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Abstract

The common practice in coreference resolu-
tion is to identify and evaluate the maximum
span of mentions. The use of maximum
spans tangles coreference evaluation with the
challenges of mention boundary detection like
prepositional phrase attachment. To address
this problem, minimum spans are manually
annotated in smaller corpora. However, this
additional annotation is costly and therefore,
this solution does not scale to large corpora.
In this paper, we propose the MINA algo-
rithm for automatically extracting minimum
spans to benefit from minimum span evalu-
ation in all corpora. We show that the ex-
tracted minimum spans by MINA are consis-
tent with those that are manually annotated
by experts. Our experiments show that us-
ing minimum spans is in particular impor-
tant in cross-dataset coreference evaluation,
in which detected mention boundaries are
noisier due to domain shift. We have inte-
grated MINA into https://github.com/
ns-moosavi/coval for reporting standard
coreference scores based on both maximum
and automatically detected minimum spans.

1 Introduction

Coreference resolution is the task of finding differ-
ent expressions that refer to the same real-world
entity. Each referring expression is called a men-
tion. The common approach to annotate corefer-
ring mentions is to specify the largest span of each
mention. The problem with using maximum spans
in coreference evaluation is that a single mention
may have different maximum boundaries based on
gold vs. automatically detected syntactic struc-
tures. For instance, variations in prepositional
phrase attachment, which is a known challenge in
syntactic parsing, will lead to different maximum
boundaries for a single mention.

In order to decouple coreference evaluation

from maximum boundary detection complexities,
smaller corpora like MUC (Hirschman and Chin-
chor, 1997), ACE (Mitchell et al., 2002), and AR-
RAU (Uryupina et al., 2016) explicitly annotate
the minimum span as well as the maximum logi-
cal span of each mention. The annotated minimum
spans indicate the minimum strings that a corefer-
ence resolver must identify for the corresponding
mentions. This solution comes with an additional
annotation cost. As a result, the annotation of min-
imum spans has been discarded in larger corpora
like CoNLL-2012 (Pradhan et al., 2012).

In this paper, we propose MINA, a MINimum
span extraction Algorithm that automatically de-
termines minimum spans from constituency-based
parse trees. Based on our analyses, MINA spans
are compatible with those that are manually anno-
tated by experts. By using MINA, we can bene-
fit from minimum span evaluation for all corpora
without introducing additional annotation costs.

While the use of MINA spans already bene-
fits in-domain evaluation, by reducing the gap be-
tween the performance on gold vs. system men-
tions, it has a more significant impact on cross-
dataset evaluation, in which detected maximum
mention boundaries are noisier due to domain
shift.

Cross-dataset coreference evaluation is used to
assess the generalization of coreference resolvers
(Moosavi and Strube, 2017, 2018). Corefer-
ence resolution is a mid-step for text understand-
ing in downstream tasks, e.g., question answer-
ing, text summarization, and information retrieval.
Therefore, generalization is an important prop-
erty for coreference resolvers because downstream
datasets are not necessarily from the same domain
as those of coreference-annotated corpora.

When coreference resolvers are applied to a new
domain, detected maximum boundaries become
noisier, e.g., gold and system mentions differ by

https://github.com/ns-moosavi/coval
https://github.com/ns-moosavi/coval
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the inclusion or exclusion of surrounding com-
mas or quotation marks. Such noisy boundaries
directly affect the coreference evaluation scores
based on maximum spans. The use of minimum
spans reduces the impact of such noises in coref-
erence evaluation and results in more reliable com-
parisons between different coreference resolvers.

2 Boundary Mismatch Example

Example 1, and its corresponding gold and sys-
tem parse trees in Figure 1 and Figure 2, respec-
tively, show a sample boundary mismatch from the
CoNLL-2012 development set. Based on the gold
parse tree (Figure 1), “an extensive presence” is
the maximum span of the first coreferring mention
in Example 1. However, the corresponding max-
imum boundary for this same mention is “an ex-
tensive presence, of course in this country” based
on the system parse tree (Figure 2).

Example 1 This News Corp. has [an extensive
presence]1, of course in this country. [That
presence](1) may be expanding soon.

S

VP

PP

NP

this country

in

PP

NP

course

of

,NP

NP

an extensive presence

has

NP

This News Corp.

Figure 1: Gold parse tree of Example 1.

S

VP

NP

PP

NP

this country

in

NP

PP

NP

course

of

,NP

an extensive presence

has

NP

This News Corp.

Figure 2: System parse tree of Example 1.

A system that uses the system parse tree for
mention detection links “that presence” to “an ex-
tensive presence, of course in this country” and
gets penalized based on recall and precision. This
penalty is the same as that of a system that links
“that presence” to “this News Corp.”. Recall drops
because of not recognizing “an extensive pres-
ence” and precision drops because of detecting a
spurious mention.

3 Background

MINA is an attempt to decouple coreference eval-
uation from parsing errors to some extent. This
motivation is the same as the one that resulted in
the manual annotation of minimum spans in the
MUC, ACE and ARRAU corpora. According to
the MUC task definition,1 the use of minimum
spans in coreference evaluation is as follows:2 As-
sume mmax and mmin are the annotated maxi-
mum and minimum spans for the mention m. The
system mention m̂ is equivalent to m if it includes
mmin and it does not include any tokens beyond
those that are included in mmax. This way of using
minimum spans does not handle inconsistencies in
gold vs. system mention boundaries in which sys-
tem boundaries are larger than their corresponding
gold boundaries, as it is the case for the mention
“an extensive presence, of course in this country”
in Example 1.

Compared to manually annotated minimum
spans:

• MINA is applicable to any English coreference
corpus.3 In contrast, manually annotated min-
imum spans can be only used in their own cor-
pora.

• For coreference evaluation, MINA extracts
minimum spans for both gold and system men-
tions based on a single parse tree. Therefore,
it can handle system-detected maximum spans
that are either shorter or longer than their cor-
responding gold maximum span.

The coreference resolver of Peng et al. (2015)
is developed around the idea that working with
mention heads is more robust compared to work-
ing with maximum mention boundaries. In this
regard, they develop a system that resolves coref-
erence relations based on mention heads. The re-
solved mention heads are then expanded to full
mention boundaries using a separate classifier that
is trained to do so. Peng et al. (2015) also re-
port the evaluation scores using both maximum
mention boundaries and mention heads. Peng
et al. (2015) extract mention heads using Collins’
head finder rules (Collins, 1999). They use gold

1http://www-nlpir.nist.gov/related_
projects/muc/proceedings/co_task.html

2The ARRAU dataset also follows this way of using min-
imum spans.

3We did not have the manually annotated minimum spans
for coreference corpora of other languages in order to verify
whether MINA is also applicable to them.

http://www-nlpir.nist.gov/related_projects/muc/proceedings/co_task.html
http://www-nlpir.nist.gov/related_projects/muc/proceedings/co_task.html
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constituency-based parse trees and gold named en-
tity information. The gold parse information is
only used during training to train their mention
head detection classifier. The gold named entity
information is used to specify the whole span of
named entities as their heads. The reason is that
the head finding rules only specify one word as a
head, and one-word heads can be troublesome for
named entities, e.g., “Green” would be selected as
the head of both “Mary Green” and “John Green”.

In this paper, we also examine the use of head
words as minimum spans. We show that compared
to head words, MINA spans are more compatible
with expert annotated minimum spans.

Since we evaluate minimum spans on various
corpora, from which some do not include gold
named entity information or even gold parse trees,
we only use Collins’ head finder rules, without the
final adjustment for named entities, as the baseline
for minimum span detection.

Collins’ rules for finding the head of a noun
phrase (NP) are as follows:

• If the tag of the last word is POS, return it as
the head,

• else return the first child, from right to left,
with an NN, NNP, NNPS, NNS, NX, POS, or
JJR tag, if there is any,

• else return the first child, from left to right,
with an NP tag, if there is any,

• else return the first child, from right to left,
with one of the $, ADJP, or PRN tags, if there
is any,

• else return the first child, from right to left,
with a CD tag, if there is any,

• else return the first child, from right to left,
with a JJ, JJS, RB, or QP tag, if there is any,

• else return the last word.

For the head finder rules for phrases other than
NPs, please refer to Appendix A of Collins (1999).

4 How to Determine Minimum Spans?

We process the constituency-based parse trees of
mentions, i.e., the parse sub-tree of their corre-
sponding maximum span, in a breadth-first man-
ner to determine minimum spans. Algorithm 1
outlines the minimum span extraction process. In
this algorithm, root is the root of the mention’s
parse tree, tags is the set of acceptable syntactic
tags for extracting minimum spans, min-depth

is the depth of the minimum span nodes in the
parse tree, and min-spans is the output of the
algorithm that corresponds to the set of men-
tion words that belong to the minimum span.
min-depth is initially set to∞, and tags and
min-spans are empty.

Algorithm MINA(root)
min-depth =∞
if tags=∅ then

if root is an NP then
tags= {NP acceptable tags}

else if root is a VP then
tags={VP acceptable tags}

Process root in a breadth-first manner
for each processed node n do

if n.tag 6∈ tags then
skip processing n’s children

else if n is an acceptable terminal node
& n.depth ≤min-depth then

min-spans.add(n)
min-depth = n.depth

Algorithm 1: Extraction of minimum spans.

The set of acceptable terminal nodes in a parse
tree are those that include at least one word other
than a determiner4 or a conjunction5. We do not
further split terminal nodes, e.g., an acceptable ter-
minal node may contain both a determiner as well
as a noun. For extracting the minimum span of a
noun phrase, the set of acceptable syntactic tags
is {“NP” (noun phrase), “NML” (nominal mod-
ifier), “QP” (quantifier phrase used within NP),
“NX” (used within certain complex NPs)}. For
verb phrases, “VP” is the only acceptable tag.
MINA processes the parse tree in a breadth-

first manner. It skips processing sub-trees that are
rooted by a node whose syntactic tag is not ac-
ceptable, e.g., “PP”. For the rest of the nodes, it
extracts all acceptable terminal nodes that have the
shortest distance to root as minimum spans.

For instance, in Figure 3, the root node is an
NP and tag would be set to NP’s acceptable tags.
Therefore, among the children of the root, MINA
would only process the child with an NP tag (the
left child) and skip the one with the PP tag.

If the final minimum span is empty, e.g., if due
to parsing errors the syntactic tag of none of the
tree nodes is among the acceptable tags, we fall
back to using the maximum span.6

4A word with the “DT” POS tag.
5A word with the “CC” POS tag.
6If we use gold parse trees, this happens for 14 mentions

in the CoNLL-2012 development set from which ten are one-
word mentions, e.g., “ours” is detected as “ADJP”.
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MINA extraction examples. Figures 3-6 show
the MINA minimum spans of various noun phrases
with different internal structures. The correspond-
ing MINA spans of the parse trees are boldfaced.

NP

PP

NP

the newspapers

from

PP

NP

the statement

of

NP

a copy

Figure 3: MINA span in an NP with the grammar form
“NP − > NP PP PP”. MINA span is boldfaced.

NP

zoneNML

developmentNML

technologyNML

levelhigh

newNP

Shantou’s

Figure 4: MINA spans in an NP with a nested structure.

NP

NP

PP

NP

the Italian unit

in

NP

a Roman army officer

NP

VP

NP

Cornelius

named

NP

a man

Figure 5: MINA spans in an appositive noun phrase.

NP

NP

Satish Kalpoe

andNP

Deepak Kalpoe

NP

Joran Van Der Sloot

Figure 6: MINA spans in an NP with conjunction.
Boldfaced minimum spans belong to a single mention.

Using MINA for coreference evaluation. For
each coreference evaluation, we have a key file,
including gold coreference annotations, and a sys-
tem file, including predicted coreference outputs.
For coreference evaluation using minimum spans,
we use the provided parse trees in the key file.7

7If the key file does not include parse information, we
parse it with the Stanford parser.

Therefore, the minimum spans of both gold men-
tions and system mentions are determined based
on the same parse tree. We then use minimum
spans instead of maximum spans in all scoring
metrics, i.e., a gold and a system mention are con-
sidered equivalent if they have the same minimum
span.

The corresponding sub-trees of the discussed
gold and system mentions of Example 1, based
on the gold parse tree in Figure 1, are shown in
Figure 7.8 The MINA span of both of these two
trees is “an extensive presence”. Therefore, the
gold coreference chain {“an extensive presence”,
“that presence”} and the system coreference chain
{“an extensive presence, of course in this coun-
try”, “that presence”} are equivalent if they are
evaluated based on minimum spans.

NP

NP

an extensive presence

X

PP

NP

this country

in

PP

NP

course

of

,NP

NP

an extensive presence

Figure 7: Mention trees of Example 1. The left and
right sub-trees represent the boundaries of gold and
system mentions, respectively.

5 Evaluating MINA Spans

In order to analyze the detected MINA spans, we
evaluate the following two properties:

• Length of MINA spans: since we retrieve
MINA spans from the corresponding parse tree
of the mentions, MINA spans are always a
subset of their corresponding maximum span
words. However, on average, the length of
minimum spans (number of containing words)
should be smaller than that of maximum spans.

• Compatibility of automatically extracted min-
imum spans with those that are manually an-
notated by experts: we evaluate MINA spans
against manually annotated minimum spans,
called MIN, in the MUC and ARRAU cor-
pora to examine whether the reduced spans
still contain words of the mention that were
deemed important by experts.

For the experiments of this section, we use
the MUC-6, MUC-7, ARRAU, and CoNLL-2012

8If the boundary of a mention is not recognized as a sin-
gle phrase in the parse tree, as it is the case for the system
mention, we add a dummy root (“X” in the right subtree of
Figure 7) to include the whole span into a single phrase.
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corpora, from which MUC and ARRAU contain
manually annotated minimum spans. We use the
Stanford neural constituency parser (Socher et al.,
2013) for getting system parse trees, unless oth-
erwise stated. For the ARRAU corpus, we use
mentions of the training split of the RST Discourse
Treebank subpart.

As a baseline, we also evaluate the syntactic
head of mentions, based on Collins’ rules, as the
minimum span.9

How does the length of evaluated spans change
by using MINA? Table 1 shows the average
length of maximum spans vs. that of MINA spans
on the training splits of the MUC-6, MUC-7 and
ARRAU corpora as well as the development set
of the CoNLL-2012 dataset. For the CoNLL-2012
dataset, we use the provided gold parse informa-
tion. We parse the MUC and ARRAU datasets,
since the gold parse information is not available
for these datasets.

Based on Collins’ head finder rules, the detected
head always includes one word.

MUC-6 MUC-7 ARRAU CoNLL
maximum span 5.2 5.3 3.8 2.4

MINA span 2.6 2.7 2.0 1.6

Table 1: The average length of MINA spans compared
to that of maximum spans in the MUC, ARRAU, and
CoNLL-2012 datasets.

Figure 8 shows the number of mentions with the
length of one, two, three, and ≥4 based on both
maximum and MINA spans on the CoNLL-2012
development set. The length of the maximum span
of around 14% of mentions is longer than three,
while this ratio is only 4% for MINA minimum
spans. Mentions with long MINA spans include
appositions or conjunctions, e.g., the MINA span
in Figure 6.

Does MINA correlate with MIN? We evaluate
MINAminimum spans against manually annotated
minimum spans in the MUC and ARRAU corpora.
The manually annotated minimum span in these
corpora is referred to as MIN.

Table 2 shows the ratio of minimum spans that
contain the corresponding MIN when the mini-
mum span is extracted by MINA and the head find-
ing rules. As we can see, MINA contains MIN in

9We use the implementation of the head-finding rules that
is available at https://github.com/smartschat/
cort/.

1 2 3 more

0

0.5

1

·104

Span length

C
ou

nt

max-span min-span

Figure 8: Span length based on maximum vs. MINA’s
minimum spans on the CoNLL-2012 development set.

the majority of the mentions, and therefore, it is
compatible with what experts would consider as
the most important part of the mentions.

MUC-6 MUC-7 ARRAU
MINA 96.2 93.1 98.3

head 94.0 91.1 93.9

Table 2: Ratio of detected MINA and head words which
contain the corresponding MIN annotations in the MUC
and ARRAU corpora. The same parse information is
used for detecting both MINA and head words. Datasets
are parsed using the Stanford neural parser.

Figure 9 shows an example from ARRAU in
which MINA contains MIN but the head does not.

NP

companiesUCP

airlineandchemicaloil,

many big

Figure 9: System parse tree of a mention from AR-
RAU. MINA spans are boldfaced. “many” and “com-
panies” are the corresponding MIN and head, respec-
tively.

MINA and MIN inconsistencies, i.e., cases in
which MINA does not contain MIN, are mainly
due to parsing errors. Figure 10 and Figure 11
show two examples from the MUC and ARRAU
datasets in which MINA selects an incorrect mini-
mum span because of an incorrect parse tree.

Figure 12 shows two sample mismatch exam-
ples between MINA and MIN from the ARRAU

https://github.com/smartschat/cort/
https://github.com/smartschat/cort/
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S

VP

NP

flight attendantsQP

more than 10000

’s

NP

American

Figure 10: The system parse tree of a mention from
MUC-6. MINA spans are boldfaced (“American”). “at-
tendants” is the annotated MIN.

NP

SBAR

WHNP

PP

NP

January 1987

since

NP

time

NP

the first

Figure 11: The system parse tree of a mention
from ARRAU. MINA spans are boldfaced (“the first”).
“time” is the annotated MIN.

dataset, in which the mismatch is not due to pars-
ing errors.

NP

PP

NP

NP

securitiesmarketable

andNP

cash

in

QP

268 million

NP

PP

NP

cash

in

NP

QP

329 million

Figure 12: The system parse trees of two mentions
from ARRAU. MINA spans are boldfaced. “securities”
and “cash” are annotated as MIN for the left and right
mentions, respectively.

In order to investigate the effect of using a dif-
ferent parser, we perform the experiment of Ta-
ble 2 using the Stanford English PCFG parser
(Klein and Manning, 2003). The results are re-
ported in Table 3. As we see, the use of a bet-
ter parser, i.e., the Stanford neural parser, makes
MINA spans, as well as detected heads, more con-
sistent compared to MIN spans.

In addition to the above two properties, i.e. the
length of minimum spans and their consistency
with MIN annotations, we also check that MINA

MUC-6 MUC-7 ARRAU
MINA 95.6 92.4 98.1

head 92.9 90.0 93.4

Table 3: Ratio of the detected MINA and head words
that contain their corresponding MIN annotations in
MUC and ARRAU. MINA and head words are detected
using the parse trees of the Stanford PCFG parser.

returns different minimum spans for distinct over-
lapping mentions.

As an example, the minimum span of the men-
tion “John and Mary” should be different from
those of “John” and “Mary”, because they all refer
to different entities. In this regard, we examine all
overlapping coreferent mentions in the CoNLL-
2012 English development set, from which none
of the overlapping mentions has the same MINA
span. However, this is not the case for heads.

6 Effect on Coreference Evaluation

6.1 Experimental Setup

In this section, we investigate how the use of min-
imum spans instead of maximum spans in coref-
erence evaluation affects the results in in-domain
as well as cross-dataset evaluations. For compar-
isons, we use the CoNLL score (Pradhan et al.,
2014), i.e. the average F1 value of MUC (Vilain
et al., 1995), B3 (Bagga and Baldwin, 1998), and
CEAFe (Luo, 2005), and the LEA F1 (Moosavi
and Strube, 2016) score.10 Minimum spans are
detected using both MINA and Collins’ head find-
ing rules. All examined coreference resolvers are
trained on the CoNLL-2012 training data. For in-
domain evaluations, models are evaluated on the
CoNLL-2012 test data and minimum spans are ex-
tracted using gold parse trees, which are provided
in CoNLL-2012.11

For cross-dataset evaluations, models are tested
on the WikiCoref dataset (Ghaddar and Langlais,
2016). For extracting minimum spans, we parse
WikiCoref by the Stanford neural parser. This
dataset is annotated using the same annotation
guidelines as that of CoNLL-2012, however, it
contains documents from a different domain.

10We use the python implementation that is available at
https://github.com/ns-moosavi/coval.

11We also examined the in-domain results of Table 4 based
on the system parse trees of CoNLL-2012 instead of gold
parse trees. The differences between scores based on MINA
spans that are extracted from gold vs. those that are extracted
from system parse trees were only about 0.2 points.

https://github.com/ns-moosavi/coval
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CoNLL LEA
max MINA head max MINA head

CoNLL-2012 test set
Stanford rule-based 55.60 (8) 57.55 (8) 57.38 (8) 47.31 (8) 49.65 (8) 49.44 (8)
cort 63.03 (7) 64.60 (6) 64.51 (6) 56.10 (6) 58.05 (6) 57.93 (6)
Peng et al. 63.05 (6) 63.50 (7) 63.54 (7) 55.22 (7) 55.76 (7) 55.80 (7)
deep-coref ranking 65.59 (5) 67.29 (5) 67.09 (5) 59.58 (5) 61.70 (5) 61.43 (5)
deep-coref RL 65.81 (4) 67.50 (4) 67.36 (4) 59.76 (4) 61.84 (4) 61.64 (4)
Lee et al. 2017 single 67.23 (3) 68.55 (3) 68.53 (3) 61.24 (3) 62.87 (3) 62.82 (3)
Lee et al. 2017 ensemble 68.87 (2) 70.12 (2) 70.05 (2) 63.19 (2) 64.76 (2) 64.64 (2)
Lee et al. 2018 72.96 (1) 74.26 (1) 75.29 (1) 67.73 (1) 69.32 (1) 70.40 (1)

WikiCoref
Stanford rule-based 51.78 (4) 53.79 (5) 57.10 (4) 43.28 (5) 45.48 (6) 49.28 (4)
deep-coref ranking 52.90 (3) 55.16 (2) 57.13 (3) 44.40 (3) 46.98 (3) 49.05 (5)
deep-coref RL 50.73 (5) 54.26 (4) 57.16 (2) 41.98 (6) 46.02 (4) 49.29 (3)
Lee et al. 2017 single 50.38 (6) 52.16 (6) 54.02 (6) 43.86 (4) 45.75 (5) 47.69 (6)
Lee et al. 2017 ensemble 53.63 (2) 55.03 (3) 56.80 (5) 47.50 (2) 48.98 (2) 50.87 (2)
Lee et al. 2018 57.89 (1) 59.90 (1) 61.33 (1) 52.42 (1) 54.63 (1) 56.19 (1)

Table 4: Evaluations based on maximum span, MINA, and head spans on the CoNLL-2012 test set and WikiCoref.
The ranking of corresponding scores is specified in parentheses. Rankings which are different based on maximum
vs. MINA spans are highlighted.

CoNLL-2012 contains the newswire, broadcast
news, broadcast conversation, telephone conversa-
tion, magazine, weblogs, and Bible genres while
the annotated documents in WikiCoref are se-
lected from Wikipedia.

6.2 Results
Table 4 shows the maximum vs. minimum span
evaluations of several recent coreference resolvers
on the CoNLL-2012 test set and the WikiCoref
dataset. The examined coreference resolvers are
as follows: the Stanford rule-based system (Lee
et al., 2013), the coreference resolver of Peng et al.
(2015), the ranking model of cort (Martschat
and Strube, 2015), the ranking and reinforce-
ment learning models of deep-coref (Clark
and Manning, 2016a,b), the single and ensemble
models of Lee et al. (2017), and the current state-
of-the-art system by Lee et al. (2018).

We make the following observations based on
the results of Table 4:

Using minimum spans in coreference evalua-
tion strongly affects the comparisons in the
cross-dataset setting. The results on the Wiki-
Coref dataset show that mention boundary detec-
tion errors specifically affect coreference scores
in cross-dataset evaluations. The ranking of sys-
tems is very different by using maximum vs. min-

imum spans. The reinforcement learning model of
deep-coref, i.e., deep-coref RL, has the
most significant difference when it is evaluated
based on maximum vs. minimum spans (about 4
points). The ensemble model of e2e-coref,
on the other hand, has the least difference be-
tween maximum and minimum span scores (1.4
points), which indicates it better recognizes maxi-
mum span boundaries in out-of-domain data.

Using minimum spans in coreference evalua-
tion reduces the gap between the performance
on gold vs. system mentions. It is shown that
there is a large gap between the performance of a
coreference resolver on gold vs. system mentions,
see e.g., Peng et al. (2015). The use of minimum
spans in coreference evaluation reduces this gap
by about two points. The comparison of the results
of different systems on gold and system mentions
using both maximum and minimum spans are in-
cluded in Appendix A.

Evaluation based on minimum spans reduces
the differences that are merely due to better
maximum boundary detection. The corefer-
ence resolver of Peng et al. (2015) has the small-
est difference between its maximum and mini-
mum span evaluation scores. This result indicates
the superiority of Peng et al. (2015)’s mention
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boundary detection method compared to other ap-
proaches.12 Based on maximum spans, Peng et al.
(2015) performs on-par with cort while cort
outperforms it by about one percent when they are
evaluated based on minimum spans. Therefore,
the use of minimum spans in coreference evalua-
tion decreases the effect of mention boundary de-
tection errors in coreference evaluation and results
in fairer comparisons.

7 Analysis

In order to better understand the impact of us-
ing minimum spans in cross-dataset evaluations,
we analyze the output of deep-coref RL, on
which minimum span evaluation has the largest
impact, for the cases in which a system mention
and its corresponding gold mention have the same
minimum span while they have different maxi-
mum boundaries.

We have included some examples from these
mismatches in Example 2–Example 6. The bound-
aries of gold and system mentions are determined
by g and s indices, respectively. Mismatching
spans are boldfaced in all examples.

We observe that the majority of the mismatches
are due to (1) incorrect detection of appositive re-
lation (Example 2), (2) mismatch as a result of not
including a surrounding quotation (Example 5),
and (3) inclusion of an additional comma at the
end of the mention (Example 3).

Example 2 Canada is noted for having a positive
relationship with [[the Netherlands]g, owing,]s in
part, to its contribution to the Dutch liberation
during World War II.

Example 3 .[[Le Courrier du Sud]g,]s published
by Quebecor Media, is the oldest, and contains in-
serts tailored to specific boroughs

Example 4 in 2007, [[Pierce College]g
sheltered]s and fed more than 150 horses
under the direction of the L.A. County Volunteer
Equine Response team.

Example 5 Prime Minister Brian Mulroney’s
Progressive Conservatives abolished the NEP and
changed the name of FIRA to [“[Investment
Canada]s”]g, to encourage foreign investment.

Example 6 In 2011, [snearly 6.8 million
[gCanadians]] listed a non-official language as
their mother tongue.

12It has a separate classifier for detecting maximum bound-
aries based on mention heads.

8 Conclusions

Coreference evaluation based on maximum spans
directly penalizes coreference resolvers because of
parsing complexities and also small noises in men-
tion boundary detection. This is a known prob-
lem that is addressed by manually annotating min-
imum spans as well as maximum spans in sev-
eral corpora. Minimum span annotation is ex-
pensive, and therefore it is not a scalable solu-
tion for large coreference corpora. In this paper,
we propose the MINA algorithm to automatically
extract minimum spans without introducing addi-
tional annotation costs. MINA automatically ex-
tracts corresponding minimum spans for both gold
and system mentions and uses the resulting min-
imum spans in the standard evaluation metrics.
Based on our analysis on the MUC and ARRAU
datasets, extracted minimum spans are compatible
with those that are manually annotated by experts.
The incorporation of automatically extracted mini-
mum spans reduces the effect of maximum bound-
ary detection errors in coreference evaluation and
results in a fairer comparison. Our results show
that the use of minimum spans in coreference eval-
uation is of particular importance for cross-dataset
settings, in which the detected maximum bound-
aries are noisier.

In addition to coreference evaluation, automati-
cally extracted minimum spans can benefit the an-
notation process of new corpora. If we provide
automatically extracted minimum spans alongside
maximum spans to the annotators, the annotation
of coreference relations may get easier. For in-
stance, detecting the coreference relation of the
two nested mentions in “[a deutsche mark based
currency board where we have a foreign governor
on [the board](1)](1)”13 would be more straightfor-
ward knowing that the minimum span of the first
mention is “a currency board”.

A future direction is to investigate the effect of
using MINA spans not only in evaluation but also
for training existing coreference resolvers. Maxi-
mum spans are recoverable given the MINA spans
and their corresponding parse trees. Therefore, we
can use MINA spans for training and testing coref-
erence models and then retrieve their correspond-
ing maximum spans for evaluation. Investigating
the use of MINA in other NLP areas, e.g., evalu-
ating spans in named entity recognition or reading
comprehension, is another future line of work.

13Taken from the CoNLL-2012 development set.
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CoNLL LEA
max MINA head max MINA head

fernandes 60.6 (1) 62.2 (1) 63.9 53.3 55.1 57.0
martschat 57.7 (2) 59.7 (2) 61.0 50.0 52.4 53.9
bjorkelund 57.4 (3) 58.9 (3) 60.7 50.0 51.6 53.6
chang 56.1 (4) 58.0 (4) 59.6 48.5 50.7 52.5
chen 54.5 (5) 56.5 (5) 58.2 46.2 48.6 50.4
chunyuang 54.2 (6) 56.1 (6) 57.9 45.8 48.1 50.2
shou 53.0 (7) 54.8 (8) 56.5 44.0 46.1 48.1
yuan 52.9 (8) 54.9 (7) 56.7 44.8 47.0 48.9
xu 52.6 (9) 53.9 (9) 55.2 46.8 48.4 50.0
uryupina 50.0 (10) 51.0 (11) 52.4 41.2 42.3 43.7
songyang 49.4 (11) 51.3 (10) 52.9 41.3 43.5 45.3

Table 5: CoNLL-2012 shared task systems evaluations based on maximum spans, MINA spans, and head words.
The rankings based on the CoNLL scores are included in parentheses for maximum and MINA spans. Rankings
which are different based on maximum vs. MINA spans are highlighted.

CoNLL LEA
max MINA head max MINA head

fernandes 69.4 69.4 69.8 56.1 56.1 56.1
bjorkelund 68.0 68.0 68.1 61.1 61.1 61.1
chang 77.2 77.2 77.2 67.9 67.9 67.6
chen 71.3 71.3 71.4 63.9 63.9 63.9
yuan 70.4 70.4 70.4 63.4 63.4 63.4
xu 61.0 61.0 61.2 56.9 56.9 57.1

Table 6: CoNLL-2012 shared task systems evaluations using gold mentions.


