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Abstract

Recent research studies communication emer-
gence in communities of deep network agents
assigned a joint task, hoping to gain insights
on human language evolution. We propose
here a new task capturing crucial aspects of
the human environment, such as natural ob-
ject affordances, and of human conversation,
such as full symmetry among the participants.
By conducting a thorough pragmatic and se-
mantic analysis of the emergent protocol, we
show that the agents solve the shared task
through genuine bilateral, referential commu-
nication. However, the agents develop mul-
tiple idiolects, which makes us conclude that
full symmetry is not a sufficient condition for
a common language to emerge.

1 Introduction

The advent of powerful deep learning architec-
tures has revived research in simulations of lan-
guage emergence among computational agents
that must communicate to accomplish a task (e.g.,
Jorge et al., 2016; Havrylov and Titov, 2017; Kot-
tur et al., 2017; Lazaridou et al., 2017; Lee et al.,
2017; Choi et al., 2018; Evtimova et al., 2018;
Lazaridou et al., 2018). The nature of the emer-
gent communication code should provide insights
on questions such as to what extent compara-
ble functional pressures could have shaped hu-
man language, and whether deep learning models
can develop human-like linguistic skills. For such
inquiries to be meaningful, the designed setup
should reflect as many aspects of human commu-
nication as possible. Moreover, appropriate tools
should be applied to the analysis of emergent com-
munication, since, as several recent studies have
shown, agents might succeed at a task without
truly relying on their communicative channel, or
by means of ad-hoc communication techniques

overfitting their environment (Kottur et al., 2017;
Bouchacourt and Baroni, 2018; Lowe et al., 2019).

We contribute on both fronts. We introduce
a game meeting many desiderata for a natural
communication environment. We further propose
a two-pronged analysis of emerging communica-
tion, at the pragmatic and semantic levels. At
the pragmatic level, we study communicative acts
from a functional perspective, measuring whether
the messages produced by an agent have an im-
pact on the subsequent behaviour of the other.
At the semantic level, we decode which aspects
of the extra-linguistic context the agents refer to,
and how such reference acts differ between agents.
Some of our conclusions are positive. Not only do
the agents solve the shared task, but genuine bi-
lateral communication helps them to reach higher
reward. Moreover, their referential acts are mean-
ingful given the task, carrying the semantics of
their input. However, we also find that even per-
fectly symmetric agents converge to distinct idi-
olects instead of developing a single, shared code.

2 The fruit and tools game

Our game, inspired by Tomasello’s (2014) conjec-
ture that the unique cognitive abilities of humans
arose from the requirements of cooperative inter-
action, is schematically illustrated in Fig. 1. In
each episode, a randomly selected agent is pre-
sented with instances of two tools (knife, fork,
axe. . . ), the other with a fruit instance (apple,
pear, plum. . . ). Tools and fruits are represented
by property vectors (e.g., has a blade, is small),
with each instance characterized by values ran-
domly varying around the category mean (e.g., an
apple instance might be smaller than another). An
agent is randomly selected to be the first to per-
form an action. The game then proceeds for an
arbitrary number of turns. At each turn, one of
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Figure 1: Our game. One agent receives a fruit, another two tools. Each agent sends a message in turn, until an
agent ends the episode by choosing a tool. The agents are rewarded if the tool choice is optimal given the fruit.

the agents must decide whether to pick one of the
two tools and stop, or to continue, in which case
the message it utters is passed to the other agent,
and the game proceeds. Currently, for ease of
analysis, messages are single discrete symbols se-
lected from a vocabulary of size 10, but extension
to symbol sequences is trivial (although it would
of course complicate the analysis). As soon as an
agent picks a tool, the game ends. The agents re-
ceive a binary reward of 1 if they picked the better
tool for the fruit at hand, 0 otherwise. The best
choice is computed by a utility function that takes
into account the interaction between tool and fruit
instance properties (e.g., as in Fig. 1, a tool with
a round edge might be particularly valuable if the
fruit has a pit). Utility is relative: given a peach,
the axe is worse than the spoon, but it would be the
better tool when the alternative is a hammer.

Here are some desirable properties of our setup,
as a simplified simulation of human interactions.
The agents are fully symmetric and cannot special-
ize to a fixed role or turn-taking scheme. The num-
ber of turns is open and determined by the agents.
In pure signaling/referential games (Lewis, 1969),
the aim is successful communication itself. In our
game, reward depends instead on tool and fruit
affordances. Optimal performance can only be
achieved by jointly reasoning about the proper-
ties of the tools and how they relate to the fruit.
Humans are rewarded when they use language to
solve problems of this sort, and not for success-
ful acts of reference per se. Finally, as we use
commonsense descriptions of everyday objects to
build our dataset (see below), the distribution of
their properties possesses the highly skewed char-
acteristics encountered everywhere in the human
environment (Li, 2002). For example, if the ma-
jority of fruits requires to be cut, a knife is intrin-
sically more useful than a spoon. Note that the
agents do not have any a priori knowledge of the
tools utility. Yet, baseline agents are able to dis-

cover context-independent tool affordances and al-
ready reach high performance. We believe that this
scenario, in which communication-transmitted in-
formation complements knowledge that can be di-
rectly inferred by observing the world, is more in-
teresting than typical games in which language is
the only information carrier.

Game ingredients and utility We picked 16
tool and 31 fruit categories from McRae et al.
(2005) and Silberer et al. (2013), who provide
subject-elicited property-based commonsense de-
scriptions of objects, with some extensions. We
used 11 fruit and 15 tool features from these
databases to represent the categories. We rescaled
the elicitation-frequency-based property values
provided in the norms to lie in the [0, 1] range,
and manually changed some counter-intuitive val-
ues. An object instance is a property vector sam-
pled from the corresponding category as follows.
For binary properties such as has a pit, we use
Bernoulli sampling with p equaling the category
value. For continuous properties such as is small,
we sample uniformly from [µ−0.1, µ+0.1], where
µ is the category value. We then devised a func-
tion returning an utility score for any fruit-tool
property vector pair. The function maps proper-
ties to a reduced space of abstract functional fea-
tures (such as break for tools, and hard for fruits).
Details are in Supplementary Section 1. For exam-
ple, an apple with is crunchy=0.7 value gets a high
hard functional feature score. A knife with has a
blade=1 gets a high cut score, and therefore high
utility for the hard apple. Some features, e.g., has
a handle for tools, have no impact on utility. They
only represent realistic aspects of objects and act
as noise. Our dataset with full category property
vectors will be publicly released along with code.

Datasets We separate the 31 fruit categories
into three sets: in-domain (21 categories), vali-
dation and transfer (5 categories each). The in-
domain set is further split into train and test parti-
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Figure 2: Two turns of dialogue. Dashed boxes are not used in this game episode due to the agent roles (the
blue/left agent is Tool Player, the green/right one is Fruit player). The flow is explained in detail in the text.

tions. We train agents on the in-domain train par-
tition and monitor convergence on the validation
set. We report test performance on the in-domain
test partition and on the transfer set. For example,
the peach category is in-domain, meaning that dis-
tinct peach instances will be seen at training and
in-domain testing time. The nectarine category is
in the transfer set, so nectarine instances will only
be seen at test time. This scheme tests the gener-
alization abilities of the agents (that can general-
ize to new fruits since they are all are described in
the same feature space). We generate 210, 000 in-
domain training samples and 25, 000 samples for
the other sets, balanced across fruits and tools (that
are common across the sets).

Game dynamics and agent architecture At
the beginning of a game episode, two neural net-
work agents A and B receive, randomly, either a
pair of tools (tool1, tool2) (always sampled from
different categories) or a fruit. The agent receiv-
ing the tools (respectively the fruit) will be Tool
Player (respectively Fruit Player) for the episode.1

The agents are also randomly assigned positions,
and the one in position 1 starts the game. Figure 2
shows two turns of the game in which A (blue/left)
is Tool Player and in position 1. The first turn is in-
dexed t = 0, therefore A will act on even turns, B
on odd turns. At game opening, each agent passes
its input (tool pair or fruit) through a linear layer
followed by a tanh nonlinearity, resulting in em-
bedding iA (resp. iB). Then, at each turn t, an
agent, for example A, receives the message mB

t−1
from agent B, and accesses its own previous inter-
nal state sAt−2 (we refer to “memory” the addition

1Agents must learn to recognize the assigned role.

of the agent’s previous state). The message mB
t−1

is processed by a RNN, and the resulting hidden
state hAt (m

B
t−1) is concatenated with the agent pre-

vious internal state sAt−2 and the input embedding
iA. The concatenated vector is fed to the Body
module, composed of a linear layer followed by
tanh. The output of the Body module is the new A
state, sAt , fed to Message and Choice decoders.

The Message decoder is an RNN with hidden
state initialized as sAt , and outputting a probability
distribution p(mA

t |sAt ) over possible A messages.
At training time, we sample a message mA

t ; at test
time we take the most probable one. The Choice
decoder is a linear layer processing sAt and out-
putting a softmax-normalized vector of size 3. The
latter represents the probabilities p(cAt |sAt ) over
A’s possible choices: (i) cAt = 0 to continue play-
ing, (ii) cAt = 1 to choose tool tool1 and stop (iii)
cAt = 2 to choose tool tool2 and stop. Again,
we sample at training and argmax at test time. If
cAt = 0, the game continues. B receives message
mA

t , its previous state sBt−1 and input embedding
iB , and it outputs the tuple (mB

t+1, cBt+1, sBt+1) etc.,
until an agent stops the game, or the maximum
number of turns Tmax = 20 is reached.

When an agent stops by choosing a tool,
for example tool1, we compute the two util-
ities U(tool1, fruit) and U(tool2, fruit). If
U(tool1, fruit) ≥ U(tool2, fruit), that is the
best tool was chosen, shared reward is R = 1.
If U(tool1, fruit) < U(tool2, fruit) or if the
agents reach Tmax turns without choosing,R = 0.2

During learning, the reward is back-propagated

2We also tried directly using raw or normalized scalar util-
ities as rewards, with similar performances.
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with Reinforce (Williams, 1992). When the game
starts at t = 0, we feed the agent in position
1 a fixed dummy message m0, and the previous
states of the agents sAt−2 and sBt−1 are initialized
with fixed dummy s0. In the no-memory ablation,
previous internal states are always replaced by s0.
When we block communication, agent messages
are replaced bym0. Supplementary Section 2 pro-
vides hyperparameter and training details.

3 Measuring communication impact

Message Effect is computed on single turns and
uses causal theory (Pearl et al., 2016) to quantify
how much what an agent utters impacts the other,
compared to the counterfactual scenario in which
the speaking agent said something else.

Consider message mA
t uttered by A at turn t. If

cAt = 0 (that is, A continues the game), mA
t is pro-

cessed by B, along with sBt−1 and iB . At the next
turn, B outputs a choice cBt+1 and a message mB

t+1

drawn from p(cBt+1,m
B
t+1|sBt+1). B’s state sBt+1 is

deterministically determined by mA
t , c

A
t , s

B
t−1, i

B ,
so we can equivalently write that cBt+1 and mB

t+1

are drawn from p(cBt+1,m
B
t+1|mA

t , c
A
t , s

B
t−1, i

B).
Conditioning on cAt , s

B
t−1, i

B ensures there are no
confounders when we analyze the influence from
mA

t (Pearl et al., 2016). Supplementary Figure A1
shows the causal graph supporting our assump-
tions. We will not from here onwards write the
conditioning on cAt , s

B
t−1, i

B explicitly.
We define zBt+1 = (cBt+1,m

B
t+1). We want to

estimate how much the message from A, mA
t , in-

fluences the next-turn behaviour (choice and mes-
sage) of B, zBt+1. We thus measure the discrepancy
between the conditional distribution p(zBt+1|mA

t )
and the marginal distribution p(zBt+1) not taking
mA

t into account. However, we want to assess
agent B’s behaviour under other possible received
messages mA

t . To do so, when we compute the
marginal of agent B’s p(zBt+1), we intervene on
mA

t and draw the messages from the interven-
tion distribution. We define p̃(zBt+1), the marginal
computed with counterfactual messages m′At , as:

p̃(zBt+1) =
∑
mA

t

p(zBt+1|m′At )p̃(m′At ) (1)

where p̃(m′At ) is the intervention distribution, dif-
ferent from p(mA

t |sAt ). If at turn t, A continues the
game, we define the Message Effect (ME) from
agent A’s message mA

t on agent B’s choice and

Given the message mA
t from agent A.

1 Sample K pairs zBt+1,k ∼ p(zBt+1|mA
t ).

2 Sample J counterfactuals m′At,j ∼ p̃(m′At ).
3 For each zBt+1,k, do

p̃(zBt+1,k) =
J∑

j=1

p(zBt+1,k|m′At,j)p̃(m′At,j).

4 Return

MEA→B
t =

1

K

K∑
k=1

log
p(zBt+1,k|mA

t )

p̃(zBt+1,k)
.

Algorithm 1 Computation of MEA→B
t .

message pair, zBt+1 as:

MEA→B
t = KL

(
p(zBt+1|mA

t )||p̃(zBt+1)
)

(2)

where KL is the Kullback-Leibler divergence, and
p̃(zBt+1) is computed as in Eq. 1. This allows us
to measure how much the conditional distribution
differs from the marginal. Algorithm 1 shows how
we estimate MEA→B

t . In our experiments, we
draw K = 10 samples zBt+1,k, and use a uniform
intervention distribution p̃(m′At ) with J = 10.
This kind of counterfactual reasoning is explored
in depth by Bottou et al. (2013). Jaques et al.
(2018) and Lowe et al. (2019) present related mea-
sures of causal impact based on the Mutual Infor-
mation (MI) between influencing and influenced
agents. We discuss in Supplementary Section 3
possible issues with the MI-based approach.

Bilateral communication Intuitively, there has
been a proper dialogue if, in the course of a
conversation, each agent has said at least one
thing that influenced the other. We operational-
ize this through our bilateral communication mea-
sure. This is a binary, per-game score, that is pos-
itive only if in the game there has been at least
one turn with significant message effect in both
directions, i.e., ∃ t, t′ s.t. MEA→B

t > θ and
MEB→A

t′ > θ. We set θ = 0.1.3

3We considered setting θ to (i) the average ME returned
by untrained agents, but this led to a threshold extremely
close to 0, and (ii) the average of the agents’ ME values,
but this counterintuitively penalized pairs of agents with high
overall communication influence.
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4 Results

We first confirm that the agents succeed at the task,
and communication improves their performance.
Second, we study their pragmatics, looking at how
ablating communication and memory affect their
interaction. Finally, we try to interpret the seman-
tics of the agents’ messages.

4.1 Performance and pragmatics

We report mean and standard error of the mean
(SEM) over successful training seeds.4 Each agent
A or B can be either F (Fruit Player) or T (Tool
Player) and in position 1 or 2, depending on the
test game. We measure to what extent Tool Player
influences Fruit Player (MET→F ) and vice versa
(MEF→T ). Similarly, we evaluate position im-
pact by computing ME1→2 and ME2→1. We av-
erage ME values over messages sent during each
test game, and report averages over test games.
Note that we also intervene on the dummy initial-
ization message used at t = 0, which is received
by the agent in position 1. This impacts the value
of ME2→1. If the agent in position 1 has learned
to rely on the initialization message to understand
that the game is beginning, an intervention on this
message will have an influence we want to take
into account.5 Similarly, in the no-communication
ablation, when computing ME values, we replace
the dummy fixed message the agents receive with
a counterfactual. Finally, we emphasize that the
computation of ME values does not interfere with
game dynamics and does not affect performance.

Both communication and memory help Ta-
ble 1 shows that enabling the agents to com-
municate greatly increases performance compared
to the no-communication ablation, both with and
without memory, despite the high baseline set by
agents that learn about tool usefulness without
communicating (see discussion below). Agents
equipped with memory perform better than their
no-memory counterparts, but the gain in perfor-
mance is smaller compared to the gain attained
from communication. The overall best perfor-
mance is achieved with communication and mem-
ory. We also see that the agents generalize well,
with transfer-fruit performance almost matching
that on in-domain fruits. Next, we analyze in detail

4That is, training seeds leading to final validation perfor-
mance above 85%.

5Conversely, we ignore the messages agents send when
stopping the game, as they are never heard.

the impact of each factor (communication, mem-
ory) on agent performance and strategies.

No-communication, no-memory We start by
looking at how the game unfolds when commu-
nication and agent memory are ablated (top left
quadrant of Table 1). Performance is largely above
chance (≈ 50%), because, as discussed in Sec-
tion 2, some tools are intrinsically better on av-
erage across fruits than others. Without commu-
nication, the agents exploit this bias and learn a
strategy where (i) Fruit Player never picks the tool
but always continues the game and (ii) Tool Player
picks the tool according to average tool usefulness.
Indeed, Tool Player makes the choice in more than
99% of the games. Conversation length is 0 if Tool
Player starts and 1 if it is the second agent, requir-
ing the starting Fruit Player to pass its turn. Reas-
suringly, ME values are low, confirming the relia-
bility of this communication score, and indicating
that communication-deprived agents did not learn
to rely on the fixed dummy message (e.g., by us-
ing it as a constant bias). Still, we observe that,
across the consistently low values, Fruit Player ap-
pears to affect Tool Player significantly more than
the reverse (MEF→T > MET→F ). This is gener-
ally observed in all configurations, and we believe
it due to the fact that Tool Player takes charge of
most of the reasoning in the game. We come back
to this later in our analysis. We also observe that
the second player impacts the first more than the
reverse (ME2→1 > ME1→2). We found this to be
an artifact of the strategy adopted by the agents. In
the games in which Tool Player starts and imme-
diately stops the game, we can only compute ME
for the Tool/position-1 agent, by intervening on
the initialization. The resulting value, while tiny,
is unlikely to be exactly 0. In the games where
Fruit Player starts and Tool Player stops at the sec-
ond turn, we compute instead two tiny MEs, one
per agent. Hence, the observed asymmetry. We
verified this hypothesis by removing single-turn
games: the influence of the second player on the
first indeed disappears.

Impact of communication The top quadrants
of Table 1 show that communication helps perfor-
mance, despite the high baseline set by the “aver-
age tool usefulness” strategy. Importantly, when
communication is added, we see a dramatic in-
crease in the proportion of games with bilateral
communication, confirming that improved perfor-
mance is not due to an accidental effect of adding
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No communication With communication
Metric In Transfer In Transfer

N
o

m
em

or
y

Av. perf. (%) 84.83± 0.09 84.0± 0.11 96.9± 0.32 94.5± 0.37
MEF→T 0.133∗ ± 0.01 0.14∗ ± 0.01 5.0∗ ± 0.39 5.0∗ ± 0.36
MET→F 0.05± 0.02 0.030± 0.01 3.9± 0.38 3.3± 0.30
ME1→2 0.066± 0.00 0.067± 0.01 3.9± 0.29 3.7± 0.26
ME2→1 0.12∗ ± 0.02 0.10∗ ± 0.01 5.0∗ ± 0.38 4.7∗ ± 0.33

Bi. comm. (%) 1.4± 0.31 1.3± 0.40 88± 2.49 89± 2.24
Av. conv. length 0.508± 0.01 0.52± 0.01 2.16± 0.08 2.21± 0.10
T chooses (%) 99.4± 0.63 99.6± 0.56 85± 2.09 83± 2.56

W
ith

m
em

or
y

Av. perf. (%) 88.5± 0.11 87.7± 0.16 97.4± 0.12 95.3± 0.16
MEF→T 0.11∗ ± 0.01 0.13∗ ± 0.01 3.0∗ ± 0.29 2.8∗ ± 0.24
MET→F 0.064± 0.01 0.071± 0.01 1.8± 0.22 1.8± 0.21
ME1→2 0.085± 0.01 0.10± 0.01 2.4± 0.29 2.3± 0.22
ME2→1 0.093± 0.01 0.103± 0.01 2.4± 0.22 2.4± 0.21

Bi. comm. (%) 3.8± 0.61 4.6± 0.68 78± 2.55 78± 2.65
Av. conv. length 1.50± 0.06 1.46± 0.06 2.7± 0.11 2.7± 0.11
T chooses (%) 87.3± 1.34 85.8± 1.48 81± 2.94 81± 3.00

Table 1: Test performance and pragmatic measures mean and SEM in different settings. “Av. perf.” (average
performance) denotes % of samples where best tool was chosen, “Bi. comm.” denotes % of games with bilateral
communication taking place. “Av. conv. length” is average conversation length in turns. “T chooses” denotes %
of games ended by Tool Player. Values of ME with an asterisk ∗ are statistically significantly higher than their
reverse (e.g. MEF→T > MET→F ). Best “Av. perf.” and “Bi. comm.” in bold.

a new channel (Lowe et al., 2019). ME and aver-
age number of turns also increase. Fruit Player is
the more influential agent. This effect is not due
to the artifact we found in the no-communication
ablation, because almost all conversations, includ-
ing those started by Tool Player, are longer than
one turn, so we can compute both MEF→T and
MET→F . We believe the asymmetry to be due to
the fact that Tool Player is the agent that demands
more information from the other, as it is the one
that sees the tools, and that in the large majority of
cases makes the final choice. Supplementary Ta-
ble A4 shows that the gap between the influence
of the Fruit Player on the Tool player and its re-
verse is greater when the Fruit Player is in posi-
tion 2. This, then, explains ME2→1 > ME1→2 as
an epiphenomenon of Fruit Player being more in-
fluential.

Is memory ablation necessary for commu-
nication to matter? An important observation
from previous research is that depriving at least
one agent of memory might be necessary to de-
velop successful multi-turn communication (Kot-
tur et al., 2017; Cao et al., 2018; Evtimova et al.,
2018). This is undesirable, as obviously language
should not emerge simply as a surrogate for mem-

ories of amnesiac agents. The performance and
communicative behaviours results in the bottom
right quadrant of Table 1 show that, in our game,
genuine linguistic interaction (as cued by ME and
bilateral communication scores) is present even
when both agents are equipped with memory. It is
interesting however to study how adding memory
affects the game dynamics independently of com-
munication. In the bottom left quadrant, we see
that memory leads to some task performance im-
provement for communication-less agents. Man-
ual inspection of example games reveals that such
agents are developing turn-based strategies. For
example, Tool Player learns to continue the game
at turn t if tool1 has a round end. At t + 1, Fruit
Player can use the fact that Tool Player continues
at t as information about relative tool roundness,
and either pick the appropriate one based on the
fruit or continue to gather more information. In a
sense, agents learn to use the possibility to stop or
continue at each turn as a rudimentary communi-
cation channel. Indeed, exchanges are on average
longer when memory is involved, and turn-based
strategies appear even with communication. In the
latter case, agents rely on communication but also
on turn-based schemes, resulting in lower ME val-
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Messages Fruit Tool 1 Tool 2
Both 37± 1.70 31± 1.21 24± 1.07

F 37± 1.75 23.3± 0.66 16.7± 0.51
T 14.1± 0.79 32± 1.17 25± 1.04

Stats. (%) 5.786± 0.00 8.76± 0.01 7.682± 0.01

Table 2: Semantic classifier % accuracy mean and SEM
over successful training seeds.

ues and bilateral communication compared to the
no-memory ablation. Finally, the respective posi-
tions of the agents in the conversation no longer
impact ME (ME1→2 ≈ ME2→1). This might be
because, with memory, the starting agent can iden-
tify whether it is at turn t = 0, where it almost
always chooses to continue the game to send and
receive more information via communication. In-
tervening on the dummy initialization message has
a lower influence, resulting in lower ME2→1.

4.2 Conversation semantics

Having ascertained that our agents are conduct-
ing bidirectional conversations, we next try to de-
code what are the contents of such conversations.
To do this, we train separate classifiers to pre-
dict, from the message exchanges in successful in-
domain test game, what are Fruit, Tool 1, Tool 2
in the game.6 Consider for example a game in
which fruit is apple and tools 1 and 2 knife and
spoon, respectively. If the message-based classi-
fiers are, say, able to successfully decode apple but
not knife/spoon, this suggests that the messages
are about the fruit but not the tools. For each pre-
diction task, we train classifiers (i) on the whole
conversation, i.e., both agents’ utterances (Both),
and (ii) on either Player’s utterances: Fruit (F)
or Tool only (T). For comparison, we also report
accuracy of a baseline that makes guesses based
on the train category distribution (Stats), which is
stronger than chance. We report mean accuracy
and SEM across successful training seeds. Sup-
plementary Section 5 provides further details on
classifier implementation and training.

The first row of Table 2 shows that the conversa-
tion as a whole carries information about any ob-
ject. The second and third show that the agents are
mostly conveying information about their respec-
tive objects (which is very reasonable), but also, to
a lesser extent, but still well above baseline-level,

6We focus on the in-domain set as there are just 5 transfer
fruit categories. We also tried predicting triples at once with a
single classifier, that consistently reached above-baseline but
very low accuracies.

about the other agent’s input. This latter obser-
vation is intriguing. Further work should ascer-
tain if it is an artifact of fruit-tool correlations, or
pointing in the direction of more interesting lin-
guistic phenomena (e.g., asking “questions”). The
asymmetry between Tool 1 and 2 would also de-
serve further study, but importantly the agents are
clearly referring to both tools, showing they are
not adopting entirely degenerate strategies.7

We tentatively conclude that the agents did de-
velop the expected semantics, both being able to
refer to all objects in the games. Did they however
developed shared conventions to refer to them, as
in human language? This would not be an unrea-
sonable expectation, since the agents are symmet-
ric and learn to play both roles and in both posi-
tions. Following up on the idea of “self-play” of
Graesser et al. (2019), after a pair of agents A and
B are trained, we replace at test time agent B’s em-
bedders and modules with those in A, that is, we
let one agent play with a copy of itself. If A and
B are speaking the same language, this should not
affect test performance. Instead, we find that with
self-play average game performance drops down
to 67% and 65% in in-domain and transfer test
sets, respectively. This suggests that the agents de-
veloped their own idiolects. The fact that perfor-
mance is still above chance could be due to the fact
that the latter are at least partially exchangeable, or
simply to the fact that agents can still do reason-
ably well by relying on knowledge of average tool
usefulness (self-play performance is below that of
the communication-less agents in Table 1). To
decide between these interpretations, we trained
the semantic classifier on conversations where A
is the Fruit Player and B the Tool Player, testing
on conversations about the same inputs, but where
the roles are inverted. The performance drops
down to the levels of the Stats baseline (Supple-
mentary Table A5), supporting the conclusion that
non-random performance is due to knowledge ac-
quired by the agents independently of communica-
tion, and not partial similarity among their codes.

5 Related work

Games Among the long history of early works that
model language evolution between agents (e.g.

7We experiment with single symbol messages (and multi-
turn conversation) but using longer messages we could po-
tentially witness interesting phenomena such as the emer-
gence of compositionality. We leave this exploration for fu-
ture work.
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Steels, 2003; Brighton et al., 2003), Reitter and
Lebiere (2011) simulate human language evolu-
tion with a Pictionary type task. Most recently,
with the advent of neural network architectures,
literature focuses on simple referential games with
a sender sending a single message to a receiver,
and reward depending directly on communication
success (e.g., Lazaridou et al., 2017; Havrylov
and Titov, 2017; Lazaridou et al., 2018). Evti-
mova et al. (2018) extend the referential game
presenting the sender and receiver with referent
views in different modalities, and allowing mul-
tiple message rounds. Still, reward is given di-
rectly for referential success, and the roles and
turns of the agents are fixed. Das et al. (2017)
generalize Lewis’ signaling game (Lewis, 1969)
and propose a cooperative image guessing game
between two agents, a question bot and an answer
bot. They find that grounded language emerges
without supervision. Cao et al. (2018) (expanding
on Lewis et al., 2017) propose a setup where two
agents see the same set of items, and each is pro-
vided with arbitrary, episode-specific utility func-
tions for the object. The agents must converge in
multi-turn conversation to a decision about how to
split the items. The fundamental novelty of our
game with respect to theirs is that our rewards de-
pend on consistent, realistic commonsense knowl-
edge that is stable across episodes (hammers are
good to break hard-shell fruits, etc.). Mordatch
and Abbeel (2018) (see also Lowe et al., 2017)
study emergent communication among multiple
(> 2) agents pursuing their respective goals in a
maze. In their setup, fully symmetric agents are
encouraged to use flexible, multi-turn communi-
cation as a problem-solving tool. However, the
independent complexities of navigation make the
environment somewhat cumbersome if the aim is
to study emergent communication.

Communication analysis Relatively few pa-
pers have focused specifically on the analysis of
the emergent communication protocol. Among the
ones more closely related to our line of inquiry,
Kottur et al. (2017) analyze a multi-turn signal-
ing game. One important result is that, in their
game, the agents only develop a sensible code if
the sender is deprived of memory across turns. Ev-
timova et al. (2018) study the dynamics of agent
confidence and informativeness as a conversation
progresses. Cao et al. (2018) train probe classi-
fiers to predict, from the messages, each agent util-

ity function and the decided split of items. Most
directly related to our pragmatic analysis, Lowe
et al. (2019), who focus on simple matrix commu-
nication games, introduce the notions of positive
signaling (an agent sends messages that are related
to its state) and positive listening (an agent’s be-
haviour is influenced by the message it receives).
They show that positive signaling does not en-
tail positive listening, and commonly used metrics
might not necessarily detect the presence of one
or the other. We build on their work, by focus-
ing on the importance of mutual positive listening
in communication (our “bilateral communication”
measure). We further refine the causal approach to
measuring influence they introduce. Jaques et al.
(2018) also use the notion of causal influence, both
directly as a term in the agent cost function, and to
analyze their behaviour.

6 Discussion

We introduced a more challenging and arguably
natural game to study emergent communication in
deep network agents. Our experiments show that
these agents do develop genuine communication
even when (i) successful communication per se is
not directly rewarded; (ii) the observable environ-
ment already contains stable, reliable information
helping to solve the task (object affordances); and
(iii) the agents are not artificially forced to rely on
communication by erasing their memory. The lin-
guistic exchanges of the agents are not only lead-
ing to significantly better task performance, but
can be properly pragmatically characterized as di-
alogues, in the sense that the behaviour of each
agent is affected by what the other agent says.
Moreover, they use language, at least in part, to
denote the objects in their environment, showing
primitive hallmarks of a referential semantics.

We also find, however, that agent pairs trained
together in fully symmetrical conditions develop
their own idiolects, such that an agent won’t (fully)
understand itself in self play. As convergence to
a shared code is another basic property of human
language, in future research we will explore ways
to make it emerge. First, we note that Graesser
et al. (2019), who study a simple signaling game,
similarly conclude that training single pairs of
agents does not lead to the emergence of a com-
mon language, which requires diffusion in larger
communities. We intend to verify if a similar trend
emerges if we extend our game to larger agent
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groups. Conversely, equipping the agents with a
feedback loop in which they also receive their own
messages as input might encourage shared codes
across speaker and listener roles.

In the current paper, we limited ourselves to
one-symbol messages, facilitating analysis but
greatly reducing the spectrum of potentially emer-
gent linguistic phenomena to study. Another im-
portant direction for future work is thus to endow
agents with the possibility of producing, at each
turn, a sequence of symbols, and analyze how this
affects conversation dynamics and the communi-
cation protocol. Finally, having shown that agents
succeed in our setup, we intend to test them with
larger, more challenging datasets, possibly involv-
ing more realistic perceptual input.
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fan Lee, and Dhruv Batra. 2017. Learning coop-
erative visual dialog agents with deep reinforcement
learning. In 2017 IEEE International Conference on
Computer Vision (ICCV).

Katrina Evtimova, Andrew Drozdov, Douwe Kiela,
and Kyunghyun Cho. 2018. Emergent com-
munication in a multi-modal, multi-step refer-
ential game. In Proceedings of ICLR Con-
ference Track, Vancouver, Canada. Published
online: https://openreview.net/group?
id=ICLR.cc/2018/Conference.

Laura Graesser, Kyunghyun Cho, and Douwe Kiela.
2019. Emergent linguistic phenomena in multi-
agent communication games. CoRR.

Serhii Havrylov and Ivan Titov. 2017. Emergence of
language with multi-agent games: Learning to com-
municate with sequences of symbols. In Proceed-
ings of NIPS, pages 2149–2159, Long Beach, CA,
USA.

Natasha Jaques, Angeliki Lazaridou, Edward Hughes,
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