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Abstract

BERT is a recent language representation
model that has surprisingly performed well in
diverse language understanding benchmarks.
This result indicates the possibility that BERT
networks capture structural information about
language. In this work, we provide novel sup-
port for this claim by performing a series of
experiments to unpack the elements of English
language structure learned by BERT. We first
show that BERT’s phrasal representation cap-
tures phrase-level information in the lower lay-
ers. We also show that BERT’s intermediate
layers encode a rich hierarchy of linguistic in-
formation, with surface features at the bottom,
syntactic features in the middle and semantic
features at the top. BERT turns out to require
deeper layers when long-distance dependency
information is required, e.g. to track subject-
verb agreement. Finally, we show that BERT
representations capture linguistic information
in a compositional way that mimics classical,
tree-like structures.

1 Introduction

BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2018) is a
bidirectional variant of Transformer networks
(Vaswani et al., 2017) trained to jointly predict
a masked word from its context and to classify
whether two sentences are consecutive or not. The
trained model can be fine-tuned for downstream
NLP tasks such as question answering and lan-
guage inference without substantial modification.
BERT outperforms previous state-of-the-art mod-
els in the eleven NLP tasks in the GLUE bench-
mark (Wang et al., 2018) by a significant margin.
This remarkable result suggests that BERT could
“learn” structural information about language.
Can we unveil the representations learned by
BERT to proto-linguistics structures? Answering
this question could not only help us understand

the reason behind the success of BERT but also its
limitations, in turn guiding the design of improved
architectures. This question falls under the topic of
the interpretability of neural networks, a growing
field in NLP (Belinkov and Glass, 2019). An im-
portant step forward in this direction is Goldberg
(2019), which shows that BERT captures syntac-
tic phenomena well when evaluated on its ability
to track subject-verb agreement.

In this work, we perform a series of experiments
to probe the nature of the representations learned
by different layers of BERT. ! We first show that
the lower layers capture phrase-level information,
which gets diluted in the upper layers. Second, we
propose to use the probing tasks defined in Con-
neau et al. (2018) to show that BERT captures a
rich hierarchy of linguistic information, with sur-
face features in lower layers, syntactic features in
middle layers and semantic features in higher lay-
ers. Third, we test the ability of BERT representa-
tions to track subject-verb agreement and find that
BERT requires deeper layers for handling harder
cases involving long-distance dependencies. Fi-
nally, we propose to use the recently introduced
Tensor Product Decomposition Network (TPDN)
(McCoy et al., 2019) to explore different hypothe-
ses about the compositional nature of BERT’s rep-
resentation and find that BERT implicitly captures
classical, tree-like structures.

2 BERT

BERT (Devlin et al., 2018) builds on Transformer
networks (Vaswani et al., 2017) to pre-train bidi-
rectional representations by conditioning on both
left and right contexts jointly in all layers. The
representations are jointly optimized by predicting
randomly masked words in the input and classify-

'"The code to reproduce our experiments is publicly ac-

cessible at https://github.com/ganeshjawahar/
interpret_bert
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Figure 1: 2D t-SNE plot of span embeddings computed from the first and last two layers of BERT.

layer 1 2 3 4 5

7 8 9 10 11 12

NMI 038 037 035 03 024

0.19 016 0.17 018 0.16 0.19

Table 1: Clustering performance of span representations obtained from different layers of BERT.

ing whether the sentence follows a given sentence
in the corpus or not. The authors of BERT claim
that bidirectionality allows the model to swiftly
adapt for a downstream task with little modifica-
tion to the architecture. Indeed, BERT improved
the state-of-the-art for a range of NLP benchmarks
(Wang et al., 2018) by a significant margin.

In this work, we investigate the linguistic struc-
ture implicitly learned by BERT’s representations.
We use the PyTorch implementation of BERT,
which hosts the models trained by (Devlin et al.,
2018). All our experiments are based on the
bert-base-uncased variant,” which consists of
12 layers, each having a hidden size of 768 and 12
attention heads (110M parameters). In all our ex-
periments, we seek the activation of the first input
token (‘ [CLS]’) (which summarizes the informa-
tion from the actual tokens using a self-attention
mechanism) at every layer to compute BERT rep-
resentation, unless otherwise stated.

3 Phrasal Syntax

Peters et al. (2018) have shown that the represen-
tations underlying LSTM-based language mod-
els(Hochreiter and Schmidhuber, 1997) can cap-
ture phrase-level (or span-level) information.®> It
remains unclear if this holds true for models not
trained with a traditional language modeling ob-
jective, such as BERT. Even if it does, would the
information be present in multiple layers of the
model? To investigate this question we extract
span representations from each layer of BERT.

>We obtained similar results in preliminary experiments
with the bert-large—uncased variant.

3Peters et al. (2018) experimented with ELMo-style CNN

and Transformer but did not report this finding for these mod-
els.

Following Peters et al. (2018), for a token se-
quence s;,...,S;, we compute the span repre-
sentation sy, ) at layer [ by concatenating the
first (hg, ;) and last hidden vector (hsj,l), along
with their element-wise product and difference.
We randomly pick 3000 labeled chunks and 500
spans not labeled as chunks from the CoNLL 2000
chunking dataset (Sang and Buchholz, 2000).

As shown in Figure 1, we visualize the span rep-
resentations obtained from multiple layers using t-
SNE (Maaten and Hinton, 2008), a non-linear di-
mensionality reduction algorithm for visualizing
high-dimensional data. We observe that BERT
mostly captures phrase-level information in the
lower layers and that this information gets gradu-
ally diluted in higher layers. The span representa-
tions from the lower layers map chunks (e.g. ‘to
demonstrate’) that project their underlying cate-
gory (e.g. VP) together. We further quantify this
claim by performing a k-means clustering on span
representations with k& = 10, i.e. the number
of distinct chunk types. Evaluating the resulting
clusters using the Normalized Mutual Information
(NMI) metric shows again that the lower layers en-
code phrasal information better than higher layers
(cf. Table 1).

4 Probing Tasks

Probing (or diagnostic) tasks (Adi et al., 2017;
Hupkes et al., 2018; Conneau et al., 2018) help
in unearthing the linguistic features possibly en-
coded in neural models. This is achieved by set-
ting up an auxiliary classification task where the
final output of a model is used as features to pre-
dict a linguistic phenomenon of interest. If the
auxiliary classifier can predict a linguistic prop-
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Layer SentLen wC TreeDepth ~ TopConst BShift Tense SubjNum ObjNum SOMO CoordInv
(Surface) (Surface) (Syntactic) (Syntactic) (Syntactic) (Semantic) (Semantic) (Semantic) (Semantic) (Semantic)
1 93.9 (2.0) 249(24.8) 359(6.1) 63.6 (9.0) 50.3 (0.3) 82.2(184) 77.6(102) 76.7(26.3)  49.9(-0.1) 53.9(3.9)
2 95.9 (3.4) 65.0(64.8) 40.6(11.3) 71.3(16.1) 55.8(5.8) 85.9(23.5) 825(15.3) 80.6(17.1) 53.8(4.4) 58.5(8.5)
3 96.2 (3.9) 66.5(66.0)  39.7(10.4) 71.5(18.5) 64.9(149) 86.6(23.8) 82.0(14.6) 80.3(16.6) 55.8(5.9) 59.3(9.3)
4 94.2 (2.3) 69.8 (69.6) 39.4 (10.8) 71.3(18.3) 74.4 (24.5) 87.6 (25.2) 81.9 (15.0) 81.4(19.1) 59.0 (8.5) 58.1(8.1)
5 92.0 (0.5) 69.2(69.0) 40.6(11.8) 81.3(30.8) 81.4(31.4) 89.5(26.7) 858(19.4) 81.2(18.6) 60.2(10.3) 64.1(14.1)
6 88.4 (-3.0) 63.5(63.4) 41.3(13.0)0 83.3(36.6) 829(329) 89.8(27.6) 88.1(21.9) 82.0(20.1) 60.7(10.2)  71.1(21.2)
7 83.7 (-1.7) 56.9 (56.7)  40.1(12.0) 84.1(39.5) 83.0(32.9) 89.9(27.5) 87.4(222) 8.2(21.1) 61.6(11.7) 74.8(24.9)
8 82.9 (-8.1) 51.1(51.0)  39.2(10.3) 84.0(39.5) 83.9(33.9) 89.9(27.6) 87.5(222) 81.2(19.7) 62.1(12.2) 76.4(26.4)
9 80.1(-11.1) 479(47.8) 38.5(10.8) 83.1(39.8) 87.0(37.1) 90.0(28.0) 87.6(22.9) 81.8(20.5) 63.4(13.4) 78.7(28.9)
10 77.0(-14.0) 43.4(43.2) 38.1(9.9 81.7(39.8) 86.7(36.7) 89.7(27.6) 87.1(22.6) 80.5(19.9) 63.3(12.7)  78.4(28.1)
11 73.9(-17.0) 42.8(42.7) 36.3(7.9) 80.3(39.1) 86.8(36.8) 89.9(27.8) 857(21.9) 789(18.6) 64.4(14.5) 77.6(27.9)
12 69.5(-21.4)  49.1(49.0) 34.7(6.9) 76.5(37.2) 86.4(36.4) 89.5(27.7) 84.0(20.2) 78.7(184) 652(153) 749(25.4)

Table 2: Probing task performance for each BERT layer. The value within the parentheses corresponds to the
difference in performance of trained vs. untrained BERT.

Layer 0(L5) 1(52) 2(77) 3(105) 4(13.3)
1 90.89 4043 2322 2146 20

2 9201 426 2584 2478 26.02
3 9277 4705 2977 27.22 29.56
4 9439 5297 3302  29.13 30.09
5 9498  63.12 4368  36.61 36.11
6 9545 6728 4693 3822 36.46
7 9552 7244 5303 435 41.06
8 9568  75.66 5874  48.88 45.49
9 9554 7384 5796  50.34 48.85
10 9509 6921 515 43.26 41.59
11 9433 6662 5169  46.09 42,65
12 9406 6278 5107  46.04 46.37

Table 3: Subject-verb agreement scores for each BERT
layer. The last five columns correspond to the num-
ber of nouns intervening between the subject and the
verb (attractors) in test instances. The average distance
between the subject and the verb is enclosed in paren-
theses next to each attractor category.

erty well, then the original model likely encodes
that property. In this work, we use probing tasks
to assess individual model layers in their ability to
encode different types of linguistic features. We
evaluate each layer of BERT using ten probing
sentence-level datasets/tasks created by Conneau
et al. (2018), which are grouped into three cat-
egories. Surface tasks probe for sentence length
(SentLen) and for the presence of words in the
sentence (WC). Syntactic tasks test for sensitivity
to word order (BShift), the depth of the syntac-
tic tree (TreeDepth) and the sequence of top-
level constituents in the syntax tree (TopConst).
Semantic tasks check for the tense (Tense), the
subject (resp. direct object) number in the main
clause (Sub jNum, resp. Ob jNum), the sensitivity
to random replacement of a noun/verb (SOMO) and
the random swapping of coordinated clausal con-
juncts (CoordInv). We use the SentEval toolkit
(Conneau and Kiela, 2018) along with the recom-
mended hyperparameter space to search for the
best probing classifier. As random encoders can

surprisingly encode a lot of lexical and structural
information (Zhang and Bowman, 2018), we also
evaluate the untrained version of BERT, obtained
by setting all model weights to a random number.

Table 2 shows that BERT embeds a rich hier-
archy of linguistic signals: surface information at
the bottom, syntactic information in the middle,
semantic information at the top. BERT has also
surpassed the previously published results for two
tasks: BShift and CoordInv. We find that the
untrained version of BERT corresponding to the
higher layers outperforms the trained version in
the task of predicting sentence length (SentLen).
This could indicate that untrained models contain
sufficient information to predict a basic surface
feature such as sentence length, whereas training
the model results in the model storing more com-
plex information, at the expense of its ability to
predict such basic surface features.

S Subject-Verb Agreement

Subject-verb agreement is a proxy task to probe
whether a neural model encodes syntactic struc-
ture (Linzen et al., 2016). The task of predicting
the verb number becomes harder when there are
more nouns with opposite number (attractors) in-
tervening between the subject and the verb. Gold-
berg (2019) has shown that BERT learns syntac-
tic phenomenon surprisingly well using various
stimuli for subject-verb agreement. We extend
his work by performing the test on each layer of
BERT and controlling for the number of attrac-
tors. In our study, we use the stimuli created by
Linzen et al. (2016) and the SentEval toolkit (Con-
neau and Kiela, 2018) to build the binary classifier
with the recommended hyperparameter space, us-
ing as features the activations from the (masked)
verb at hand.
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Role scheme \ Layer 1

2

3

4

5

6

7

8

9

10

11

12

Left-to-right 0.0005  0.0007  0.0008  0.0034  0.0058
Right-to-left 0.0004  0.0007  0.0007  0.0032  0.0060
Bag-of-words 0.0006  0.0009  0.0012  0.0039  0.0066
Bidirectional 0.0025  0.0030  0.0034  0.0053  0.0079
Tree 0.0005  0.0009  0.0011 0.0037  0.0055
Tree (random) 0.0005  0.0009  0.0011 0.0038  0.0063

0.0087  0.0201 0.0179  0.0284  0.0428  0.0362  0.0305
0.0099  0.0233  0.0203  0.0337  0.0486  0.0411 0.0339
0.0108  0.0251  0.0221  0.0355  0.0507  0.0422  0.0348
0.0106  0.0226  0.0201  0.0311  0.0453  0.0391  0.0334
0.0081  0.0179  0.0155  0.0249  0.0363  0.0319  0.0278
0.0099  0.0237  0.0214  0.0338  0.0486  0.0415  0.0340

Table 4: Mean squared error between TPDN and BERT representation for a given layer and role scheme on SNLI
test instances. Each number corresponds to the average across five random initializations.

The keys to the cabinet are on the table

Figure 2: Dependency parse tree induced from atten-
tion head #11 in layer #2 using gold root (‘are’) as
starting node for maximum spanning tree algorithm.

Results in Table 3 show that the middle lay-
ers perform well in most cases, which supports
the result in Section 4 where the syntactic features
were shown to be captured well in the middle lay-
ers. Interestingly, as the number of attractors in-
creases, one of the higher BERT layers (#8) is
able to handle the long-distance dependency prob-
lems caused by the longer sequence of words in-
tervening between the subject and the verb, bet-
ter than the lower layer (#7). This highlights the
need for BERT to have deeper layers to perform
competitively on NLP tasks.

6 Compositional Structure

Can we understand the compositional nature of
representation learned by BERT, if any? To in-
vestigate this question, we use Tensor Product
Decomposition Networks (TPDN) (McCoy et al.,
2019), which explicitly compose the input token
(“filler”) representations based on the role scheme
selected beforehand using tensor product sum. For
instance, a role scheme for a word can be based on
the path from the root node to itself in the syn-
tax tree (e.g. ‘LR’ denotes the right child of left
child of root). The authors assume that, for a given
role scheme, if a TPDN can be trained well to ap-
proximate the representation learned by a neural
model, then that role scheme likely specifies the
compositionality implicitly learned by the model.
For each BERT layer, we work with five differ-
ent role schemes. Each word’s role is computed
based on its left-to-right index, its right-to-left in-
dex, an ordered pair containing its left-to-right and

right-to-left indices, its position in a syntactic tree
(formatted version of the Stanford PCFG Parser
(Klein and Manning, 2003) with no unary nodes
and no labels) and an index common to all the
words in the sentence (bag-of-words), which ig-
nores its position. Additionally, we also define a
role scheme based on random binary trees.

Following McCoy et al. (2019), we train our
TPDN model on the premise sentences in the
SNLI corpus (Bowman et al., 2015). We initial-
ize the filler embeddings of the TPDN with the
pre-trained word embeddings from BERT’s input
layer, freeze it, learn a linear projection on top of
it and use a Mean Squared Error (MSE) loss func-
tion. Other trainable parameters include the role
embeddings and a linear projection on top of ten-
sor product sum to match the embedding size of
BERT. Table 4 displays the MSE between repre-
sentation from pretrained BERT and representa-
tion from TPDN trained to approximate BERT. We
discover that BERT implicitly implements a tree-
based scheme, as a TPDN model following that
scheme best approximates BERT’s representation
at most layers. This result is remarkable, as BERT
encodes classical, tree-like structures despite rely-
ing purely on attention mechanisms.

Motivated by this study, we perform a case
study on dependency trees induced from self at-
tention weight following the work done by Ra-
ganato and Tiedemann (2018). Figure 2 displays
the dependencies inferred from an example sen-
tence by obtaining self attention weights for ev-
ery word pairs from attention head #11 in layer
#2, fixing the gold root as the starting node and
invoking the Chu-Liu-Edmonds algorithm (Chu
and Liu, 1967). We observe that determiner-noun
dependencies (“the keys”, “the cabinet” and “the
table”) and subject-verb dependency (“keys” and
“are”) are captured accurately. Surprisingly, the
predicate-argument structure seems to be partly
modeled as shown by the chain of dependencies

99

between “key”,“cabinet” and “table”.
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7 Related Work

Peters et al. (2018) studies how the choice of neu-
ral architecture such as CNNs, Transformers and
RNNs used for language model pretraining af-
fects the downstream task accuracy and the qual-
itative properties of the contextualized word rep-
resentations that are learned. They conclude that
all architectures learn high quality representations
that outperform standard word embeddings such
as GloVe (Pennington et al., 2014) for challeng-
ing NLP tasks. They also show that these archi-
tectures hierarchically structure linguistic infor-
mation, such that morphological, (local) syntactic
and (longer range) semantic information tend to be
represented in, respectively, the word embedding
layer, lower contextual layers and upper layers. In
our work, we observe that such hierarchy exists as
well for BERT models that are not trained using
the standard language modelling objective. Gold-
berg (2019) shows that the BERT model captures
syntactic information well for subject-verb agree-
ment. We build on this work by performing the test
on each layer of BERT controlling for the num-
ber of attractors and then show that BERT requires
deeper layers for handling harder cases involving
long-distance dependency information.

Tenney et al. (2019) is a contemporaneous work
that introduces a novel edge probing task to in-
vestigate how contextual word representations en-
code sentence structure across a range of syntac-
tic, semantic, local and long-range phenomena.
They conclude that contextual word representa-
tions trained on language modeling and machine
translation encode syntactic phenomena strongly,
but offer comparably small improvements on se-
mantic tasks over a non-contextual baseline. Their
result using BERT model on capturing linguis-
tic hierarchy confirms our probing task results al-
though using a set of relatively simple probing
tasks. Liu et al. (2019) is another contempora-
neous work that studies the features of language
captured/missed by contextualized vectors, trans-
ferability across different layers of the model and
the impact of pretraining on the linguistic knowl-
edge and transferability. They find that (i) con-
textualized word embeddings do not capture fine-
grained linguistic knowledge, (ii) higher layers of
RNN to be task-specific (with no such pattern for
a transformer) and (iii) pretraining on a closely re-
lated task yields better performance than language
model pretraining. Hewitt and Manning (2019) is

a very recent work which showed that we can re-
cover parse trees from the linear transformation of
contextual word representation consistently, better
than with non-contextual baselines. They focused
mainly on syntactic structure while our work addi-
tionally experimented with linear structures (left-
to-right, right-to-left) to show that the composi-
tionality modelling underlying BERT mimics tra-
ditional syntactic analysis.

The recent burst of papers around these ques-
tions illustrates the importance of interpreting con-
textualized word embedding models and our work
complements the growing literature with addi-
tional evidences about the ability of BERT in
learning syntactic structures.

8 Conclusion

With our experiments, which contribute to a cur-
rently bubbling line of work on neural network
interpretability, we have shown that BERT does
capture structural properties of the English lan-
guage. Our results therefore confirm those of
Goldberg (2019); Hewitt and Manning (2019);
Liu et al. (2019); Tenney et al. (2019) on BERT
who demonstrated that span representations con-
structed from those models can encode rich syn-
tactic phenomena. We have shown that phrasal
representations learned by BERT reflect phrase-
level information and that BERT composes a hier-
archy of linguistic signals ranging from surface to
semantic features. We have also shown that BERT
requires deeper layers to model long-range depen-
dency information. Finally, we have shown that
BERT’s internal representations reflect a compo-
sitional modelling that shares parallels with tra-
ditional syntactic analysis. It would be inter-
esting to see if our results transfer to other do-
mains with higher variability in syntactic struc-
tures (such as noisy user generated content) and
with higher word order flexibility as experienced
in some morphologically-rich languages.
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