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Abstract

Most current NLP systems have little knowl-
edge about quantitative attributes of objects
and events. We propose an unsupervised
method for collecting quantitative information
from large amounts of web data, and use it to
create a new, very large resource consisting of
distributions over physical quantities associ-
ated with objects, adjectives, and verbs which
we call Distribution over Quantities (DOQ)1.
This contrasts with recent work in this area
which has focused on making only relative
comparisons such as “Is a lion bigger than a
wolf?”. Our evaluation shows that DOQ com-
pares favorably with state of the art results on
existing datasets for relative comparisons of
nouns and adjectives, and on a new dataset we
introduce.

1 Introduction

How much does a lion weigh? How tall can
they be? When do people typically eat break-
fast? And, how long are concerts? Most peo-
ple would know at least an approximate answer
to these questions, many of which fall under the
(somewhat ill-defined) notion of commonsense
knowledge, and some (but certainly not all) of
which exist in resources such as Wikipedia, or in
knowledge graphs like Freebase (Bollacker et al.,
2008). Natural Language Understanding systems
should also know (at least approximately) the an-
swers to these questions, to better support Ques-
tion Answering and Textual Entailment (Dagan

∗Work carried out during an internship at Google.
†Work carried out during employment at Google.

1The resource is available at https://
github.com/google-research-datasets/
distribution-over-quantities
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(a) Mass distributions for multiple animals.
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(b) Typical hours for different meals of the day.

Figure 1: Examples of different objects from DOQ in
the MASS and TIME dimensions.

et al., 2013) and, more generally, in order to sup-
port reasoning about events described in natural
language and converse with people naturally.

Acquiring commonsense knowledge from natu-
ral language text has been the subject of a lot of
recent work. These approaches focus on facili-
tating comparisons between quantitative attributes
of nouns (Bagherinezhad et al., 2016; Forbes and

https://github.com/google-research-datasets/distribution-over-quantities
https://github.com/google-research-datasets/distribution-over-quantities
https://github.com/google-research-datasets/distribution-over-quantities
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Choi, 2017; Yang et al., 2018), intensity of ad-
jectives (De Melo and Bansal, 2013; Cocos et al.,
2018) and coarse classification of events duration
and relative order (Gusev et al., 2011; Ning et al.,
2018). However, they do not have complete cover-
age even for comparable objects, as a result of how
they are acquired, and lack the ability to assign a
numerical value to objects and events (“How hot
is it in New York?”), which is often useful for rea-
soning, text generation, and other tasks.

In this work, we propose a method for acquir-
ing distributions over ten dimensions: TIME, CUR-
RENCY, LENGTH, AREA, VOLUME, MASS, TEM-
PERATURE, DURATION, SPEED, and VOLTAGE.
We do this for nouns (e.g. elephant, airplane, NBA
game), adjectives (e.g. cold, hot, lukewarm) and
verbs (e.g. eating, walking, running). This results
in a large resource we call Distribution over Quan-
tities (DOQ) – over 350K triples each observed
over 1000 times. Examples of entries in DOQ de-
picting MASS and TIME distributions are shown in
Figures 1a and 1b.2

We develop DOQ by extracting and aggregating
quantitative information from the web, in English,
and collecting co-occurring objects from their sur-
roundings. The quantitative information is nor-
malized and associated with units to determine
the relevant dimensions such as TEMPERATURE or
MASS. As we show, despite the inherent noise in
such an acquisition process due to extraction er-
rors and reporting bias (Gordon and Van Durme,
2013), rather simple denoising methods result in a
relatively clean resource, with very high coverage
and good accuracy.

DOQ is significantly more comprehensive and
accurate than any other related resource we know
of. For each term, and each of its relevant dimen-
sions we collected the actual numerical values as-
sociated with this pair. This gives us expressive
distributional information about range, mean, me-
dian and other statistics. Moreover, since our re-
source is collected using only a few rules for de-
tecting quantities and converting units, it can be
extended to other languages easily.

We evaluate DOQ on several existing datasets
and show that it compares favorably with exist-
ing methods that require more resources and have
less coverage. In particular, we identify and cor-
rect problems with some of the existing datasets

2The violin plots along the paper describe the probability
density of the collected distribution at different values.

resulting in new, cleaner, evaluation datasets.
Overall, we make the following contributions:

1. A new method for collecting expressive
quantitative information about objects.

2. A large resource of distributions over quan-
titative attributes of nouns, adjectives, and
verbs.

3. Strong results on existing datasets for noun
and adjective comparison, refining and im-
proving an existing dataset, and creating a
new dataset for evaluating noun comparisons.

2 Related Work

There has been a lot of work trying to use Hearst-
style patterns (Hearst, 1992) to extract relations
between objects in large corpora (Tandon et al.,
2014; Shivade et al., 2016). For example, from the
sentence: “Melons are bigger than apples” they
extract the relation: ‘Melons’ > ‘apples’. These
methods suffer from reporting bias and low cov-
erage, since the precise patterns need to be found
to make these inferences. Our method, which re-
lies on co-occurring objects, is robust to this issue.
Pattern-based methods were also used in the con-
text of OpenIE, e.g., to extract event duration in-
formation (Gusev et al., 2011; Kozareva and Hovy,
2011), but were found to be highly brittle due
to the dependence on finding specific pre-defined
patterns.

There is a line of work (Forbes and Choi, 2017;
Yang et al., 2018) to determine the quantitative re-
lation between two nouns on a specific scale. For
adjectives (De Melo and Bansal, 2013; Kim and
de Marneffe, 2013; Shivade et al., 2015; Cocos
et al., 2018), comparisons were made only for rel-
ative intensities, i.e. ‘freezing’ < ‘cold’. In con-
trast, we infer magnitudes as well, which make us
robust to comparisons between different polarities
of the same cluster (e.g. ‘hot’ vs. ‘cold’).

Spithourakis and Riedel (2018) propose several
methods to represent numbers in language models
(LMs) instead of using an out-of-vocabulary to-
ken, giving the LM more expressive ability to pro-
duce numbers. Spithourakis et al. (2016) showed
that conditioning on numerical values in the LM
can improve the consistency of the modeling for
clinical reports. When using it along with a scorer
for Semantic Error Correction (Dahlmeier and Ng,
2011), it makes more grounded suggestions, with
realistic estimates of different measurements.
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Figure 2: Car modifiers: Speed of cars, sidelong by dif-
ferent modifiers, which shift the cars speed distribution.
Interesting to point out the high distribution of “slowest
car” phrase (See the bias discussion in Sec. 6).

Our work overlaps with a number of approaches
to ground textual objects by: achieving a common-
sense understanding of numeric expressions (Cha-
ganty and Liang, 2016), grounding adjectives into
RGB colors (Winn and Muresan, 2018), ground-
ing events duration (Pan et al., 2006; Gusev et al.,
2011) and measurements’ intensity within a given
context (Narisawa et al., 2013).

Finally, our resource collection is in the line of
work that uses counting across very large amounts
of data (such as n-grams from books) to produce
big resources (Lin et al., 2012; Goldberg and Or-
want, 2013), which have had a significant impact
on NLP Research.

3 Distribution over Quantities: Method

We propose a process for automatically extracting
co-occurrences of objects and measurements from
a large text corpus. Examples of the resulting out-
put are the mass distributions of animals in Fig-
ure 1a, typical meal hours in Figure 1b and the car
modifiers in Figure 2.

We first use a rule-based method for detect-
ing and normalizing measurement mentions (Sec.
3.1). We then aggregate the detected measure-
ments and objects that occurred in the nearby con-
text (Sec. 3.2) and describe some simple heuristics
for improving the resource accuracy (Sec. 3.3).
Finally, Sec. 3.4 describes the resource produced
in this process.

We note that the resource was built with the aim
of keeping it as simple as possible, to test how ac-
curate a simple approach can be. We believe it
reflects the potential of transferring the process to
other languages, where NLP resources are more

sparse.

3.1 Measurement Identification and
Normalization

Measurement identification uses a simple context-
free grammar along with a mapping from units to
dimensions. Thus, we know that ‘inch’ is a unit
in the LENGTH domain which is equal to 0.02524
meters, and that “acre foot” is a unit of VOLUME

equal to 1233.48 standard units (here, cubic me-
ters). Similar tables express SPEED in meters per
second and TEMPERATURE in degree Kelvin.

If the unit is not expressed explicitly or rec-
ognized by the parser (for example, in the sen-
tence “New York was a scorching 110”), we do
not extract anything. There are occasional mis-
parses caused by typographic shortcuts, such as
“17 C” where Centigrade is meant, but is parsed
as Coulombs. These show up as loss in coverage
for us, since we deal with a limited set of dimen-
sions in which charge is not included.

3.2 Object Collection
Object Extraction The main objects used in
this work are 1-token words that are either nouns,
adjectives or verbs. We also consider more com-
plex phrases of these types (e.g. noun phrases).
The complex phrases are collected enforcing mini-
mum phrase spans. This way, for example, we col-
lected the phrase “race car” and are able to com-
pare its distribution to that of “electric car”.

Object Head Along with each collected object,
we also retrieve its syntactic head. For example, in
the sentence: “The fast car was driving 50 miles
per hour”, collecting the adjective ‘fast’ will also
capture ‘car’ as its head. With this information
we are able to compare a “fast car” to a ‘car’. We
note that this process is not possible for all lan-
guages and may result in less accurate extraction
depending on the parser accuracy. Nonetheless,
this phase is optional as it only adds the ability to
compare more complex phrases and modifiers. A
lot of information can still be collected without it.

Aggregation After identifying measurements in
the sentence, we collect the objects that co-occur
with these measurements within a certain con-
text window. Using a bigger context size, we
get broader coverage but also fewer occurrences.
When reducing the context size, we get a sparser
resource, but better attribution accuracy. More so-
phisticated collection methods are possible (e.g.
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measuring parse-tree distances), but are left for fu-
ture work.

Running the Entire Process We created the
DOQ resource using the Flume framework
(Chambers et al., 2010), to quickly processes
billions of English webpages in parallel. First,
we identified and normalized measurements
(Sec. 3.1). Then, these sentences were parsed
for POS tags and dependency trees (Andor et al.,
2016) and the relevant objects gathered by iden-
tifying co-occurences (within sentence or dis-
tance threshold). The following step aggregated
all of the objects with the same object-head-
measurement tuple, creating a distribution of num-
bers (Sec. 3.2).

3.3 De-noising

The output of the described resource collection
process is, as expected, quite noisy. It assumes
a very simplified model of language, where co-
occurring objects and numerical measurement are
assumed equivalent to attribution, ignoring nega-
tions and reporting bias (Gordon and Van Durme,
2013). To address this, we employ de-noising fil-
ters focused on increasing precision. We get a
cleaner resource at the expense of coverage, which
is still valuable due to the high volume of data
used.

Distance Based Co-Occurrences When aggre-
gating co-occurrences, we also record the token
distance between the measurement and the ob-
ject. This can be a good indication of the degree
of relatedness of a word to its surroundings. We
used two context distances in our experiments: (1)
co-occurrence within the same sentence, (2) co-
occurrence within a token distance k.3 In our ex-
periments, we explore the effectiveness of the re-
source with different distance thresholds.

Negation Negations can affect the precision of
the resource and contribute a lot to the distribution
tails, as in: “The dimension of the car is not 50cm.”
We decided to simply discard all measurements
that appear in the same sentence with a negation
word.4

3In practice, we use k = 3, 10.
4Specifically, we used the following negation words:

‘not’, ‘no’, ‘without’, ‘neither’ and ‘nor’.

Filter/Type Nouns Adjectives Verbs
none 117,953,900 2,513,033 2,121,448
5 16,188,215 598,563 603,799
100 1,497,753 130,534 160,060
1000 266,655 40,518 51,625

Table 1: Size: Number of tuples of Nouns, Adjectives,
and Verbs, coupled with dimension, in our resource,
as a function of the number of occurrences in the web
(more than 5, 100, 1000 occurrences).

3.4 Distribution over Quantities Statistics

The final resource contains 117,953,900 unique
noun tuples, 2,513,033 unique adjective tuples and
2,121,448 unique verb tuples. The total number of
triples in English are 122,588,381. Table 1 pro-
vides some more statistics.

4 Evaluation Data

In this section we describe the datasets we use for
evaluation. For the dataset introduced in (Forbes
and Choi, 2017), we highlight a few problems we
identified in it and how we corrected them, result-
ing in a new, cleaned up version of the dataset
(Sec. 4.1). Moreover, since DOQ is more fine-
grained than previous approaches supported, we
also describe a new dataset for noun comparisons
that was annotated by human annotators. We then
describe the evaluation used for comparing adjec-
tives (Sec. 4.2), and finally, an intrinsic evaluation
done directly on the resource quality (Sec. 4.3).

4.1 Commonsense Property Comparison

Forbes and Choi (2017) created a dataset consist-
ing of 3,656 object pairs labeled by crowd work-
ers. The annotators were asked to label the typ-
ical relation between two objects along five di-
mensions: SIZE, WEIGHT, STRENGTH, RIGIDITY

and SPEED: whether the first object was typically
greater than, lesser than, or equal to the second
along each dimension. 38-59% of the annota-
tions (depending on the dimension) yielded per-
fect agreement among all annotators; 90-95% of
them had an identifiable majority label, and they
chose to keep all of these. We refer to this dataset
as ORIG F&C.

Ill-Defined Comparisons In preliminary exper-
iments on ORIG F&C we observed low results
relative to the 76% achieved by the current state-
of-the-art (Yang et al., 2018). A close inspection
of a sample of 100 pairs (20 from each dimen-
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Train Dev Test All

All Labels
ORIG F&C 587 5,418 6,007 12,012
NO-LEAK F&C 712 3,000 4,497 8,209

Subset Labels
ORIG F&C 361 3,311 3,650 7,322
CLEAN F&C 173 1,268 1,523 2,964

Table 2: F&C dataset size. All Labels represent the
original dataset with all the labels. Subset Labels are
the subset labels which are inferable by the resource.

sion) revealed that only 57% of the examples were
in agreement with the annotations in Forbes and
Choi (2017) and 47% were not comparable. The
most common reasons for disagreements were: (1)
Broad objects: e.g. (father, clothes, big); (2)
Abstract objects: e.g. (seal, place, big); (3) Ill-
defined dimension: e.g. (friend, bed, strong).

Training Leakage and New Split Another
problem we identified in ORIG F&C, which re-
sults in a biased evaluation, is leakage from the
training set to the dev/test sets. We identified two
types of leakage.

The first is a Transitivity Leakage: when the
training set contains the tuples: (o1, o2, d) and (o2,
o3, d), and the dev/test set contains the tuple (o1,
o3, d). For example, the training set contains (‘per-
son’, ‘fox’, ‘weight’, ‘bigger’) and (‘fox’, ‘goose’,
‘weight’, ‘bigger’), and the dev set contains (‘per-
son’, ‘goose’, ‘weight’, ‘bigger’). While transi-
tivity is an inherent property of this data, success
on the transitive closure of training examples does
not reflect the ability of the algorithm to infer the
correct relation between two unseen objects, and
these examples should be removed from the eval-
uation data. We found 4.3% of the dev and 3.5%
of the test data had transitive leakage.

The second type of leakage we identified is
Object Leakage, where a certain object in the
dev/test set already appeared in the training set.
This happens in 94.8% and 95.7% of the exam-
ples in the dev/test sets, respectively. This means
that success on these objects might not reflect the
generalization abilities of the algorithm, but rather
a memorization of the training data.

To address these concerns, we reorganized the
train/dev/test sets, forming new splits, which we
refer to as NO-LEAK F&C. The new split sizes
can be found in Table 2. We re-ran the current
models on NO-LEAK F&C and, as expected, we
observe a drop of 5-6% in accuracy: from the orig-
inal 76% accuracy on the dev/test sets, to 70% and
71% accuracy, respectively.

F&C Re-annotation Due to the ill-defined
comparison we identified in the dataset, we re-
annotated it using crowd-source workers, who
were trained with specific instructions to attend to
the validity of the comparison. We used 3 anno-
tators per example and the majority vote was used
as the final answer. Examples with no agreement,
i.e., where each annotator chose a different option,
were discarded. The inter annotator agreement
yielded Fleiss kappa of k = 89.8. Out of 7322 tu-
ples in the original dataset, 59.5% were discarded
either because the objects were simply not com-
parable, or due to lack of agreement between the
annotators. After removing the non-comparable
examples, the kappa agreement was k = 97.2. We
refer to this new dataset as CLEAN F&C. We also
tested the agreement between the new labels, and
the corresponding labels in the original dataset,
achieving near-perfect agreement of k = 90.2, es-
tablishing the quality of the new annotations.

New, More Conservative Dataset Due to the
problems we identified in ORIG F&C and the
fact that it became significantly smaller after filter-
ing out ill-defined comparisons, we created a new
dataset. We provided human annotators with more
precise definitions and restricted comparisons to
specific domains using only a subset of the dimen-
sions – MASS, SPEED, CURRENCY and LENGTH.
We further controlled the generation of compara-
ble objects by using Category Builder (CB) (Ma-
habal et al., 2018), a method which can be used
to expand a set of seed words into others in the
same category. For each domain and dimension
we fed an initial seed into CB, and used the top
results as comparable pairs. Table 3 in the Ap-
pendix presents statistics and examples from each
category from the new dataset. Note that the new
dataset is only used as a test set and thus leakage
is not applicable. Moreover, due to the controlled
data generation process, we avoided some of the
comparison issues we observed in ORIG F&C.

We used crowdsourcing to annotate the pairs,
and obtained a substantial inter-annotator agree-
ment of k = 77.1. Each example was annotated
by three annotators and we used majority vote
to determine the final labels. The final dataset
discards examples with no agreement and Non-
Comparable label, resulting in 4,773 examples.

Our method for determining a relation between
two objects is unsupervised and does not require a
training set. However, in order to compare with
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deMelo Wilk-intense Wilk-all

All Labels
#Objects 300 60 60
#Pairs 682 60 133

Subset Labels
#Objects 58 21 22
#Pairs 121 21 47

Table 3: Adjective dataset size from deMelo and
Wilkinson. The All Labels row represent the original
dataset, with all adjective clusters. The Subset Labels
row describes the filtered partition on these datasets,
with only measurable adjectives.

other methods, we split it into train/dev/test of
sizes 326/1101/1101 respectively, while keeping
the split free of leakage. (Note that the number
of training examples is comparable to Yang et al.
(2018). This split contains only comparisons from
the SPEED, LENGTH and WEIGHT dimensions for
fair comparison to previous work.)

The Relative Size Dataset Bagherinezhad et al.
(2016) created a dataset of 486 object pairs be-
tween 41 physical objects. The dataset (which we
refer to as RELATIVE) focuses solely on the phys-
ical size dimension. Nevertheless, we use it as an-
other evaluation of DOQ.

4.2 Scalar Adjectives

Several test sets have been created to evaluate the
intensity of adjectives. The dataset created by
De Melo and Bansal (2013) uses adjective clusters
based on the ‘dumbbell’ structure of adjectives in
WordNet e.g. “cold < frigid < frozen”. Wilkinson
and Oates (2016) created another testset, by defin-
ing a total order between adjectives in the same
cluster, spanning the entire scale range. For exam-
ple, in the SIZE domain, the full cluster is: “mi-
nuscule < tiny < small < big < large < huge <
enormous < gigantic”. A total of 60 adjectives
were collected across 12 clusters.

Since our method only handles measurable
objects, we manually removed all of the non-
measurable clusters (e.g., “known < famous < leg-
endary” was removed) and evaluated on the rest.
In this process we found that the new dataset by
Cocos et al. (2018) contains only a small num-
ber of measurable clusters and some overlap with
the other testsets, therefore we exclude this test set
from our evaluation. The number of pair compar-
isons and unique objects are detailed in Table 3,
both the original datasets and the subset we used
in this work.

4.3 Intrinsic Evaluation
Lastly, since our resource is more expressive than
what was done in this area before, we also con-
ducted a novel intrinsic evaluation. We ran the
evaluation as follows: Given an object and a di-
mension, we extracted the median of the distri-
bution, expanded it into a range and then asked
human raters whether this range overlaps with the
range of the target object-dimension pair. For ex-
ample, when evaluating the speed of a car, its me-
dian is 99.7 km/h. We then convert it to a range of
10-100 km/h by relaxing it to its nearest order of
magnitude numbers, and asked annotators if this
range corresponds to the typical speed of a car.

We collected a total of 1,271 examples from
the same pool of comparisons used for our new
dataset. Each example was evaluated by 3 annota-
tors and labeled with the majority vote, discarding
examples with no agreement.

5 Experimental Results

The object comparison task described in Sec. 4.1
is formulated as: Given objects o1 and o2 and di-
mension d, predict the relation y ∈ {<,=, >}.5
To solve this task, we look up the set of measure-
ments associated with each object-dimension pair
in the object dictionary. For this evaluation, we ag-
gregate all objects while ignoring their heads (as
described in Sec. 3.4). We compare the two dis-
tributions obtained by their medians. If the object-
dimension pair does not appear in DOQ, we assign
it a 0 value.

Algorithm 1 Adjectives Comparison Inference

Input: adjectives x,z, dimension d and
object distributions H
Output: comparison label
Procedure:
Initialize ŷ, the predictions per head
intersect← findHeadIntersection(H , x, z, d)

. the intersecting heads of x and z
for ai, bi ∈ intersect do

ŷi← compare(ai,bi,d)
end for
Return majority(ŷ)

Adjective comparisons require a different treat-
ment. Earlier work was done mainly on intensi-
ties, and so comparisons are only across half the

5We use the three-way model described in Forbes and
Choi (2017) and not its elaboration in Yang et al. (2018).
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Model/Dataset F&C Clean New Data
Dev Test Dev Test

Majority 0.54 0.57 0.51 0.50
Yang et al. (PCE LSTM) 0.86 0.87 0.60 0.57
DOQ 0.78 0.77 0.62 0.62
DOQ + 10-distance 0.78 0.77 0.62 0.62
DOQ + 3-distance 0.81 0.80 0.62 0.61

Table 4: Results on the noun comparison datasets.

scale (i.e., not on hot vs. cold, but on degrees of
hot and degrees of cold separately). The dimen-
sion of the comparisons is not given explicitly; al-
though it is possible to infer the most relevant di-
mension from DOQ it is not trivial and we leave
this for future work. Instead, we manually label
the dimension of each cluster used. For example,
to the “cold < frigid” comparison, we assign the
TEMPERATURE dimension.

The inference method for adjectives is also
more subtle. As adjectives can describe a wide
range of objects, their variance is higher than that
of nouns. Therefore, our inference method makes
use of an aggregation of individual objects: For
each pair of adjectives we wish to compare, we
query DOQ for every noun that both adjectives
are seen to modify. For each such noun, we com-
pare the distributions along the specified dimen-
sion, and choose the majority comparison over all
such nouns as the prediction for the adjective pair.
This process is outlined in Algorithm 1.

For the experiments using DOQ we used all
three distance-based versions (sentence distance,
10 and 3 words distance). We found that the
sentence-based has the higher coverage, but lower
precision, whereas the lower distance-based has
less coverage but higher precision.

5.1 Comparative Evaluation

Noun Comparison The left column of Table
4 presents results for the cleaned version of the
Forbes and Choi (2017) dataset. The current state-
of-the-art model achieves a total accuracy on the
test set of 87%, while our best method achieves
80%. First, we note that the accuracies are signif-
icantly higher than those on the original dataset,
for all methods. Second, we still observe lower
accuracy for our method compared to Yang et al.
(2018). We can attribute this gap to two rea-
sons. First, they fine-tune their model on a train-
ing set, and although the training set size isn’t
large, it is necessary for achieving these results.
Secondly, they are able to exploit similarities and

Model Accuracy
Chance 0.5
Bagherinezhad et al. 0.835
Yang et al. (Transfer) 0.858
DOQ 0.872
DOQ + 10-distance 0.877
DOQ + 3-distance 0.858

Table 5: Results on the RELATIVE dataset. Yang et al.
(2018) result was achieved by running their model on
their training set, and using it as a transfer method on
RELATIVE. Finally, we present our own predictions,
with different thresholds, which surpass previous work.

capture synonym information through pre-trained
word embeddings, which our method cannot. For
example, the development set contains the com-
parison: (‘lady’, ‘step’, ‘size’) and (‘wife’, ‘ship’,
‘size’). While these comparison are valid, they
are less intuitive, and can be solved by embedding
methods due to their proximity in the embedding
space to similar words, such as ‘person’. And in-
deed, when using the word ‘person’ in our method
instead of ‘lady’ and ‘wife’, our method makes the
correct prediction.6

Results on the new objects comparison dataset
we created are shown in the rightmost column of
Table 4. Although our method doesn’t benefit
from a split into train/dev/test, we split it never-
theless to compare to previous work. This split
is created such that there is no leakage from the
train to the dev/test sets. We get better results than
previous methods on this dataset: 63% and 61%
accuracy on the dev/test sets compared to 60%
and 57%. These relatively low results on this new
dataset indicate that it is more challenging.

The last evaluation of noun comparatives is on
RELATIVE (Bagherinezhad et al., 2016), presented
in Table 5. We report the results of the original
work, where the best score used a combination of
visual and textual signals, achieving 83.5% accu-
racy. We also tested the method by Yang et al.
(2018) on this dataset. Since the dataset is small,
we did not split it, and instead used the training
set from Forbes and Choi (2017). This can be
viewed as a transfer learning evaluation. The accu-
racy achieved by this method is 85.8%, surpassing
the previous method by more than 2 points. We
evaluated our method on this dataset, achieving a
new state-of-the-art result of 87.7% accuracy with
k = 10 as a filter method.

6While it is possible to augment DOQ and access it via
word embeddings, we chose not to do it in our experiments
to better estimate the quality of the resource itself.
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Model deMelo Wilk-intense Wilk-all
Global Ranking 0.642 0.818 -
Cocos et al. 0.620 0.841 -
DOQ 0.617 0.700 0.870
DOQ + 10-distance 0.608 0.750 0.891
DOQ + 3-distance 0.567 0.500 0.761

Table 6: Results on scalar adjectives datasets.

5.2 Adjective Comparison

For the scalar adjective datasets, we present an
evaluation on the deMelo dataset (De Melo and
Bansal, 2013), and the Wilkinson dataset (Wilkin-
son and Oates, 2016). Previous work is limited by
the patterns used for extraction to comparing ad-
jectives from the same half-cluster. As Wilkinson
data contains the full scalar range, we also present
results on the full range. We compare to De Melo
and Bansal (2013), using the re-implementation of
Cocos et al. (2018) for global ranking. We also
use the new method of Cocos et al. (2018) to eval-
uate. This work is not entirely comparable, as the
coverage of the data depends on the exact method
used i.e. the combination of patterns, lexicon-
based evidence and paraphrasing. Therefore, for
each dataset, we used the method that obtained
the highest coverage. For pairs with no coverage,
we chose random labels with uniform distribution.
The method of De Melo and Bansal (2013) outper-
forms the rest for their dataset, while the method
of Cocos et al. (2018) performs best on the Wilkin-
son data. Our method does get comparable results
on De Melo and Bansal (2013), while on Wilkin-
son (Wilkinson and Oates, 2016) we lag behind
by 9.1 points. Finally, we do achieve good results
when evaluating on the full range scale of Wilkin-
son - 89.1% accuracy. All of the errors by our
method on this dataset evaluation are indeed on
the intensity level, and not between the extremes.
We therefore conclude that our method is good at
differentiating between the adjectives on the two
tips of the scale.

In the Adjective comparison, we also observe
the highest variance as a function of the context
window size k. While DOQ with k = 10 achieves
the best results on two of the three datasets, when
k = 3 the results suffer from a big drop in per-
formance. We hypothesize that this performance
gap is due to the higher variance in the use of ad-
jectives vs. nouns, and our inference method that
is based not on the adjective itself, but on all its
modifying objects.

Method/Data Mass Length Speed Currency All
Indian Annotators 0.61 0.79 0.77 0.58 0.69
US Annotators - - - 0.76 -

Table 7: Intrinsic Evaluation. Accuracy of the number
of objects which our proposed median fall into range of
the object, given the dimension.

5.3 Intrinsic Evaluation

We perform the following intrinsic evaluation to
assess the distribution quality of the resource. The
results of the intrinsic evaluation on a sample of
DOQ are shown in Table 7. The total agree-
ment is 69%, while the specific agreements for
MASS, LENGTH, SPEED and CURRENCY are 61%,
79%, 77% and 58% respectively. Originally, these
annotations were performed by annotators from
India and, while inspecting the annotation, we
found cultural differences in the perceived prices
of items. We re-annotated the samples in the cur-
rency category with annotators from the U.S. and
found a much higher agreement score: 76%. For
example, Indian annotators reported that a suit
could not cost between 1K-10K$, while U.S-based
annotators all reported it was possible.

6 Conclusion and Discussion

This paper develops an unsupervised method for
collecting quantitative information from a large
web corpus, and uses it to create DOQ, a very large
resource consisting of distributions over physical
quantities associated with nouns, adjectives, and
events. We have evaluated DOQ on multiple ex-
isting and new datasets and showed that it com-
pares favorably with other methods that require
more resources and lack coverage relative to DOQ.
Below, we discuss a few interesting issues brought
up by the data collection process that should be ad-
dressed in future work.

Reporting Bias and Exaggeration Although
reporting bias (Gordon and Van Durme, 2013)
would seem to be a problem for a corpus-driven
approach, in practice, DoQ is quite resilient to
it due to the usage of very big web corpora and
the collection method. As we do not rely on ex-
plicit comparisons between objects, but only on
co-occurrences with numeric measurements, we
can automatically infer relationships post-facto.
One form of reporting bias we observe is that peo-
ple are more likely to discuss objects when they
are exceptional, or they exaggerate measurements
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(c) Induced monthly temperature distributions

Figure 3: Reporting bias: The observed average tem-
peratures of U.S. states tend to extremes (Real average
temperature (3a) vs. the induced one (3b)). Another
sort of bias is exemplified in Figure 3c, by a bias to-
wards the northern hemisphere.

for rhetorical effect, leading to long tails for some
distributions (see “slowest car” in Figure 2 and ex-
treme temperatures in Figure 3). It is interesting
to note that in the case of temperatures, both in
the U.S states case (Figure 3) and the world case
(Figure 2 in the Appendix), the exaggeration is to-
wards hot temperatures, and not cold ones.

A somewhat different bias is shown in Figure
3c; although the temperatures are an adequate rep-
resentation of the cyclic year, it is highly biased
towards the northern hemisphere, a result of the
English web source data.

A more subtle form of bias is due to attribution.
For example, when comparing the size of alfalfa
with the size of watermelons as shown in Figure 4,
we see that alfalfa is mostly talked about in quan-
tities in which it is harvested (order of tons) rather
than individual units (grams). This kind of bias
cannot be identified as easily as the attribution bias
discussed in Sec. 3.3.

Polysemy We have not systematically explored
how our resource performs on polysemous words
and their senses, although our overall results in-
dicate that in most cases the relatively biased dis-
tribution of polysemous senses render this a non-
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Figure 4: Reporting bias can also be seen in this exam-
ple where alfalfa’s weight is induced in tons whereas in
reality alfafa’s weight is measure in grams.

problem. We have also observed that in some
cases the data itself can help disambiguate be-
tween different word senses. For example, ‘bat’
can refer to the animal, a baseball bat or a cricket
bat. Figure 1 in the Appendix shows the induced
distributions of length for these three senses of bat.
While the distributions for “Baseball bat” (which
measure about 1m) and “Cricket bat” (which may
be no more than 956mm) are correct, the distribu-
tion for ‘bat’ is probably a consolidation of these,
the animal bat that can measure from 15cm to al-
most 1.7m in length, and some attribution noise
(e.g. the distance the bat flew).

In conclusion, we developed and studied an
unsupervised method for collecting quantita-
tive information from large amounts of web
data, and used it to create Distribution over
Quantities (DOQ), a new, very large resource
consisting of distributions over physical quan-
tities associated with nouns, adjectives, and
verbs. The histogram version of the resource, as
well as the new created dataset and evaluation
code are available at https://github.
com/google-research-datasets/
distribution-over-quantities.

Acknowledgments

We would like to thank Ellie Pavlick, Jason
Baldridge, Anne Cocos, Vered Shwartz, Hila Go-
nen and the 3 anonymous reviewers for help-
ful comments. Furthermore, we thank Maxwell
Forbes, Yiben Yang and Niket Tandon for their
helpful clarifications regarding their methods and
code. The research of Dan Roth is partly sup-
ported by a Google gift and by DARPA, under
agreement number HR0011-18-2-0052.

https://github.com/google-research-datasets/distribution-over-quantities
https://github.com/google-research-datasets/distribution-over-quantities
https://github.com/google-research-datasets/distribution-over-quantities


3982

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 2442–2452.

Hessam Bagherinezhad, Hannaneh Hajishirzi, Yejin
Choi, and Ali Farhadi. 2016. Are elephants bigger
than butterflies? Reasoning about sizes of objects.
In Thirtieth AAAI Conference on Artificial Intelli-
gence.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management
of data, pages 1247–1250. AcM.

Arun Chaganty and Percy Liang. 2016. How much is
131 million dollars? Putting numbers in perspec-
tive with compositional descriptions. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 578–587.

Craig Chambers, Ashish Raniwala, Frances Perry,
Stephen Adams, Robert R. Henry, Robert Bradshaw,
and Nathan Weizenbaum. 2010. Flumejava: Easy,
efficient data-parallel pipelines. In Proceedings of
the 31st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI
’10, pages 363–375, New York, NY, USA. ACM.

Anne Cocos, Veronica Wharton, Ellie Pavlick, Mari-
anna Apidianaki, and Chris Callison-Burch. 2018.
Learning scalar adjective intensity from para-
phrases. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1752–1762. Association for Compu-
tational Linguistics.

Ido Dagan, Dan Roth, Mark Sammons, and Fabio Mas-
simo Zanzotto. 2013. Recognizing textual entail-
ment: Models and applications. Synthesis Lectures
on Human Language Technologies, 6(4):1–220.

Daniel Dahlmeier and Hwee Tou Ng. 2011. Correcting
semantic collocation errors with l1-induced para-
phrases. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
pages 107–117. Association for Computational Lin-
guistics.

Gerard De Melo and Mohit Bansal. 2013. Good, great,
excellent: Global inference of semantic intensities.
Transactions of the Association for Computational
Linguistics, 1:279–290.

Maxwell Forbes and Yejin Choi. 2017. Verb physics:
Relative physical knowledge of actions and objects.
In Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (Volume
1: Long Papers), pages 266–276.

Yoav Goldberg and Jon Orwant. 2013. A dataset of
syntactic-ngrams over time from a very large corpus
of english books. Atlanta, Georgia, USA, page 241.

Jonathan Gordon and Benjamin Van Durme. 2013. Re-
porting bias and knowledge acquisition. In Proceed-
ings of the 2013 workshop on Automated knowledge
base construction, pages 25–30. ACM.

Andrey Gusev, Nathanael Chambers, Pranav Khaitan,
Divye Khilnani, Steven Bethard, and Dan Jurafsky.
2011. Using query patterns to learn the duration
of events. In Proceedings of the ninth international
conference on computational semantics, pages 145–
154. Association for Computational Linguistics.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
the 14th conference on Computational linguistics-
Volume 2, pages 539–545. Association for Compu-
tational Linguistics.

Joo-Kyung Kim and Marie-Catherine de Marneffe.
2013. Deriving adjectival scales from continuous
space word representations. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, pages 1625–1630.

Zornitsa Kozareva and Eduard Hovy. 2011. Learning
temporal information for states and events. In 2011
IEEE Fifth International Conference on Semantic
Computing, pages 424–429. IEEE.

Yuri Lin, Jean-Baptiste Michel, Erez Lieberman Aiden,
Jon Orwant, Will Brockman, and Slav Petrov. 2012.
Syntactic annotations for the google books ngram
corpus. In Proceedings of the ACL 2012 sys-
tem demonstrations, pages 169–174. Association for
Computational Linguistics.

Abhijit A. Mahabal, Dan Roth, and Sid Mittal. 2018.
Robust handling of polysemy via sparse representa-
tions. In *SEM.

Katsuma Narisawa, Yotaro Watanabe, Junta Mizuno,
Naoaki Okazaki, and Kentaro Inui. 2013. Is a 204
cm man tall or small? Acquisition of numerical
common sense from the web. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 382–391.

Qiang Ning, Hao Wu, Haoruo Peng, and Dan Roth.
2018. Improving temporal relation extraction with
a globally acquired statistical resource. In Pro-
ceedings of the 2018 North American Chapter
of the Association for Computational Linguistics
(NAACL2018), pages 841–851.

Feng Pan, Rutu Mulkar, and Jerry R Hobbs. 2006. An
annotated corpus of typical durations of events. In
LREC, pages 77–82. Citeseer.

https://doi.org/10.1145/1806596.1806638
https://doi.org/10.1145/1806596.1806638
http://aclweb.org/anthology/D18-1202
http://aclweb.org/anthology/D18-1202
http://cogcomp.org/papers/MahabalRoMi18.pdf
http://cogcomp.org/papers/MahabalRoMi18.pdf
http://cogcomp.org/papers/NingWuPeRo18.pdf
http://cogcomp.org/papers/NingWuPeRo18.pdf


3983

Chaitanya Shivade, Marie-Catherine de Marneffe, Eric
Fosler-Lussier, and Albert M Lai. 2015. Corpus-
based discovery of semantic intensity scales. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
483–493.

Chaitanya Shivade, Marie-Catherine de Marneffe, Eric
Fosler-Lussier, and Albert M Lai. 2016. Identifi-
cation, characterization, and grounding of gradable
terms in clinical text. In Proceedings of the 15th
Workshop on Biomedical Natural Language Pro-
cessing, pages 17–26.

Georgios Spithourakis, Isabelle Augenstein, and Se-
bastian Riedel. 2016. Numerically grounded lan-
guage models for semantic error correction. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 987–
992.

Georgios Spithourakis and Sebastian Riedel. 2018.
Numeracy for language models: Evaluating and im-
proving their ability to predict numbers. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2104–2115.

Niket Tandon, Gerard De Melo, and Gerhard Weikum.
2014. Acquiring comparative commonsense knowl-
edge from the web. In Twenty-Eighth AAAI Confer-
ence on Artificial Intelligence.

Bryan Wilkinson and Tim Oates. 2016. A gold stan-
dard for scalar adjectives. In LREC.

Olivia Winn and Smaranda Muresan. 2018. Lighter
can still be dark: Modeling comparative color de-
scriptions. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), volume 2, pages 790–795.

Yiben Yang, Larry Birnbaum, Ji-Ping Wang, and Doug
Downey. 2018. Extracting commonsense properties
from embeddings with limited human guidance. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), volume 2, pages 644–649.


