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Abstract

Embedding a clause inside another (“the girl
[who likes cars [that run fast]] has arrived”)
is a fundamental resource that has been ar-
gued to be a key driver of linguistic expres-
siveness. As such, it plays a central role in
fundamental debates on what makes human
language unique, and how they might have
evolved. Empirical evidence on the preva-
lence and the limits of embeddings has how-
ever been based on either laboratory setups or
corpus data of relatively limited size. We in-
troduce here a collection of large, dependency-
parsed written corpora in 17 languages, that
allow us, for the first time, to capture clausal
embedding through dependency graphs and as-
sess their distribution. Our results indicate
that there is no evidence for hard constraints
on embedding depth: the tail of depth distri-
butions is heavy. Moreover, although deeply
embedded clauses tend to be shorter, suggest-
ing processing load issues, complex sentences
with many embeddings do not display a bias to-
wards less deep embeddings. Taken together,
the results suggest that deep embeddings are
not disfavored in written language. More gen-
erally, our study illustrates how resources and
methods from latest-generation big-data NLP
can provide new perspectives on fundamental
questions in theoretical linguistics.

1 Introduction

In a prominent intellectual tradition, the infinitude
of human expressivity (Humboldt, 1836) is rooted
in a machinery that allows syntactic embedding
at arbitrary depth (Chomsky, 1957, 1995). Re-
gardless of the controversy around this proposal in
terms of computational theory (Pullum and Scholz,
2010; Watamull et al., 2014), it remains an open
issue to what extent languages in fact deploy struc-
tures with arbitrarily deep embedding. Many lan-
guages contain specific constructions that cap em-
bedding depth at phrasal levels to one (e.g. unlike

the girl who likes cars that run fast has arrived
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Figure 1: Example UD parse for sentence with maxi-
mum embedding d = 2.

English, Modern Greek compounds don’t allow re-
cursive embedding; Ralli, 2013), although more
radical constraints (Mithun, 1984; Everett, 2005;
Evans and Levinson, 2009) seem to be rare and are
avoided when languages evolve over time (Wid-
mer et al., 2017). In terms of sentence production,
embedding depths seem to be capped at moderate
levels, likely because deeper embeddings place in-
creasing demands on the brain’s processing system
(Gildea and Temperley, 2010).

Corpus studies of English, Pirahã, and a few
other—mostly European—languages proposed
constraints at one (Reich, 1969; Futrell et al., 2016),
two (De Roeck et al., 1982), or three (Karlsson,
2010) levels of embedding. However, given that
multiple embeddings might be vanishingly rare,
a serious limitation of this work is the size of tradi-
tional corpora. If multiple embeddings are subject
to constraints from processing load, these are likely
to be probabilistic (rather than hard) in nature, and
deeper embeddings are expected to be so rare that
they are detectable only in very big data sets.

Here, we introduce a collection of large written
corpora that we annotated using state-of-the-art
parsers trained on Universal Dependencies (UD)
treebanks (Nivre et al., 2018). We ask whether
there are systematic patterns in the construction of
complex nested clauses across languages. Instead
of focusing on potential upper bounds of embed-
ding depths we are interested in the distribution
of syntactic dependencies in our corpora. We ask
three questions: (i) How does embedding depth
decline? (ii) Is the length of the clauses the same
across levels of embedding? (iii) Can the rarity of
deep embeddedness be explained by the rarity of
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longer sentences, or is there a significant prefer-
ence for simpler structures when sentence length
is accounted for? The answer to these questions
promises insights into the nature of constraints on
the human parser, opening new research avenues on
the computational complexity of human language.

2 Data

Corpora We focus on 17 languages, selected
based on data and tool availability. We anno-
tated 2 types of large, publicly available corpora:
Wikipedia dumps from March 2017 and, where
available, the WMT News Crawl corpora from
2007-2017 (Bei et al., 2018). Table 1 provides
basic statistics of the annotated corpora.

Parsing Each corpus was tokenized using
UDPipe’s (Straka et al., 2016) pre-trained UDv2.2
models (Straka, 2018) and then parsed as follows:
We trained Dozat et al. (2017)’s parsing model,
a state-of-the-art graph-based neural dependency
parser, on the Universal Dependencies 2.2 dataset
(Nivre et al., 2018). We used the hyperparameter
configuration described in Dozat et al. (2017), and
pre-trained FastText word embeddings for frequent
words (Bojanowski et al., 2016). We are aiming
to make the parsed corpora available as soon as
possible.

Measuring embedding depth We approximate
embedding relations through dependency graphs.
Specifically, for our purposes we define embed-
ding as any dependency such that (i) the dependent
is the head of a clause and (ii) permuting head
and dependent would lead to an ungrammatical
sentence, unlike in “flat” syntactic structures such
as coordinated clauses. Any given clause has
a depth d, defined as the number of embedded
dependencies that need to be traversed in order
to reach the root of the sentence from the target
clause. For example the sentence in Figure 1 has a
maximum embedding depth of 2, since the clause
“that runs fast” is 2 ACL:RELCL-arcs from the root,
and there exists no other clause in the sentence
with a greater such distance.

We do not presently differentiate between cen-
ter embedding and tail embedding. The difference
is eventually important from a cognitive and com-
putational perspective, but our current interest is
focused on the overall distribution of embeddings
in large corpora. Knowing this distribution is a pre-
requisite for modelling the impact of more specific

Language Sentences Tokens

Arabic 2.9 108.0
Bulgarian 2.7 54.8
Catalan 6.4 185.7
Danish 2.5 52.7
Dutch 10.7 207.7
French 86.4 2, 283.2
German 214.0 4, 159.8
Greek 2.5 59.0
Hebrew 5.1 140.6
Italian 6.9 203.9
Latvian 6.3 136.8
Portuguese 9.0 253.1
Romanian 4.3 114.5
Russian 102.7 1, 924.6
Slovenian 1.4 31.8
Spanish 53.8 1, 688.1
Swedish 18.4 261.1

Table 1: Sentence and token counts in millions in the
annotated Wikipedia and news crawl corpora.

distinctions (Bickel, 2010), such as center vs. tail
embedding, or the position of the head (verb-final
vs. verb-initial), or different types of clausal embed-
ding (e.g. complement clauses vs. chaining etc.)

3 Results

3.1 Maximum Embeddedness Depth

As a first step we explore the tail of the distribution
of maximum embeddedness depth in our corpora.
We focus on the 1-20 range, for which a majority
of the languages in our sample have coverage. The
probability distributions are reported in Figure 2.

The distributions decay in a continuous fashion
rather than finding an abrupt cutoff. An impor-
tant aspect of characterizing the tail of distribu-
tions is whether they can be approximated by an
exponential function (Pr(x) ∼ exp(−ax); a >
0) or whether they have a so-called “long-tail”
parametrized by a power law (Pr(x) ∼ x−a; a >
0). One of the essential differences between these
types is that long-tailed distributions display a large
number of rare events (Khmaladze, 1988) (i.e.,
in our case, very deep embeddings are attested),
in contrast to the exponential regime where the
overwhelming majority of observations are bound
within a comparatively narrower range. Statisti-
cally distinguishing between these types is not al-
ways straightforward and several alternative distri-
butional models might yield comparable empirical
performance (Clauset et al., 2009). It is possible
however at least to compare heuristically the ob-
served data against reference distributions of each
type. For this purpose, we included in Figure 2



3940

Figure 2: Distribution of maximum embeddedness
depth in our corpora across languages. Dotted lines cor-
respond to exponential distributions and the dashed line
to a power-law distribution.

two exponential distributions flanking the empirical
ones (exp(−x/5) and exp(−x/10)), and a power-
law distribution (x−4/5). It can be observed that,
while there is a relatively sharp and exponential
decrease for the lowest values of embedding depth,
the tail of the distributions become progressively
less rapidly decaying, sometimes paralleling the
behavior of the reference power-law distribution.1

3.2 Clause Depth and Length

As mentioned in the introduction, it is generally
accepted that deeper levels of embeddedness imply
a larger burden to the human parser. Given the am-
ple evidence that linguistic behavior involves cost-
avoiding strategies (Zipf, 1949), we expect that, all
else being equal, clauses of larger d will be shorter,
to minimize time spent in states with heavy process-
ing demands. We model clause length (measured
in number of orthographic words) in a Poisson re-
gression model, with clause depth as independent
variable. The results in Table 2 confirm across-the-
board mean clause length reduction in function of
depth.

1Visual inspection suggests that a small proportion of the
deepest embeddings are found in degenerate text, e.g., mis-
processed tables. Future work should estimate how such noise
affects our statistics.

Language Slope SE (10−4) Intercept

Arabic −0.07 0.9 2.79
Bulgarian −0.23 7 1.94
Catalan −0.26 2 2.31
Danish −0.23 6 1.93
Dutch −0.32 3 2.03
French −0.42 100 2.45
German −0.26 1 1.90
Greek −0.25 4 2.10
Hebrew −0.25 2 2.31
Italian −0.30 1 2.31
Latvian (n.s.) −0.15 800 1.48
Portuguese −0.16 1 2.02
Romanian −0.28 3 2.32
Russian −0.22 1 2.02
Slovenian −0.27 9 1.98
Spanish −0.31 0.7 2.38
Swedish −0.27 100 1.85

Table 2: Estimates and standard errors (SE) of slopes
for embedding depth and estimates of intercepts for
Poisson regression model with clause length as depen-
dent variable. Only the slope coefficient for Latvian is
not significant (α = 0.01).

3.3 Large Complex Sentences

Deep embeddings might be rare simply because
complex, multi-clause sentences are rare in general.
To assess this possibility, we test whether we can
detect a bias against deep embedding when taking
sentence complexity (in counts of clauses) into
consideration.

For this, we introduce a minimal model for eval-
uating the presence of a bias against deep embed-
dings. We focus on complex matrix clauses with
a large number of embedded clauses, as those are
the ones where such a bias is most likely to be de-
tectable if it exists. In practical terms, we evaluate
main clauses with 8 or more total embedding de-
pendencies only and at least one clause hosting two
or more embedding dependencies. We consider the
14 corpora that contained at least 500 sentences
satisfying these conditions.

We characterize these matrix clauses with their
dependents as directed trees τ (with direction from
parent to daughter nodes/clauses). Thus, a clause
will be represented by a node with out-degree
equal to the number of embedded dependencies
hosted by the clause. The in-degree will be either
0 for main clauses and 1 for subordinate clauses.
The matrix clause is then the root of such a tree,
and the leaves are clauses which do not host any
embedded clauses themselves.

To evaluate the observed distribution, we gen-
erate a baseline set of trees with no bias against
deep embeddings. The baseline trees have (i) the
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same number of clauses (n), and (ii) the same dis-
tribution of embedded dependencies (P(k)), i.e. the
same out-degree distribution, as the observed trees.

Under the null hypothesis that there is no bias
against deep embeddings, the distribution of ob-
served tree depths should be compatible with the
distribution of depths arising from the baseline set
of trees.

As an ilustration consider the sentence “[The
girl [who likes cars [that run fast]] arrived [as I
cooked the pasta [that you gave me]]] ”. In the
Universal Dependencies convention, denoting each
clause by its own head, this can be represented by
the tree in Figure 3(a). This sentence has an em-
bedding depth of 2, it has five clauses (nodes) in
total, and three clauses have non-zero out-degree.
One possible alternative tree with the same num-
ber of nodes and the same out-degree distribution
is given in Figure 3(b), which has an embedding
depth of 3. Hence, the same number of clauses and
embedded dependencies distribution yields a tree
that is deeper. In the case of large complex sen-
tences with many clauses, there exist multiple such
trees that could be leveraged to determine whether
the depth of the empirically observed sentence is
unusually low or high given what is expected under
the baseline.

It should be stressed that this scheme of com-
parison considers each observed sentence indepen-
dently: the statistics of other sentences in the same
language play no role. In order to evaluate the
overall bias in a language, we compare the differ-
ence between the observed depth of each sentence
against the mean value of 100 permuted baseline
trees derived from them, and we aggregate the re-
sults of all sentences within a language. If the
resulting distribution of depth differences has its
probability mass systematically above or below
zero, this would speak against the null hypothesis
of no bias.

Surprisingly, we find no outstanding systematic
pattern in the comparison. While the median and
mean values of the differences vary across lan-
guages, the distributions hover around zero with a
modest variation (so that in general we observe that
the empirical values are an average of 1 SD from
the reference sample mean). Figure 4 displays the
cumulative distribution of the difference between
empirical and mean reference embeddedness depth
across languages.

arrived

likes

run

cooked

gave

(a)

(b)

Figure 3: (a) UD-style clause dependencies for the sen-
tence “[The girl [who likes cars [that run fast]] arrived
[as I cooked the pasta [that you gave me] ]]”; (b) Ex-
ample alternative tree with same number of nodes and
out-degree distribution.

4 Conclusions

We empirically addressed one central issue in
theoretical linguistics, namely the nature and
distribution of nested clausal embeddings in
natural languages. Large corpora and automated
annotation tools are crucial to address this question,
as deep embeddings are expectedly rare. Our
results confirm that there is no sharp boundary
on maximum embedding depth. More deeply
embedded sentences appear to be shorter (in
number of words), and this is in accordance
with the hypothesis that they impose a heavier
processing load than shallower clauses. However,
surprisingly, when sentence complexity (in number
of clauses) is accounted for, there is no clear bias
against deeper embeddings.

This is a first large quantitative exploration of the
matter. In future work, we will extend our set of lan-
guages, aiming at more typological variety (Indo-
European languages are greatly over-represented
in our current data). Moreover, our results rely on
automated annotation, and we have no estimate of
the extent to which they are affected by annotation
error. Finally, we have glossed over potential dif-
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Figure 4: Cumulative distribution function of the differ-
ence in embeddedness depth for 14 languages with at
least 500 sentences with more than 8 clauses.

ferences in embedding preferences stemming from
differences in types of dependencies (e.g. center vs.
tail embedding) and their linearizations (e.g. head-
initial vs. head-final), although these differences
are likely to play an important role.
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Jennifer Foster, Cláudia Freitas, Katarı́na Gajdošová,
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John Lee, Phng Lê H`ông, Alessandro Lenci, Saran
Lertpradit, Herman Leung, Cheuk Ying Li, Josie
Li, Keying Li, KyungTae Lim, Nikola Ljubešić,
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matsu, Zdeňka Urešová, Larraitz Uria, Hans Uszko-
reit, Sowmya Vajjala, Daniel van Niekerk, Gertjan
van Noord, Viktor Varga, Veronika Vincze, Lars
Wallin, Jonathan North Washington, Seyi Williams,
Mats Wirén, Tsegay Woldemariam, Tak-sum Wong,
Chunxiao Yan, Marat M. Yavrumyan, Zhuoran Yu,
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