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Abstract

In this paper, we present a novel approach
for incorporating external knowledge in Re-
current Neural Networks (RNNs). We pro-
pose the integration of lexicon features into
the self-attention mechanism of RNN-based
architectures. This form of conditioning on
the attention distribution, enforces the contri-
bution of the most salient words for the task
at hand. We introduce three methods, namely
attentional concatenation, feature-based gating
and affine transformation. Experiments on six
benchmark datasets show the effectiveness of
our methods. Attentional feature-based gating
yields consistent performance improvement
across tasks. Our approach is implemented as
a simple add-on module for RNN-based mod-
els with minimal computational overhead and
can be adapted to any deep neural architecture.

1 Introduction

Modern deep learning algorithms often do away
with feature engineering and learn latent represen-
tations directly from raw data that are given as in-
put to Deep Neural Networks (DNNs) (Mikolov
et al., 2013; McCann et al., 2017; Peters et al.,
2018). However, it has been shown that linguistic
knowledge (manually or semi-automatically en-
coded into lexicons and knowledge bases) can sig-
nificantly improve DNN performance for Natural
Language Processing (NLP) tasks, such as natural
language inference (Mrkšić et al., 2017), language
modelling (Ahn et al., 2016), named entity recog-
nition (Ghaddar and Langlais, 2018) and relation
extraction (Vashishth et al., 2018).

For NLP tasks, external sources of information
are typically incorporated into deep neural archi-
tectures by processing the raw input in the context
of such external linguistic knowledge. In machine

∗ The research was conducted when the author was a re-
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learning, this contextual processing is known as
conditioning; the computation carried out by a
model is conditioned or modulated by informa-
tion extracted from an auxiliary input. The most
commonly-used method of conditioning is con-
catenating a representation of the external infor-
mation to the input or hidden network layers.

Attention mechanisms (Bahdanau et al., 2015;
Vaswani et al., 2017; Lin et al., 2017) are a key
ingredient for achieving state-of-the-art perfor-
mance in tasks such as textual entailment (Rock-
täschel et al., 2016), question answering (Xiong
et al., 2017), and neural machine translation (Wu
et al., 2016). Often task-specific attentional archi-
tectures are proposed in the literature to further
improve DNN performance (Dhingra et al., 2017;
Xu et al., 2015; Barrett et al., 2018).

In this work, we propose a novel way of utiliz-
ing word-level prior information encoded in lin-
guistic, sentiment, and emotion lexicons, to im-
prove classification performance. Usually, lexi-
con features are concatenated to word-level rep-
resentations (Wang et al., 2016; Yang et al., 2017;
Trotzek et al., 2018), as additional features to the
embedding of each word or the hidden states of
the model. By contrast, we propose to incorporate
them into the self-attention mechanism of RNNs.
Our goal is to enable the self-attention mechanism
to identify the most informative words, by directly
conditioning on their additional lexicon features.

Our contributions are the following: (1) we pro-
pose an alternative way for incorporating exter-
nal knowledge to RNN-based architectures, (2)
we present empirical results that our proposed ap-
proach consistently outperforms strong baselines,
and (3) we report state-of-the-art performance in
two datasets. We make our source code publicly
available1.

1https://github.com/mourga/
affective-attention

https://github.com/mourga/affective-attention
https://github.com/mourga/affective-attention
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2 Related Work

In the traditional machine learning literature
where statistical models are based on sparse fea-
tures, affective lexicons have been shown to be
highly effective for tasks such as sentiment anal-
ysis, as they provide additional information not
captured in the raw training data (Hu and Liu,
2004; Kim and Hovy, 2004; Ding et al., 2008;
Yu and Dredze, 2014; Taboada et al., 2011). Af-
ter the emergence of pretrained word represen-
tations (Mikolov et al., 2013; Pennington et al.,
2014), the use of lexicons is no longer common
practice, since word embeddings can also capture
some of the affective meaning of these words.

Recently, there have been notable contribu-
tions towards integrating linguistic knowledge into
DNNs for various NLP tasks. For sentiment anal-
ysis, Teng et al. (2016) integrate lexicon features
to an RNN-based model with a custom weighted-
sum calculation of word features. Shin et al.
(2017) propose three convolutional neural network
specific methods of lexicon integration achiev-
ing state-of-the-art performance on two datasets.
Kumar et al. (2018) concatenate features from a
knowledge base to word representations in an at-
tentive bidirectional LSTM architecture, also re-
porting state-of-the-art results. For sarcasm detec-
tion, Yang et al. (2017) incorporate psycholinguis-
tic, stylistic, structural, and readability features by
concatenating them to paragraph and document-
level representations.

Furthermore, there is limited literature regard-
ing the development and evaluation of methods
for combining representations in deep neural net-
works. Peters et al. (2017) claim that con-
catenation, non-linear mapping and attention-like
mechanisms are unexplored methods for includ-
ing language model representations in their se-
quence model. They employ simple concatena-
tion, leaving the exploration of other methods to
future work. Dumoulin et al. (2018) provide an
overview of feature-wise transformations such as
concatenation-based conditioning, conditional bi-
asing and gating mechanisms. They review the ef-
fectiveness of conditioning methods in tasks such
as visual question answering (Strub et al., 2018),
style transfer (Dumoulin et al., 2017) and language
modeling (Dauphin et al., 2017). They also ex-
tend the work by Perez et al. (2017), which pro-
poses the Feature-wise Linear Modulation (FiLM)
framework, and investigate its applications in vi-

sual reasoning tasks. Balazs and Matsuo (2019)
provide an empirical study showing the effects of
different ways of combining character and word
representations in word-level and sentence-level
evaluation tasks. Some of the reported findings
are that gating conditioning performs consistently
better across a variety of word similarity and relat-
edness tasks.

3 Proposed Model

3.1 Network Architecture

Word Embedding Layer. The input sequence
of words w1, w2, ..., wT is projected to a low-
dimensional vector spaceRW , whereW is the size
of the embedding layer and T the number of words
in a sentence. We initialize the weights of the em-
bedding layer with pretrained word embeddings.

LSTM Layer. A Long Short-Term Memory
unit (LSTM) (Hochreiter and Schmidhuber, 1997)
takes as input the words of a sentence and pro-
duces the word annotations h1, h2, ..., hT , where
hi is the hidden state of the LSTM at time-step i,
summarizing all sentence information up to wi.

Self-Attention Layer. We use a self-attention
mechanism (Cheng et al., 2016) to find the relative
importance of each word for the task at hand. The
attention mechanism assigns a score ai to each
word annotation hi. We compute the fixed repre-
sentation r of the input sequence, as the weighted
sum of all the word annotations. Formally:

ai = softmax(vᵀaf(hi)) (1)

r =
T∑
i=1

aihi (2)

where f(.) corresponds to a non-linear transfor-
mation tanh(Wahi + ba) and Wa, ba, va are the
parameters of the attention layer.

Lexicons Annotations # dim. # words
LIWC psycho-linguistic 73 18,504

Bing Liu valence 1 2,477
AFINN sentiment 1 6,786
MPQA sentiment 4 6,886

SemEval15 sentiment 1 1,515
Emolex emotion 19 14,182

Table 1: The lexicons used as external knowledge.
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3.2 External Knowledge
In this work, we augment our models with exist-
ing linguistic and affective knowledge from hu-
man experts. Specifically, we leverage lexica con-
taining psycho-linguistic, sentiment and emotion
annotations. We construct a feature vector c(wi)
for every word in the vocabulary by concatenating
the word’s annotations from the lexicons shown in
Table 1. For missing words we append zero in the
corresponding dimension(s) of c(wi).

3.3 Conditional Attention Mechanism
We extend the standard self-attention mechanism
(Eq. 1, 2), in order to condition the attention dis-
tribution of a given sentence, on each word’s prior
lexical information. To this end, we use as input
to the self-attention layer both the word annota-
tion hi, as well as the lexicon feature c(wi) of each
word. Therefore, we replace f(hi) in Eq. 1 with
f(hi, c(wi)). Specifically, we explore three condi-
tioning methods, which are illustrated in Figure 1.
We refer to the conditioning function as fi(.), the
weight matrix as Wi and the biases as bi, where i
is an indicative letter for each method. We present
our results in Section 5 (Table 3) and we denote
the three conditioning methods as “conc.”, “gate”
and “affine” respectively.

Attentional Concatenation. In this approach, as
illustrated in Fig. 1(a), we learn a function of the
concatenation of each word annotation hi with its
lexicon features c(wi). The intuition is that by
adding extra dimensions to hi, learned represen-
tations are more discriminative. Concretely:

fc(hi, c(wi)) = tanh(Wc[hi ‖ c(wi)] + bc) (3)

where ‖ denotes the concatenation operation and
Wc, bc are learnable parameters.

Attentional Feature-based Gating. The second
approach, illustrated in Fig. 1(b), learns a feature
mask, which is applied on each word annotation
hi. Specifically, a gate mechanism with a sigmoid
activation function, generates a mask-vector from
each c(wi) with values between 0 and 1 (black and
white dots in Fig. 1(b)). Intuitively, this gating
mechanism selects salient dimensions (i.e. fea-
tures) of hi, conditioned on the lexical informa-
tion. Formally:

fg(hi, c(wi)) = σ(Wgc(wi) + bg)� hi (4)

where � denotes element-wise multiplication and
Wg, bg are learnable parameters.

(a) Attentional Concatenation

(b) Attentional Feature-Based Gating

(c) Attentional Affine Transformation

Figure 1: The proposed conditioning methods of the
self-attention mechanism.

Attentional Affine Transformation. The third
approach, shown in Fig. 1(c), is adopted from the
work of Perez et al. (2017) and applies a feature-
wise affine transformation to the latent space of the
hidden states. Specifically, we use the lexicon fea-
tures c(wi), in order to conditionally generate the
corresponding scaling γ(·) and shifting β(·) vec-
tors. Concretely:

fa(hi, c(wi)) = γ(c(wi))� hi + β(c(wi)) (5)

γ(x) =Wγx+ bγ , β(x) =Wβx+ bβ (6)

where Wγ ,Wβ, bγ , bβ are learnable parameters.

3.4 Baselines
We employ two baselines: The first baseline is an
LSTM-based architecture augmented with a self-
attention mechanism (Sec. 3.1) with no external
knowledge. The second baseline incorporates lex-
icon information by concatenating the c(wi) vec-
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Dataset Study Task Domain Classes Ntrain Ntest

SST-5 Socher et al. (2013) Sentiment Movie Reviews 5 9,645 2,210

Sent17 Rosenthal et al. (2017) Sentiment Twitter 3 49,570 12,284

PhychExp Wallbott and Scherer (1986) Emotion Experiences 7 1000 6480

Irony18 Van Hee et al. (2018) Irony Twitter 4 3,834 784

SCv1 Lukin and Walker (2013) Sarcasm Debate Forums 2 1000 995

SCv2 Oraby et al. (2016) Sarcasm Debate Forums 2 1000 2260

Table 2: Description of benchmark datasets. We split 10% of the train set to serve as the validation set.

Model SST-5 Sent17 PhychExp Irony18 SCv1 SCv2

baseline 43.5± 0.5 68.3± 0.2 53.2± 0.8 46.3± 1.4 64.1± 0.5 74.0± 0.7

emb. conc. 43.3± 0.6 68.4± 0.2 57.1± 1.2 48.1± 1.2 64.2± 0.7 74.2± 0.7

conc. 44.0± 0.7 68.6± 0.3 54.3± 0.6 47.4± 0.9 65.1 ± 0.6 74.3± 1.2

gate 44.2± 0.4 68.7± 0.3 53.4± 1.0 48.5 ± 0.7 64.7± 0.7 74.3± 1.2

affine 43.2± 0.7 68.5± 0.3 53.1± 0.9 45.3± 1.5 60.3± 0.8 74.0± 1.0

gate+emb.conc. 46.2 ± 0.5 68.9 ± 0.3 57.2 ± 1.1 48.4 ± 1.0 64.9 ± 0.6 74.4 ± 0.9

state-of-the-art
51.7 68.5 57.0 53.6 69.0 76.0

Shen et al. (2018) Cliche (2017) Felbo et al. (2017) Baziotis et al. (2018) Felbo et al. (2017) Ilić et al. (2018)

Table 3: Comparison across benchmark datasets. Reported values are averaged across ten runs. All reported
measures are F1 scores, apart from SST − 5 which is evaluated with Accuracy.

tors to the word representations in the embedding
layer. In Table 3 we use the abbreviations “base-
line” and “emb. conc.” for the two baseline mod-
els respectively.

4 Experiments

Lexicon Features. As prior knowledge, we lever-
age the lexicons presented in Table 1. We se-
lected widely-used lexicons that represent differ-
ent facets of affective and psycho-linguistic fea-
tures, namely; LIWC (Tausczik and Pennebaker,
2010), Bing Liu Opinion Lexicon (Hu and Liu,
2004), AFINN (Nielsen, 2011), Subjectivity Lex-
icon (Wilson et al., 2005), SemEval 2015 En-
glish Twitter Lexicon (Svetlana Kiritchenko and
Mohammad, 2014), and NRC Emotion Lexicon
(EmoLex) (Mohammad and Turney, 2013).

Datasets. The proposed framework can be ap-
plied to different domains and tasks. In this paper,
we experiment with sentiment analysis, emotion
recognition, irony, and sarcasm detection. Details
of the benchmark datasets are shown in Table 2.
Preprocessing. To preprocess the words, we use
the tool Ekphrasis (Baziotis et al., 2017). Af-
ter tokenization, we map each word to the corre-
sponding pretrained word representation: Twitter-
specific word2vec embeddings (Chronopoulou

et al., 2018) for the Twitter datasets, and fast-
text (Bojanowski et al., 2017) for the rest.

Experimental Setup. For all methods, we em-
ploy a single-layer LSTM model with 300 neurons
augmented with a self-attention mechanism, as de-
scribed in Section 3. As regularization techniques,
we apply early stopping, Gaussian noiseN(0, 0.1)
to the word embedding layer, and dropout to the
LSTM layer with p = 0.2. We use Adam to op-
timize our networks (Kingma and Ba, 2014) with
mini-batches of size 64 and clip the norm of the
gradients (Pascanu et al., 2013) at 0.5, as an extra
safety measure against exploding gradients. We
also use PyTorch (Paszke et al., 2017) and scikit-
learn (Pedregosa et al., 2011).

5 Results & Analysis

We compare the performance of the three pro-
posed conditioning methods with the two base-
lines and the state-of-the-art in Table 3. We also
provide results for the combination of our best
method, attentional feature-based gating, and the
second baseline model (emb. conc.).

The results show that incorporating external
knowledge in RNN-based architectures consis-
tently improves performance over the baseline for
all datasets. Furthermore, feature-based gating im-
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Figure 2: Attention heatmap of a PsychExp random test sample. The first attention distribution is created with
the baseline model without lexicon feature integration, while the second with the combination of our attentional
feature-based gating method and the concatenation to word embeddings baseline (gate+emb.conc.).

proves upon baseline concatenation in the embed-
ding layer across benchmarks, with the exception
of PsychExp dataset.

For the Sent17 dataset we achieve state-of-
the-art F1 score using the feature-based gating
method; we further improve performance when
combining gating with the emb. conc. method.
For SST-5, we observe a significant performance
boost with combined attentional gating and em-
bedding conditioning (gate + emb. conc.). For
PsychExp, we marginally outperform the state-of-
the-art also with the combined method, while for
Irony18, feature-based gating yields the best re-
sults. Finally, concatenation based conditioning
is the top method for SCv1, and the combination
method for SCv2.

Overall, attentional feature-based gating is the
best performing conditioning method followed by
concatenation. Attentional affine transformation
underperforms, especially, for smaller datasets;
this is probably due to the higher capacity of this
model. This is particularly interesting since gat-
ing (Eq. 4) is a special case of the affine transfor-
mation method (Eq. 5), where the shifting vector
β is zero and the scaling vector γ is bounded to
the range [0, 1] (Eq. 6). Interestingly, the combi-
nation of gating with traditional embedding-layer
concatenation gives additional performance gains
for most tasks, indicating that there are synergies
to exploit in various conditioning methods.

In addition to the performance improvements,
we can visually evaluate the effect of condition-
ing the attention distribution on prior knowledge
and improve the interpretability of our approach.
As we can see in Figure 2, lexicon features guide
the model to attend to more salient words and thus
predict the correct class.

6 Conclusions & Future work

We introduce three novel attention-based condi-
tioning methods and compare their effectiveness

with traditional concatenation-based conditioning.
Our methods are simple, yet effective, achiev-
ing consistent performance improvement for all
datasets. Our approach can be applied to any
RNN-based architecture as a extra module to fur-
ther improve performance with minimal computa-
tional overhead.

In the future, we aim to incorporate more elab-
orate linguistic resources (e.g. knowledge bases)
and to investigate the performance of our meth-
ods on more complex NLP tasks, such as named
entity recognition and sequence labelling, where
prior knowledge integration is an active area of re-
search.
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