Span-Pair Relation Extraction

We apply state-of-the-art models for natural lan-
guage entailment (Talman et al., 2018; Devlin
et al., 2018) to solve the text span-pair relation ex-
traction task as a sentence pair classification prob-
lem. While these models show promising results
on the span-pair RE dataset we generated, they do
not fully exploit all the information of our dataset.
For example, in our dataset, a text span with con-
text information is the combination of matched
text span and its surrounding context sentences
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Figure 3: The construction of text span with context tc. The example shows two text spans with context using
K = 2. Neighbours of text span t are denoted by t+i and t−i, 0 < i <= K

(Fig.3). But in the normal sentence pair classifi-
cation setting, they are concatenated into a single
sequence while its segmentation is ignored. Here,
we explored some variants of the neural model,
to incorporate the context segmentation and po-
sition information with the state-of-the-art model
for sentence pair classification.

Figure 4: Visualization of the hidden state masking.
Hidden states for the context sentences are masked be-
fore pooling.

Hidden states masking. In this model variant
we inject the context segmentation into models
by masking out the final layer hidden states for
the context sentences and aggregate the remaining
hidden states using a pooling function. This struc-
ture enables us to incorporate context segmenta-
tion information without introducing any new pa-
rameters.

Ht = {hi|ti ∈ t}
hMAX = max(Hut ∪Hvt ∪ h[cls] ∪ h[sep]) (1)

hAVG =

∑
Hut +

∑
Hvt + h[cls] + h[sep]

|ut|+ |vt|+ 2
(2)

where {h} are the final layer hidden states, ut,
vt are the two tokenized text spans, t[cls], t[sep] are
the [cls] token and [sep] token (for BERT model),

h[cls], h[sep] are the corresponding hidden states,
respectively.

Import context position as attention. Inspired
by position embedding and position-aware atten-
tion (Zeng et al., 2014; Zhang et al., 2017), we
define two context position sequences [c1, · · · , cn]
and [c′1, · · · , c′n], which correspond to the position
of the two text spans, respectively, that is:

ci =


pi − pt − 1, pi < pt

1 or − 1, pi = pt

pi − pt + 1, pi > pt

(3)

We use pi and pt to denote the position of con-
text and text span in transcript in sentence level.
For i = pt, ci = 1 or −1, depends on whether
the context is on the left or right of the text span.
The two context position sequences are truncated
by a fix length for computational complexity, then
injected into BERT model using position-aware at-
tention (Zhang et al., 2017).

Import context position as input embedding.
Segment embedding is a part of input embedding
designed to import sentence-pair segmentation in-
formation in BERT model. In this model variant
we expand the segment embedding to encode con-
text position sequence above.

4 Dataset Generation

To take advantage of the weak supervision from
protocols, we build a pipeline to generate datasets
for the CTA parsing framework, showed in Fig. 5.

4.1 Protocol Parsing
We use a deterministic finite automation to parse
the protocol into a graph Gp = (P,Rp) describing
protocol phrases represented by nodes (P = {pi}
which denotes all protocol phrases parsed from the
protocol) and procedural relations represented by
edges (Rp = {(upi,vpi, rpi)}, where upi,vpi ∈
P are protocol phrases and rpi is the procedural
relation from phrase upi to phrase vpi).
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Figure 5: The dataset generation pipeline. The pro-
tocol is first parsed into a graph with relations be-
tween protocol phrases (shown as phrase), then match
the protocol phrases with the text spans in transcripts
(shown as span). Finally, sequence labeling dataset
and span-pair RE dataset are created according to the
matches and the relations.

We consider three types of procedural relations
during the parsing: 〈none〉 for no procedural re-
lation between protocol phrases, 〈next〉 for se-
quence, and 〈if〉 for decision branching.

4.2 Text Spans Matching

To enable the abundant information in protocols,
we want to map each phrase in the protocol back to
the nearest textual representation in the transcript.
We can achieve this by using sentence matching
techniques. Following the sequence labeling set-
ting in transcript summarization of our framework,
given a protocol phrase p, we want to find the best
matching text span t in the transcript. The scope
of search is limited to the source lines Lp men-
tioned in the protocol (Fig. 1). Then we extract
all possible text spans {ti} from these sentences
by enumerating all available n-grams and find the
best matching text span tbest for p that maximizes
sentence similarity measureMsim(p, tbest). Fol-

lowing is the overall workflow:

S = {retrieve sentence(`)|` ∈ Lp}
tbest = argmax

t∈S
Msim(p, t)

Msim best = max
t∈S
Msim(p, t) (4)

match =

{
None Msim best ≤ threshold
tbest Msim best > threshold

For the similarity measureMsim, we adopt sen-
tence embedding from different methods (Pen-
nington et al., 2014; Devlin et al., 2018). The sim-
ilarity is calculated by the cosine distance between
two normalized sentence embedding. An empiri-
cal threshold 0.5 is adopted for dropping the pro-
tocol phrases without good matched text span. We
then match the protocol phrases back to the nearest
text span in the transcript.

4.3 Sequence Labeling Dataset

With the matched text spans in the transcript, we
are able to assign labels to every token in the
transcript, denoting whether the token belongs
to a matched text span. We adopt IOBES for-
mat (Ramshaw and Marcus, 1999) as the label-
ing schema for constructing the sequence labeling
dataset. The labeled text spans are semantically
close to the protocol phrases which are abstractive
description of actions, and we can use the labels
to train text spans extraction models (Sec. 3.1) in
a weakly-supervised manner.

4.4 Text Span-Pair Relation Extraction
Dataset

By parsing the protocol we learn the procedural
relations between protocol phrases. Thus we can
apply them to the matched text spans in transcript
to construct the span-pair RE dataset. These rela-
tions serve as weak supervision for the span-pair
RE model (Sec. 3.2). Corresponding to the rela-
tion types parsed from the protocols, the dataset
include three types of label: <none>, <next> and
<if>.

4.5 Human-Annotated Matching Test Set

Since the datasets for CTA transcript parsing
framework are created via matching, we need to
evaluate the performance of our matching meth-
ods. Thus, for testing purpose, we manually anno-
tated the matched text spans in transcript for 138
protocol phrases as the manual matching test set.
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Furthermore, we create two test sets to evaluate
the effectiveness of our approach with the man-
ual matching annotations, which are called man-
ual matching sequence labeling test set and man-
ual matching span-pair RE test set. In compari-
son, we call the test sets generated via text spans
matching as generated sequence labeling test set
and generated span-pair RE test set.

5 Experiments

In this section we evaluate the effectiveness of
our proposed automated CTA transcript parsing
framework and the models. Especially, we run
three sets of experiments: (1) we evaluate our text
spans matching methods with the manual match-
ing test set; (2) we evaluate model performance
on the CTA text spans extraction task with the
sequence labeling dataset; (3) we evaluate model
performance on the CTA span-pair RE task with
the RE dataset.

5.1 Text Spans Matching

Implementation. We enumerate all text spans
with length [2,Kt] within the sentences in tran-
scripts, where Kt = 30 for truncating text spans.
For text spans matching, we try two sentence en-
coding methods to extract sentence embeddings:
(1) average pooling on Glove word embeddings
of words in sentences and text spans (Penning-
ton et al., 2014); (2) extracting features using pre-
trained BERTBASE model and sum up the features
in the last four layers then average over words
in sentences and text spans (Devlin et al., 2018).
Then, we normalize the embeddings and find the
best matching text spans for each protocol phrase
based on cosine similarity. We also provide the ex-
act matching as a baseline, which finds the longest
transcript text span matched by a text span in pro-
tocol phrase.

Encoding Tok. Acc. Tok. F1 Men. Acc.

Exact 70.30 9.44 2.17

Glove-50d 75.40 43.92 37.68
Glove-300d 76.97 45.12 42.03
BERT fea. 75.22 37.20 47.10

Table 1: Matching performance on the manual
matching testset with different sentence encoding,
in token level accuracy and mention level accuracy.
BERT fea. means using features extracted by BERT
model. and Exact is the exact matching baseline

Evaluation. We evaluate the performance of our
text spans matching methods with the manual
matching test set by token level metrics and men-
tion level accuracy, where token level metrics are
normalized by sentence lengths. Results in Ta-
ble 1 show the two methods get acceptable results
while the exact matching baseline has a poor per-
formance in comparison. Glove-300d shows bet-
ter token level accuracy and F1 score while BERT
features have a better mention level accuracy. For
cheaper computation, we use Glove-300d as the
sentence encoding method of matching for the fol-
lowing sections. Please refer to the appendix for
the case study of matching.

5.2 Text Spans Extraction

Models. We conduct the experiments of text spans
extraction using off-the-shelf sequence labeling
models, including CRF (Finkel et al., 2005),
LSTM-CRF (Huang et al., 2015) and LM-LSTM-
CRF (Liu et al., 2017). The models are trained
on the sequence labeling dataset generated by text
spans matching. For comparison, we also imple-
ment a hand-crafted rule extraction baseline with
TokensRegex.
LSTM-CRF and LM-LSTM-CRF. We use LM-
LSTM-CRF2 to conduct our experiments for both
models, with the same setting of 2 layers word
level LSTM, word level hidden size Hw = 300,
SGD with 0.045 learning rate and 0.05 learning
rate decay, and 0.3 dropout ratio. The major dif-
ference between two models is that LM-LSTM-
CRF contains an additional char-level structure
optimized via language model loss.

Model Tok. Acc. Men. P Men. R Men. F1

Rules - 12.7 34.8 18.6

CRF 80.7 38.5 37.9 38.1
LSTM-CRF 75.9 40.4 31.8 35.6

w/ LM16 74.6 31.8 21.2 25.5
w/ LM64 74.8 33.3 18.2 23.5

Table 2: Performance of sequence labeling models,
evaluated on manual matching testset. LM-LSTM-
CRF is shown as w/ LM, with different character level
hidden size.

Evaluation. Results for the text spans extrac-
tion models on manual matching test set are pre-
sented in Table 2, which shows that CRF achieves
the best performance and outperforms the neural

2https://github.com/LiyuanLucasLiu/LM-LSTM-CRF
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models (LSTM-CRF, LM-LSTM-CRF). The LM-
LSTM-CRF which contains character level lan-
guage model is even worse (shown as w/ LM in
table, with different character level hidden size).
One reason could be the neural models require a
large scale dataset to train, while our dataset does
not meet this requirement.

5.3 Text Span-Pair Relation Extraction

Models. For text span-pair relation extraction,
we use the pre-trained BERTBASE model3 (Devlin
et al., 2018) as our backbone model to address
the low-resource issue of our RE dataset gener-
ated from the limited CTA data. On this basis,
we implement model variants of injecting context
information awareness (Sec. 3.3) to utilize the full
information in our dataset, which includes: hidden
states Masking (MaskAVG and MaskMAX), Context
position as Attention (C. Attn.) and Context pos-
tion as input Embedding (C. Emb.). For hidden
states Masking, the different subscriptions repre-
sent different hidden state pooling methods (avg
pooling and max pooling) For the two models us-
ing context position, we empirically use E = 30
as the embedding size and truncate the context po-
sition sequence (Sec. 3.3) by ±10. In addition,
we experiment on the hierarchical BiLSTM model
(Talman et al., 2018) and Piecewise Convolution
Neural Network (Zeng et al., 2015) as the non-
pretrained baseline models in comparison. Results
are aggregated from 5 runs with different initial-
ization seeds for all experiments.

Sampling portion Total <next> <if>

w/o sampling 138670 693 131

6 : 3 : 1 1310 393 131
4 : 2 : 1 917 262 131
1 : 1 : 1 393 131 131

Table 3: Size of span-pair RE dataset, by different
sampling portion <none>:<next>:<if>

Label sampling portion. The generated RE
dataset has three types of label: <none>, <next>
and <if>, with a bias label distribution (Fig. 3,
w/o sampling). To leverage this, we do label sam-
pling on the dataset.
Context level. To capture the long-range context
information useful to the CTA transcript parsing
task, we use text spans with context tc (fig. 3) as

3https://github.com/huggingface/pytorch-pretrained-
BERT

Figure 6: The micro F1 score of models on different
context level K, evaluated on generated test set.

Figure 7: The micro F1 score of models on differ-
ent context level K, evaluated on manual matching test
set.

the input of models. The level of context is con-
trolled by a hyperparameter K (Fig. 3). We exper-
iment our models with different levels of context,
while fixing the label sampling portion (Sec. 5.3)
to <none> : <next> : <if>= 4 : 2 : 1.
Evaluation. The results are available in Table 4,
which shows the model we proposed can outper-
form the baselines (BERT, HBMP, PCNN), and
the model variant MaskMAX reach best perfor-
mance among all variants when using context level
K = 2 and sampling portion = 4 : 2 : 1.
Evaluation on context level. The short version ta-
ble of evaluation results for different context lev-
els are shown in Table 5 and please refer to the
appendix for the full version. The results are visu-
alized in Fig. 7 and Fig. 6. The model MaskMAX
reached the best micro F1 score on the manual
matching test set with context level K = 2 over
all models and K, which shows the effectiveness
of the span-pair RE and the hidden state masking
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Setting Generated Test Set Manual Matching Test Set
Accuracy Micro F1 <next> F1 <if> F1 Accuracy Micro F1 <next> F1 <if> F1

BERT 81.6 ±1.0 70.1 ±1.7 67.9 ±3.2 73.4 ±2.2 77.2 ±2.7 62.2 ±6.1 57.6 ±6.4 72.4 ±10.0
HBMP 76.0 67.4 - - 72.0 63.3 - -
PCNN 58 40 - - 56 43 - -

C. Attn. 82.5 ±1.5 72.2 ±2.6 70.9 ±1.8 74.7 ±4.4 81.2 ±4.7 72.7 ±7.5 68.7 ±9.1 83.3 ±5.5
C. Emb. 82.8 ±1.4 72.7 ±1.9 70.7 ±2.8 76.3 ±2.5 78.8 ±8.5 67.4 ±8.1 66.2 ±9.2 67.5 ±19.4
MaskAVG 80.5 ±2.7 69.0 ±5.7 63.6 ±7.1 77.0 ±4.8 80.4 ±7.1 73.4 ±7.9 71.8 ±9.4 79.2 ±14.5
MaskMAX 82.3 ±1.4 72.6 ±3.0 70.7 ±3.2 76.1 ±3.1 87.6 ±1.5 81.4 ±2.4 80.8 ±1.9 83.3 ±6.8

Table 4: Performance of span-pair RE models, with sampling portion 4 : 2 : 1 and K = 2. Evaluated on
generated test set and manual matching test set.

Setting Generated Test Set Manual Matching Test Set
Accuracy Micro F1 <next> F1 <if> F1 Accuracy Micro F1 <next> F1 <if> F1

BERT K=3 80.2 ±3.2 68.4 ±4.3 64.3 ±6.6 74.6 ±4.3 77.2 ±3.0 63.6 ±5.5 60.9 ±7.2 70.3 ±11.3
BERT K=2 81.6 ±1.0 70.1 ±1.7 67.9 ±3.2 73.4 ±2.2 77.2 ±2.7 62.2 ±6.1 57.6 ±6.4 72.4 ±10.0
BERT K=1 73.5 ±2.7 58.5 ±3.0 57.7 ±4.7 60.0 ±4.0 76.4 ±2.3 60.2 ±6.1 54.5 ±7.0 76.1 ±7.2
BERT K=0 71.9 ±2.6 62.1 ±5.1 58.5 ±6.9 69.0 ±6.9 63.2 ±5.2 50.7 ±6.8 45.3 ±10.2 71.0 ±10.7

MaskMAX K=3 81.8 ±0.9 71.1 ±1.5 68.6 ±1.9 75.3 ±2.2 85.2 ±4.1 78.6 ±4.8 75.6 ±6.1 88.9 ±0.0
MaskMAX K=2 82.3 ±1.4 72.6 ±3.0 70.7 ±3.2 76.1 ±3.1 87.6 ±1.5 81.4 ±2.4 80.8 ±1.9 83.3 ±6.8
MaskMAX K=1 76.3 ±1.3 64.0 ±1.9 58.4 ±3.4 74.2 ±1.6 69.2 ±1.0 53.9 ±1.5 47.6 ±2.5 75.0 ±0.0
MaskMAX K=0 71.9 ±2.7 62.0 ±4.6 55.3 ±7.5 73.9 ±2.9 64.4 ±2.7 52.7 ±4.2 47.6 ±5.6 71.7 ±4.1

Table 5: Performance of span-pair RE models on different context level K, with sampling portion 4 : 2 : 1.
Evaluated on generated test set and manual matching test set.

structure.

Portion Model Micro F1
Generated Manual

6 : 3 : 1 BERT 67.6 ±1.7 69.5 ±4.6
MaskMAX 68.5 ±2.1 71.1 ±9.1

4 : 2 : 1 BERT 68.4 ±4.3 63.6 ±5.5
MaskMAX 71.1 ±1.5 78.6 ±4.8

1 : 1 : 1 BERT 65.4 ±4.9 62.7 ±3.4
MaskMAX 70.3 ±2.9 69.8 ±3.5

Table 6: Performance on text spans relation ex-
traction models on different label sampling settings,
with K = 3. Generated represent the sampled gen-
erated test set follows the sampling portion the model
trained on, while Manual represents the manual match-
ing test set which is fixed to 6 : 3 : 1.

Evaluation on label sampling. We try 3 sampling
settings and find <none>:<next>:<if>= 4 : 2 :
1 shows the best performance on manual matching
test set for most cases (Table 6). Please refer to the
appendix for the full results on label sampling.
Discussion. We have some observations when
looking through the results on manual matching
test set: (1) The model variants injected with con-
text information awareness are more sensitive to
the change of context level K, comparing to the
vanilla BERT model. These variants are outper-

forming the vanilla model when provided with
more context, but would fall behind if provided
with short even no context. (2) Vanilla mod-
els without specific context awareness structures
(BERT, HBMP, PCNN) also gain improvements
from the context on the manual matching test set.
(3) A big gap of <next> F1 score between K = 1
and K = 2 are observed in most of the models.
This is because when K = 1 context only provide
the sentence enclosing the text span, the K = 2
context is providing the last and the next sentence,
which is useful for predicting the <next> relation.

The results on generated test set (Fig.6) is also
interesting, in which the performance is not stably
increased as the K increasing. This may be caused
by the propagation of error from fuzzy matching.
Since there are some error (noisy) samples in the
generated dataset, the models are more likely to
capture the noisy patterns from the noisy samples.
The larger the context is, the more noisy patterns
are contained. Still, changing K from K = 1 to
K = 2 gives noticeable improvement to all mod-
els, especially for the <next> F1 score.

Also, the experiments on label sampling (Table
6, see appendix for the full result) show the perfor-
mance of models are sensitive to sampling portion.
Resampling and reweighting techniques for allevi-
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ating label imbalance could be helpful to address
such problem in future study.

6 Conclusion

In this paper, we explored automated CTA tran-
script parsing, which is a challenging task due to
the lack of direct supervision data and the require-
ment of document level understanding. We pro-
posed a weakly supervised framework to utilize
the full information in data. We noticed the im-
portance of context in the CTA parsing task and
exploited model variants to make use of context
information. Our evaluation on manually labeled
test set shows the effectiveness of our framework.
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# Protocol Phrase Matching status
Matched Text Span

1 with your non-dominant hand over
And now with your non-dominant hand you

2 Pass wire correct
pass wire

3 resistance noisy
-

4 remove the wire by bringing it back into the housing correct
remove the wire , bring it back into the little housing

5 Put syringe back on and confirm that there is still blood flow miss
syringe back on and make sure you still have good flow

6 Remove needle correct
remove your needle

7 leave wire in place correct
Leave the wire in place

8 Make a nick in the skin that is wide enough for the catheter correct
make a nick in the skin wide enough for whatever catheter

9 Pass dilator correct
pass dilator

10 Remove dilator miss
out dilator

11 while holding the wire in place correct
leaving the wire in place , always holding onto the wire

12 Put catheter through the wire correct
putting the catheter through the wire

13 Remove wire correct
remove the wire

14 Check and irrigate all ports wrong
So we have task one , decide on location

15 Lock the catheter correct
lock the catheter

16 attach with Luer-lock wrong
lock the catheter

17 Suture in place wrong
Task five , insert needle

18 Verify placement with x-ray miss
Verify placement with

19 Prepare patient correct
prep the patient

20 self noisy
-

Table 7: Case study for text span matching, using Glove-300d as the sentence encoding method.
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Setting Generated Test Set Manual Matching Test Set
Accuracy Micro F1 <next> F1 <if> F1 Accuracy Micro F1 <next> F1 <if> F1

BERT K=3 80.2 ±3.2 68.4 ±4.3 64.3 ±6.6 74.6 ±4.3 77.2 ±3.0 63.6 ±5.5 60.9 ±7.2 70.3 ±11.3
BERT K=2 81.6 ±1.0 70.1 ±1.7 67.9 ±3.2 73.4 ±2.2 77.2 ±2.7 62.2 ±6.1 57.6 ±6.4 72.4 ±10.0
BERT K=1 73.5 ±2.7 58.5 ±3.0 57.7 ±4.7 60.0 ±4.0 76.4 ±2.3 60.2 ±6.1 54.5 ±7.0 76.1 ±7.2
BERT K=0 71.9 ±2.6 62.1 ±5.1 58.5 ±6.9 69.0 ±6.9 63.2 ±5.2 50.7 ±6.8 45.3 ±10.2 71.0 ±10.7

C. Attn. K=3 80.2 ±3.7 66.9 ±5.6 66.1 ±6.9 68.0 ±5.4 81.6 ±4.1 70.9 ±8.1 67.9 ±10.1 79.8 ±5.1
C. Attn. K=2 82.5 ±1.5 72.2 ±2.6 70.9 ±1.8 74.7 ±4.4 81.2 ±4.7 72.7 ±7.5 68.7 ±9.1 83.3 ±5.5
C. Attn. K=1 75.4 ±2.1 64.0 ±3.8 58.8 ±4.6 73.5 ±2.5 74.0 ±2.5 62.1 ±2.5 53.1 ±4.0 86.6 ±8.6
C. Attn. K=0 67.3 ±3.1 54.0 ±4.6 43.7 ±7.5 72.5 ±2.3 58.8 ±3.7 51.7 ±4.0 43.6 ±2.9 83.3 ±6.8

C. Emb. K=3 79.8 ±2.5 68.8 ±4.0 64.0 ±4.6 76.9 ±3.8 80.4 ±7.1 71.5 ±10.1 68.4 ±9.4 81.2 ±12.6
C. Emb. K=2 82.8 ±1.4 72.7 ±1.9 70.7 ±2.8 76.3 ±2.5 78.8 ±8.5 67.4 ±8.1 66.2 ±9.2 67.5 ±19.4
C. Emb. K=1 76.5 ±2.3 66.4 ±3.5 62.1 ±3.5 74.4 ±5.0 67.6 ±7.7 52.4 ±10.7 43.3 ±11.7 79.8 ±6.4
C. Emb. K=0 77.5 ±1.2 69.3 ±2.9 63.9 ±3.0 78.4 ±6.0 67.6 ±6.6 52.2 ±6.6 40.7 ±5.5 83.7 ±7.2

MaskAVG K=3 81.4 ±1.3 69.9 ±3.4 67.6 ±2.6 73.6 ±6.3 81.6 ±3.2 74.4 ±7.2 71.0 ±8.1 86.1 ±5.6
MaskAVG K=2 80.5 ±2.7 69.0 ±5.7 63.6 ±7.1 77.0 ±4.8 80.4 ±7.1 73.4 ±7.9 71.8 ±9.4 79.2 ±14.5
MaskAVG K=1 74.7 ±1.2 62.1 ±2.1 55.9 ±2.4 73.2 ±2.4 71.2 ±3.2 54.6 ±4.4 46.8 ±5.1 77.8 ±5.6
MaskAVG K=0 67.1 ±2.2 54.6 ±3.2 45.7 ±5.5 71.1 ±2.0 59.2 ±4.1 49.9 ±3.6 42.0 ±4.8 80.6 ±6.8

MaskMAX K=3 81.8 ±0.9 71.1 ±1.5 68.6 ±1.9 75.3 ±2.2 85.2 ±4.1 78.6 ±4.8 75.6 ±6.1 88.9 ±0.0
MaskMAX K=2 82.3 ±1.4 72.6 ±3.0 70.7 ±3.2 76.1 ±3.1 87.6 ±1.5 81.4 ±2.4 80.8 ±1.9 83.3 ±6.8
MaskMAX K=1 76.3 ±1.3 64.0 ±1.9 58.4 ±3.4 74.2 ±1.6 69.2 ±1.0 53.9 ±1.5 47.6 ±2.5 75.0 ±0.0
MaskMAX K=0 71.9 ±2.7 62.0 ±4.6 55.3 ±7.5 73.9 ±2.9 64.4 ±2.7 52.7 ±4.2 47.6 ±5.6 71.7 ±4.1

HBMP K=3 68.0 58.3 - - 74.0 64.8 - -
HBMP K=2 76.0 67.4 - - 72.0 63.3 - -
HBMP K=1 67.0 55.4 - - 60.0 54.5 - -
HBMP K=0 50.0 49.2 - - 50.0 39.6 - -

PCNN K=3 47 31 - - 62 48 - -
PCNN K=2 58 40 - - 56 43 - -
PCNN K=1 44 28 - - 50 28 - -
PCNN K=0 44 29 - - 34 24 - -

Table 8: Performance of text spans relation extraction models on different context level K, with sampling
portion 4 : 2 : 1.

Model Sampled Generated Test Set Manual Matching Test Set
Accuracy Micro F1 <next> F1 <if> F1 Accuracy Micro F1 <next> F1 <if> F1

Sampling portion = 6 : 3 : 1 (1.3k samples)

BERT 79.0 ±1.2 67.6 ±1.7 68.3 ±1.3 65.5 ±3.2 80.0 ±2.5 69.5 ±4.6 72.2 ±1.8 52.0 ±31.1
C. Attn. 75.6 ±2.4 61.4 ±4.0 62.9 ±4.0 57.4 ±6.0 80.4 ±4.3 68.8 ±7.4 66.4 ±8.9 75.2 ±10.4
C. Emb. 77.9 ±1.8 65.7 ±1.2 66.4 ±2.3 64.0 ±4.1 80.8 ±2.0 70.7 ±4.1 70.0 ±5.4 71.8 ±8.8
MaskAVG 79.8 ±1.0 69.1 ±2.4 68.7 ±2.2 70.4 ±3.4 81.6 ±3.4 72.3 ±6.5 69.0 ±6.9 83.3 ±6.8
MaskMAX 80.1 ±0.8 68.5 ±2.1 69.5 ±2.8 65.9 ±1.9 81.6 ±5.0 71.1 ±9.1 66.9 ±11.6 83.3 ±6.8

Sampling portion = 4 : 2 : 1 (0.9k samples)

BERT 80.2 ±3.2 68.4 ±4.3 64.3 ±6.6 74.6 ±4.3 77.2 ±3.0 63.6 ±5.5 60.9 ±7.2 70.3 ±11.3
C. Attn. 80.2 ±3.7 66.9 ±5.6 66.1 ±6.9 68.0 ±5.4 81.6 ±4.1 70.9 ±8.1 67.9 ±10.1 79.8 ±5.1
C. Emb. 79.8 ±2.5 68.8 ±4.0 64.0 ±4.6 76.9 ±3.8 80.4 ±7.1 71.5 ±10.1 68.4 ±9.4 81.2 ±12.6
MaskAVG 81.4 ±1.3 69.9 ±3.4 67.6 ±2.6 73.6 ±6.3 81.6 ±3.2 74.4 ±7.2 71.0 ±8.1 86.1 ±5.6
MaskMAX 81.8 ±0.9 71.1 ±1.5 68.6 ±1.9 75.3 ±2.2 85.2 ±4.1 78.6 ±4.8 75.6 ±6.1 88.9 ±0.0

Sampling portion = 1 : 1 : 1 (0.4k samples)

BERT 64.6 ±4.6 65.4 ±4.9 51.3 ±3.5 79.3 ±6.0 69.6 ±5.6 62.7 ±3.4 54.3 ±3.6 87.3 ±7.3
MaskAVG 64.6 ±2.9 64.2 ±3.4 46.7 ±7.4 79.6 ±1.7 72.8 ±1.6 63.5 ±2.3 57.4 ±2.3 83.6 ±4.4
MaskMAX 68.8 ±3.5 70.3 ±2.9 55.6 ±4.6 83.9 ±1.2 77.6 ±3.2 69.8 ±3.5 63.2 ±2.4 88.4 ±7.6

Table 9: Performance on text spans RE models on different label sampling settings, with K = 3. Sampled
generated test set follows the sampling portion the model trained on while manual matching test set is fixed.


