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Abstract

Neural semantic parsers utilize the encoder-
decoder framework to learn an end-to-end
model for semantic parsing that transduces a
natural language sentence to the formal se-
mantic representation. To keep the model
aware of the underlying grammar in target se-
quences, many constrained decoders were de-
vised in a multi-stage paradigm, which decode
to the sketches or abstract syntax trees first,
and then decode to target semantic tokens.
We instead to propose an adaptive decoding
method to avoid such intermediate represen-
tations. The decoder is guided by model un-
certainty and automatically uses deeper com-
putations when necessary. Thus it can pre-
dict tokens adaptively. Our model outperforms
the state-of-the-art neural models and does not
need any expertise like predefined grammar or
sketches in the meantime.

1 Introduction

Semantic Parsing (SP) maps a natural language
utterance into a formal language, which is cru-
cial in abundant tasks, such as question answering
(Zettlemoyer and Collins, 2005, 2007) and code
generation (Yin and Neubig, 2017). The prevail-
ing neural semantic parsers view semantic pars-
ing as a sequence transduction task, and adopt the
encoder-decoder framework similar to machine
translation.

The distinguishing difference of semantic pars-
ing, however, is in its target sequences, which
are token sequences of well-formed semantic rep-
resentations. SQL language and lambda expres-
sions are typical examples of SP targets. The
“SELECT..FROM..WHERE” pattern in SQL and
the paired parentheses in lambda expressions are
consequences of underlying grammars. However,
standard Seq2Seq models ignore the patterns and
may give ill-formed results.

To better model the grammatical and semanti-
cal constraints, many decoding methods were de-
vised. Dong and Lapata (2018) proposed to gen-
erate tokens of an intermediate sketch first, fol-
lowed by decoding into final formal targets. Oth-
ers chose to gradually build abstract syntax trees
using a transition-based paradigm, and tokens are
generated at the tree leaves or in the middle of
the transitions (Krishnamurthy et al., 2017; Chen
et al., 2018; Yin and Neubig, 2018). There are
also some decoders comprised of several submod-
ules which are intended to generate different parts
of the semantic output, respectively (Yu et al.,
2018a,b). However, the aforementioned methods
still have the following key issue. They explicitly
require the expertise to design intermediate repre-
sentations or model structures, which is not ideal
or acceptable for scenarios with Domain Specific
Languages (DSL) or new representations because
of domain alterations and the incompleteness of
the expert knowledge.

To follow the successful idea and overcome the
above issue, we introduce a novel adaptive decod-
ing mechanism. Inspired by adaptive computing
(Graves, 2016), pervasive tokens in training data
will be generated immediately with no doubt. But
for tokens seen less often, the model may be pon-
dering and less confident, and it will be better to
carry out more computations. In this way, it is
unnecessary to pre-build any intermediate super-
vision for training, such as preprocessed sketches
(Dong and Lapata, 2018) and predesigned gram-
mars (Yin and Neubig, 2018), which must be man-
ually redesigned for an unseen kind of target lan-
guage. Furthermore, we use the model uncertainty
estimates to reflect its prediction confidence. Al-
though different uncertainty estimates have been
explored in semantic parsing (Dong et al., 2018),
we use Dropout (Srivastava et al., 2014) as the un-
certainty signal (Gal and Ghahramani, 2016) due
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to its simplicity, and use policy gradient algorithm
to guide the model search.

Our contributions are thus three-fold.

• We introduce the adaptive decoding mech-
anism into semantic parsing, which is well
rid of intermediate representations and easily
adaptable to new target languages.

• We adopt uncertainty estimates to bias the de-
coder search, which is not covered in archi-
tecture searching literature to our best knowl-
edge.

• Our model outperforms the state-of-the-art
neural models without other intermediate su-
pervisions.

2 Uncertainty-driven Adaptive Decoding
Model

Our semantic parser is learned from pairs of natu-
ral language sentences and formal semantic rep-
resentations. Let x = {x1, x2, . . . , xm} de-
note the words in an input sentence, and y =
{y1, y2, . . . , yn} be the tokens of the correspond-
ing target lambda expression.

2.1 Adaptive Decoding Model

We first introduce the general model for adaptive
decoding. In general, the model consists of an en-
coder, a decoder, a halting module, and the atten-
tion mechanism.

Encoder. Input words x are first embedded us-
ing an embedding matrix Wx ∈ Rd×|Vx|, where d
is the dimension of embedded vectors and Vx is the
set of all input words. We use a stacked two-layer
BiLSTM to encode the input embedding. Hidden
states from both direction at the same position of
the second layer are concatenated as final encoder
outputs {h1, . . . , hm}.

Decoder. We stack two LSTM cells as one ba-
sic decoding unit. Similarlly, we use a matrix to
embed target tokens y, yi = Wyo(yi). The to-
ken embedding will serve the input of the decod-
ing cell.

st = fLSTM

([
yt; c

e
t ; c

d
t ; flag

]
, st−1

)
(1)

where [·; ·] means the concatenation of vectors, cet
and cdt are two attention context vectors described
later, and flag is what we additionally concate-
nated to the input embedding, being either 1 or 0,
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Figure 1: The illustration of our adaptive decoding. At-
tention and pondering mode are only shown at time
t for brevity. Every decoder will go into pondering
mode before the next timestep. The decoder cell is a
stacked two-layer LSTM and initialized by the last for-
ward states of the corresponeding encoder layer.

based on whether the model is acting in ponder-
ing mode or not, which will be introduced later.
We further apply a linear mapping and a softmax
function to the concatenation of st and attention
vectors to obtain the word predicting probabilities.
We greedily decode the tokens at testing time.

Attention. We adopt two types of attention
when decoding. One attends the decoder state
upon encoder outputs and yield the input context
vector cet ,

αe
t = Attn

(
st−1,

[
h
(2)
1 , · · · , h(2)m

])
cet = Softmax(αd

t ) [s1, · · · , st−1] (2)

where [·, ·] means to vector stacking. The other
similarly attends the hidden state to previous de-
coder outputs, yielding the context vector cdt over
the decoding history. We use the bilinear function
for encoder attention Attn(x, y) = xTWy + b,
with trained parameters W and b, and use the
dot production function for decoding history at-
tentions Attn(x, y) = xT y.

Halting and Pondering. The key feature of our
model is to adaptively choose the decoder depth
before predicting tokens. Given the output state st
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from (1), the model goes into the pondering mode.
The output state st is further sent to a halting mod-
ule, which will generate a probability pt positively
correlated with the model uncertainty. We use an
MLP with ReLU and sigmoid activations for the
halting module. Then a choice is sampled from
the Bernoulli distribution determined by pt. If it
chooses to continue, we again use (1) to update the
state, meanwhile using the same embedding yt for
the input.

s
(k)
t = fLSTM

([
yt; c

e
k; cdk; flag

]
, s

(k−1)
t

)
(3)

where s0t = st, flag = 1, and cek, c
d
k are attention

vectors recomputed with s
(k−1)
t using (2). The

model will keep pondering until it chooses to stop
or reaches our limit of k = 3. The final state s(k)t

will act as original st in (1) for other modules.

2.2 Uncertainty Estimates
Since the halting module outputs a Bernoulli dis-
tribution to guide the decoder, we have to pro-
vides some uncertainty quantification for train-
ing. Fortunately, Dropout (Srivastava et al., 2014)
was proved a good uncertainty estimate (Gal and
Ghahramani, 2016). It’s simple and effective that
neither the model nor the optimization algorithm
would need to be changed. We left other estimates
like those proposed in Dong et al. (2018) in future
work.

To estimate uncertainty with Dropout, we leave
the model in training mode and thus the Dropout
enabled. We run the forward pass of the equation
(3) for F times with the same inputs. Output states
are further sent to get token probabilities, q =
{p(ŷt = yt+1 | st) | Θi}Fi=1, where Θi is the set
of all pertubated parameters affected by Dropout
in the ith forward pass. We take the variance of
q to reflect model uncertainty U(st) = Var(q) as
suggested in Gal and Ghahramani (2016). We dis-
able the gradient propagation when computing the
variance such that the gradient-based optimization
is not influenced.

Note that the variance of a set of probabilities
many not be quite large in practice, we thus rescale
the variance to make it more numerically robust
Un(st) = min(γ, Var(q))/γ, where γ = 0.15 in
our case.

2.3 Learning
Our model consists of the Seq2Seq part (en-
coder, decoder, and attention) and the halting mod-

ule. For the former, we minimize the traditional
cross entropy loss with gradient decent, Jent =
E(x,y) log p(y | x).

We use the REINFORCE algorithm to opti-
mize the halting module. The module acts as
our policy network, by which the model consec-
utively make decisions from the action space A =
{Ponder, Stop}. Each time the model make a
choice a ∈ A, the uncertainty of the seq2seq part
is involved in the reward,

R(a | s(k)t )

=


Un(s

(k)
t ) if incorrect & a = 1

1− Un(s
(k)
t ) if correct & a = 0

0 otherwise

(4)

where a = 1 means a Ponder choice and a = 0
the other. We measure the correctness by examin-
ing the greedily decoded token if arg maxy p(y |
skt ) = yt+1. The model will be rewarded for a
Stop action if the prediction is correct, and for a
Ponder action if the prediction is incorrect. This
is similar to the ponder cost of ACT that does not
encourage excessive pondering steps.

3 Experiments

We compare our method with other models on
two datasets. Our codes could be obtained via
https://github.com/zxteloiv/AdaNSP.

3.1 Experimental Setup
Datasets. We use the preprocessed ATIS and Geo-
Query datasets kindly provided by Dong and La-
pata (2018). All natural language sentences are
converted to lower cases and stemmed with NLTK
(Bird et al., 2009). Entity mentions like city codes,
flight numbers are anonymized using numbered
placeholders.

Setups. We choose hyperparameters on the
ATIS dataset with the validation set. For the Geo-
Query dataset that doesn’t come with a validation
set, we randomly shuffle the training set and select
the top 100 records as the validation set, and the
remaining as the new training data. After choosing
the best hyperparameters, we resort back to train
on the original set. The Dropout ratio is selected
from {0.5, 0.6, 0.7, 0.8}, and the embedding di-
mension d is chosen from {64, 128, 256, 512}. We
fix the batch size to 20, and both the encoder and
decoder cell are two stacked LSTM layers. We ap-
ply scheduled sampling (Bengio et al., 2015) with
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the ratio 0.2 during training. We run F = 5 for-
ward passes before computing the variance. We
use Adam (Kingma and Ba, 2015) for the opti-
mizer, and use its default parameters from the pa-
per.

Evaluation. We use the logical form accuracy
as the evaluation metric, which is computed with
parsed trees of the predictions and true labels. Two
trees are considered identical as long as their struc-
tures are the same, i.e., the order to sibling pred-
icates doesn’t matter. We reuse the STree parser
code from Dong and Lapata (2018).

3.2 Results and Analysis

Our model outperforms the other comparative
neural semantic parsers on this two set. We
reuse the data from Dong and Lapata (2018) since
the datasets are identical. Results are listed in
Table 1. Our results are better than the SO-
TAs (Dong and Lapata, 2018; Yin and Neubig,
2018) even without any intermediate representa-
tions, whereas Coarse2fine defines a sketch and
TranX uses ASDL for every type of target se-
mantic sequences. We outperform Coarse2fine by
0.7% and 0.9% on GeoQuery and ATIS datasets
respectively. Although Jia and Liang (2016) has a
slightly better result on GeoQuery, they introduced
a synchronous CFG to learn new and recombi-
nated examples from the training data, which is
a novel method of data augmentation and requires
much human effort for preprocessing. For an abla-
tion test, our degenerated model without the pon-
dering part receives considerable performance de-
creases by 2.8% and 2.9% on GeoQuery and ATIS
datasets respectively.

Model Geo ATIS

ZC07 (Zettlemoyer and Collins, 2007) 86.1 84.6
λ-WASP (Wong and Mooney, 2007) 86.6 -
FUBL (Kwiatkowski et al., 2011) 88.6 82.8
TISP (Zhao and Huang, 2015) 88.9 84.2

Neural network models
Seq2Seq (Dong and Lapata, 2016) 84.6 84.2
Seq2Tree (Dong and Lapata, 2016) 87.1 84.6
JL16 (Jia and Liang, 2016) 89.3 83.3
TranX (Yin and Neubig, 2018) 88.2 86.2
Coarse2fine (Dong and Lapata, 2018) 88.2 87.7

AdaNSP (ours) 88.9 88.6
- halting module 86.1 85.7

Table 1: Results on GeoQuery and ATIS datasets

4 Related Work

Semantic Parsing. CCG or alignment-based
Parsers (Zettlemoyer and Collins, 2005, 2007;
Kwiatkowski et al., 2010; Wong and Mooney,
2006, 2007) try to model the correlation between
semantic tokens and lexical meaning of natural
language sentences. Methods based on depen-
dency trees (Ge and Mooney, 2009; Liang et al.,
2011; Reddy et al., 2016) otherwise convert out-
puts from an existing syntactic parser into seman-
tic representations, which can be easily adopted
in languages with much fewer resources than En-
glish. Recently neural semantic parsers, especially
under the encoder-decoder framework, also sprang
up (Dong and Lapata, 2016, 2018; Jia and Liang,
2016; Xiao et al., 2016). To make the model aware
of the underlying grammar of targets, people try to
exert constraints on the decoder side by sketches,
typing, grammars and runtime execution guides
(Dong and Lapata, 2018; Krishnamurthy et al.,
2017; Groschwitz et al., 2018; Wang et al., 2018).
Moreover, learning algorithms in SP like struc-
tural learning and maximum marginal likelihood
are combined with reinforcement algorithms (Guu
et al., 2017; Iyyer et al., 2017; Misra et al., 2018).

Adaptive Computing. Adaptive Computation
Times (ACT) was first proposed to adaptively
learn the depth of RNN models from data (Graves,
2016). Skip-RNN (Campos et al., 2018) used a
similar idea to equip a skipping mechanism with
existing RNN cells, which adaptively skip some
recurrent blocks along the computational graph
and thus saved many computations. BlockDrop
(Wu et al., 2018) also introduced the REINFORCE
algorithm to jointly learn a dropping policy and
discard some blocks of the ResNet by the policy
network. Recently, Dehghani et al. (2019) pro-
posed Universal Transformers (UT) as an alter-
native form of the vanilla Transformer (Vaswani
et al., 2017). It utilized ACT to control the recur-
rence times of the basic layer blocks (same param-
eters) in UT, instead of stacking different block
layers in the vanilla Transformer. This helped
UT mimic the inductive bias of RNNs and was
shown Turing-completed, and has outperformed
the vanilla Transformer in many tasks.

5 Conclusion

We present the AdaNSP that adaptively searches
the corresponding computation structure of RNNs
for semantic parsing. Our method does not need
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expert knowledge of intermediate structures of
the target sequences, and achieves stronger results
than the existing neural semantic parsers.
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