
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3548–3557
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

3548

Aspect Sentiment Classification Towards Question-Answering with
Reinforced Bidirectional Attention Network

Jingjing Wang1, Changlong Sun2, Shoushan Li1,∗ , Xiaozhong Liu2,
Min Zhang1, Luo Si2, Guodong Zhou1

1School of Computer Science and Technology, Soochow University, China
2Alibaba Group, China

djingwang@gmail.com, {lishoushan, minzhang, gdzhou}@suda.edu.cn,
{changlong.scl, xiaozhong.lxz, luo.si}@alibaba-inc.com

Abstract
In the literature, existing studies on aspect sen-

timent classification (ASC) focus on individ-

ual non-interactive reviews. This paper ex-

tends the research to interactive reviews and

proposes a new research task, namely Aspect

Sentiment Classification towards Question-

Answering (ASC-QA), for real-world appli-

cations. This new task aims to predict sen-

timent polarities for specific aspects from in-

teractive QA style reviews. In particular, a

high-quality annotated corpus is constructed

for ASC-QA to facilitate corresponding re-

search. On this basis, a Reinforced Bidirec-

tional Attention Network (RBAN) approach is

proposed to address two inherent challenges

in ASC-QA, i.e., semantic matching between

question and answer, and data noise. Experi-

mental results demonstrate the great advantage

of the proposed approach to ASC-QA against

several state-of-the-art baselines.

1 Introduction

As a fine-grained sentiment analysis task, Aspect

Sentiment Classification (ASC) aims to predict

sentiment polarities (e.g., positive, negative, neu-
tral) towards given particular aspects from a text

and has been drawing more and more interests

in natural language processing and computational

linguistics over the past few years (Jiang et al.,

2011; Tang et al., 2016b; Wang et al., 2018a).

However, most of the existing studies on ASC fo-

cus on individual non-interactive reviews, such as

customer reviews (Pontiki et al., 2014) and tweets

(Mitchell et al., 2013; Vo and Zhang, 2015; Dong

et al., 2014). For example, in a customer re-

view “The food is delicious, but ambience is badly
in need of improvement.”, the customer mentions

two aspects, i.e., “food” and “ambience”, and ex-

presses positive sentiment towards the former and

negative sentiment towards the latter.
∗Corresponding author

Question-Answering (QA) Style Review

- Question: Is [battery life] durable? How about [oper-
ating speed] of the phone?
- Answer: Yes, very durable but quite slow and obtuse.

Aspect Sentiment Classification Towards QA

- Input: QA text pair with given aspects
- Output: [battery life]: Positive

[operating speed]: Negative

Figure 1: An example for illustrating the proposed task

of Aspect Sentiment Classification towards Question-

Answering (ASC-QA).

Recently, a new interactive reviewing form,

namely “Customer Question-Answering (QA)”,

has become increasingly popular and a large-scale

of such QA style reviews (as shown in Figure

1) could be found in several famous e-commerce

platforms (e.g., Amazon and Taobao). Compared

to traditional non-interactive customer reviews,

interactive QA style reviews are more reliable

and convincing because answer providers are ran-

domly selected from the real customers who have

purchased the product (Shen et al., 2018a). To well

automatically-understand the QA style reviews,

it’s worthwhile to perform ASC on the QA style

reviews.

However, we believe that Aspect Sentiment

Classification towards QA (ASC-QA) is not easy

work and this novel task faces at least two ma-

jor challenges. On one hand, different from tra-

ditional non-interactive reviews with a single se-

quence structure, interactive QA style reviews

consist of two parallel units, i.e., question and an-

swer. Thus, it’s rather difficult to infer the sen-

timent polarity towards an aspect based on a sin-

gle question or single answer. Take Figure 1 as an

example. A well-behaved approach to ASC-QA

should match each question and answer bidirec-

tionally so as to correctly determine the sentiment

polarity towards a specific aspect.
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On the other hand, different from common QA

matching tasks such as question-answering (Shen

et al., 2018a), ASC-QA focuses on extracting sen-

timent information towards a specific aspect and

may suffer from much aspect-irrelevant noisy in-

formation. For instance, in Figure 1, although

the words in the answer (e.g., “quite slow”, “ob-
tuse”) and the question (e.g., “operating speed”)

are relevant to aspect “operating speed”, they are

noisy for the other aspect “battery life”. These

noisy words might provide wrong signals and mis-

lead the model into assigning a negative sentiment

polarity to aspect “battery life” and vice versa.

Therefore, a well-behaved approach to ASC-QA

should alleviate the effects of noisy words for a

specific aspect in both question and answer during

model training.

In this paper, we propose a reinforced bidirec-

tional attention network approach to tackle the

above two challenges. Specifically, we first pro-

pose a word selection model, namely Reinforced

Aspect-relevant Word Selector (RAWS), to alle-

viate the effects of noisy words for a specific as-

pect through discarding noisy words and only se-

lect aspect-relevant words in a word sequence.

On the basis of RAWS, we then develop a Rein-

forced Bidirectional Attention Network (RBAN)

approach to ASC-QA, which employs two funda-

mental RAWS modules to perform word selection

over the question and answer text respectively. In

this way, RBAN is capable of not only address-

ing the semantic matching problem in the QA text

pair, but also alleviating the effects of noisy words

for a specific aspect in both the question and an-

swer sides. Finally, we optimize RBAN via a rein-

forcement learning algorithm, i.e., policy gradient

(Williams, 1992; Sutton et al., 1999). The main

contributions of this paper are in two folds:

• We propose a new research task, i.e., As-

pect Sentiment Classification towards Question-

Answering (ASC-QA), and construct a high-

quality annotated benchmark corpus for this task.

• We propose an innovative reinforced bidirec-

tional attention network approach to ASC-QA and

validate the effectiveness of this approach through

extensive experiments.

2 Data Collection and Annotation

We collect 150k QA style reviews from Taobao1,

the most famous electronic business platform in

1http://www.taobao.com

China. The QA style reviews consist of three dif-

ferent domains: Bags, Cosmetics and Electron-
ics. Since corpus annotation is labor-expensive

and time-consuming, we randomly select 10k QA

text pairs from each domain to perform annota-

tion. Specifically, following Pontiki et al. (2014),

we define an aspect at two levels of granularity,

i.e., aspect term and aspect category. Besides, fol-

lowing Pontiki et al. (2015), we define three senti-

ment polarities, i.e., positive, negative and neutral
(mildly positive or mildly negative) towards both

aspect terms and categories. In this way, each QA

text pair is annotated with two tuples, i.e., (aspect
term, polarity), (aspect category, polarity).

For Tuple (Aspect Term, Polarity), we anno-

tate the single/multi-word terms together with its

corresponding polarities inside each QA text pair

according to four main guidelines as follows:

(1) We only annotate the aspect term when the re-

lated question and answer are matched. For exam-

ple, the QA text pair in Figure 1 is annotated as

(“battery life”, positive) and (“operating speed”,

negative) due to words “durable”, “slow” and “ob-
tuse”. However, in E1, the answer does not reply

to the question correctly and thus the aspects of

“macos” and “screen” will not be annotated.

E1: Q: Is macos good? How about the screen?
A: The shopkeeper is very warm-hearted.

(2) We only annotate the aspect term towards

which an opinion is expressed. For example, in

E2, the answer conveys only objective informa-

tion without expressing opinions towards “phone”

and thus “phone” will not be annotated. However,

“case” will be annotated and tagged as neutral.

E2: Q: How is this phone? How about the case?
A: I bought this phone yesterday. Case is
okay nothing great.

(3) We only annotate aspect terms which explic-

itly name particular aspects. For example, in E3,

“this”, “it” will not be annotated.

E3: Q: Is this expensive? Did anybody buy one?
A: Of course, it’s quite expensive.

(4) When one aspect term has two different de-

scriptions in both question and answer, the an-

notated aspect term should be consistent with the

question. For example, in E4, the annotated aspect

term should be “battery life” instead of “battery”.

E4: Q: Is battery life durable?
A: Yes, this battery is very durable.
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Domains Aspect Categories

Bags
Size, Price, Appearance, Quality, Weight,
Certified Products, Smell, Accessories, Ma-
terial, Life Timer, Style, Workmanship,
Color, Stain Resistant, Practicality

Cosmetics

Price, Efficacy, Moisturizing Performance,
Certified Products, Adverse Reaction, Ex-
foliator, Texture, Long Lasting, Smell, Ma-
terial, Noticeable Color, Quality, Colour,
Touch, Skin Whitening, Acne

Electronics

System Performance, Appearance, Battery,
Computing (e.g., cpu, gpu, tpu etc.), Cer-
tified Products, Quality, IO (e.g., keyboard,
screen, etc.), Price, Storage, Function (e.g.,
touch id, waterproof etc.)

Table 1: The defined aspect categories in each domain.

For Tuple (Aspect Category, Polarity), we first

define2 15, 16, 10 aspect categories (as shown in

Table 1) for the domains of Bags, Cosmetics and

Electronics respectively. Then, we annotate aspect

categories (chosen from the above predefined cat-

egory list) discussed in each QA text pair accord-

ing to similar guidelines for aspect term. For ex-

ample, there are two aspect categories discussed

in Figure 1, i.e., Battery and System Performance,

and annotated as (Battery, positive) and (System
Performance, negative) respectively. Finally, we

discard the QA text pairs which have no annotated

term and category.

We assign two annotators to tag each QA text

pair and the Kappa consistency check value of the

annotation is 0.81. When two annotators cannot

reach an agreement, an expert will make the final

decision, ensuring the quality of data annotation.

Table 2 shows the statistics of the final corpus.

To motivate future investigations for this track of

research, the annotated corpus consisting of three

domains are released in github3.

3 Our Approach

In this section, we first introduce the word selec-

tion model, i.e., Reinforced Aspect-relevant Word

Selector (RAWS) as illustrated in Figure 2, which

functions as a fundamental module of our ap-

proach to alleviate the effects of noisy words (Sec-

tion 3.1). On the basis of RAWS, we present

the Reinforced Bidirectional Attention Network

(RBAN) approach to ASC-QA as illustrated in

Figure 3, which employs two RAWS modules to

2Aspect categories are defined and summarized through
preliminary annotation.

3https://github.com/jjwangnlp/ASC-QA

Domains Pos. Neg. Neu. All #Cat.

Bags 2503 724 453 3680 15

Cosmetics 2834 956 503 4293 16

Electronics 2742 821 531 4094 10

Table 2: Corpus statistics (Pos., Neg. and Neu. denote

the number of positive, negative and neutral for aspect

term; #Cat. denotes the number of aspect category).
.

perform word selection over the question and an-

swer text respectively (Section 3.2). Finally, we

introduce our optimization strategy via policy gra-

dient and back-propagation (Section 3.3).

3.1 Reinforced Aspect-relevant Word
Selector (RAWS)

Figure 2 shows the framework of the word selec-

tion model, i.e., Reinforced Aspect-relevant Word

Selector (RAWS). Given an input word sequence

x = {x1, .., xE}, RAWS aims to discard noisy

words and only select aspect-relevant words in-

side x for a specific aspect xaspectxaspectxaspect
4. The output

of RAWS is an equal-length sequence of one-hot

variables o = [o1, .., oE ], where oi = 1 if the word

xi is selected otherwise oi = 0.

In this way, RAWS virtually functions as a

“hard” attention mechanism and thus cannot be di-

rectly optimized through back-propagation due to

the non-differentiable problem as proposed in Xu

et al. (2015) and Shen et al. (2018b). To address

this issue, we employ the reinforcement learn-

ing algorithm, i.e., policy gradient (Sutton et al.,

1999), to model RAWS. In this fashion, RAWS

plays as an agent which decides to select the word

or not by following a policy network as follows.

Policy Network. In this paper, we adopt a

stochastic policy network pπ which can provide

a conditional probability distribution pπ(o|·) over

action sequence o = [o1, .., oE ]. Here, o is exactly

the output of RAWS and oi = 1 indicates that

xi is selected otherwise oi = 0 indicates that xi
is discarded. More specifically, we adopt LSTM

(Graves, 2013) to construct the policy network pπ
for performing word selection over word sequence

x, denoted as LSTMp. In order to differentiate

whether a word is selected or discarded, inspired

by Lei et al. (2016), we incorporate the action re-

sult oi into the input v̂i of LSTMp at time-step i
and compute hidden state hi ∈ R

d of word xi as:

hi = LSTMp(v̂i), v̂i = vi ⊕ (oi ⊗ e) (1)

4The aspect denotes an aspect term or aspect category as
introduced in Section 2.
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Figure 2: The framework of word selection model, i.e.,

Reinforced Aspect-relevant Word Selector (RAWS).

where vi ∈ R
d is word embedding of word xi;

⊕ denotes vector concatenation and ⊗ denotes

element-wise multiplication; oi ⊗ e = [oi; ..; oi],
that is, oi is tiled d′ times across the row, where

e ∈ R
d′ is a column vector with d′ 1s and d′ is set

to be 50 tuned with development set; v̂i ∈ R
d+d′ .

In principle, the policy network pπ uses a Re-
ward to guide the policy learning over word se-

quence x. It samples an Action oi with the proba-

bility pπ(oi|si; θr) at each State si. In this paper,

state, action and reward are defined as follows.

• State. The state si at i-th time-step should

provide adequate information for deciding to se-

lect a word or not for aspect xaspectxaspectxaspect . Thus, the

state si ∈ R
4d is composed of four parts, i.e., hi−1,

ci−1, vi and va, defined as si = hi−1 ⊕ ci−1 ⊕
vi ⊕ va, where ci−1 is memory state of LSTMp;

va ∈ R
d is aspect vector5 of xaspectxaspectxaspect.

• Action. pπ samples action oi ∈ {0, 1} with

conditional probability pπ(oi|si; θr), which could

be cast as a binary classification problem. Thus,

we use a logistic function to compute pπ(oi|si; θr).
oi ∼ pπ(oi|si; θr) = oi sigmoid(Wrsi + br)

+(1− oi)(1− sigmoid(Wrsi + br))
(2)

where θr = {Wr ∈ R
1×4d, br ∈ R} is the param-

eter to be learned. ∼ denotes the discrete action
sampling operation.

• Reward. In order to select aspect-relevant

words inside word sequence x, we define an

5If aspect is a single word like “food”, aspect vector is
word embedding, while aspect is multi-word expression like
“operating speed” in Figure 1, aspect vector is an average of
its constituting word embeddings as Tang et al. (2016b).
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Figure 3: The framework of our proposed Reinforced

Bidirectional Attention Network (RBAN) approach.

aspect-relevant reward R based on cosine simi-

larity between aspect vector va ∈ R
d of xaspectxaspectxaspect

and the last hidden state hE ∈ R
d of LSTMp after

pπ finishes all actions, i.e.,

R = log cos(va, hE)

+ log p(y|(P,xaspectxaspectxaspect))− γE′/E
(3)

where log cos(va, hE) = log va·hE
||va|| ||hE || is a cosine

delay reward. Besides, it’s worthwhile to mention

that, we regard the loss log p(y|(P,xaspectxaspectxaspect) pre-

sented in Eq.(10) from the classification phase as

another loss delay reward. This loss reward com-

bining with the above cosine reward could pro-

vide adequate supervision signals to guide RAWS

to select aspect-relevant and also discriminative

words (e.g., sentiment words “slow” and “ob-
tuse” for aspect “operating speed”) for performing

ASC-QA. γE′/E is an additional term for limiting

the number of selected words. E′ =
∑E

i=1 oi de-

notes the number of selected words. γ is a penalty

weight (tuned to be 0.01 with development set).

3.2 Reinforced Bidirectional Attention
Network (RBAN)

Figure 3 shows the overall framework of our pro-

posed reinforced bidirectional attention network

(RBAN) approach to ASC-QA, which consists of

three parts: 1) Word Encoder. 2) Reinforced Bidi-

rectional Attention. 3) Softmax Decoder.

Word Encoder. Given a QA text pair P with

an aspect xaspectxaspectxaspect, let xq = {xqi }, ∀i ∈ [1, Eq]
denotes the word sequence in question text, and

xa = {xaj}, ∀j ∈ [1, Ea] denotes the word se-

quence in answer text. To alleviate the effects of
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noisy words for aspect xaspectxaspectxaspect in both the question

and answer text, we make use of two RAWS mod-

ules (as introduced in Section 3.1) to perform word

selection over question xq and answer xa respec-

tively. More specifically, we employ two LSTMp

to construct policy networks pqπ and paπ for sam-

pling action oq over question xq and sampling ac-

tion oa over answer xa. Here, the two LSTMp

are denoted as LSTMq
p and LSTMa

p respectively.

Therefore, according to Eq.(1), the hidden states

hqi , h
a
j ∈ R

d of words xqi and xaj are computed as:

hqi = LSTMq
p(v̂

q
i ), v̂qi = vqi ⊕ (oqi ⊗ e)

haj = LSTMa
p(v̂

a
j ), v̂aj = vaj ⊕ (oaj ⊗ e)

(4)

where vqi , v
a
j ∈ R

d are word embeddings (pre-

sented in Section 4.1) of the word xqi and xaj .

Reinforced Bidirectional Attention. Once

two RAWS modules finish all their actions

oq = [.., oqi , ..] and oa = [.., oaj , ..] over question xq

and answer xa, we employ a positional mask ma-

trix M ∈ R
Eq×Ea

to calculate the matching ma-

trix S ∈ R
Eq×Ea

between question and answer as:

Mij =

{
0 oqi = oaj = 1

−∞ otherwise
(5)

Sij = w� tanh(W1h
q
i +W2h

a
j + b) +Mij (6)

where Sij denotes the similarity between the i-th
question word and the j-th answer word; Mij =
−∞ leads to Sij = −∞ indicating that the i-th
question word or the j-th answer word has been

regarded as the noisy word forxaspectxaspectxaspect and thus dis-

carded by RAWS; W1,W2 ∈ R
d×d, w, b ∈ R

d are

the trainable parameters.

In order to mine semantic matching informa-

tion between question and answer, we employ S to

compute attentions in both directions, which could

be seen as a Question-to-Answer attention and an

Answer-to-Question attention. Specifically, we

first employ the row/column-wise softmax oper-

ation to get two normalized matrices Sr and Sc.

Sr
i: = softmax([Si1, .., SiEa ]), ∀i ∈ [1, Eq]

Sc
:j = softmax([S1j , .., SEqj ]), ∀j ∈ [1, Ea]

(7)

where Sij = −∞ leads to Sr
ij , S

c
ij = 0 when

the softmax operation is applied. This switches off

the attentions between word xqi and xaj so as to fil-

ter the noisy word information and only mine the

matching information relevant to aspect xaspectxaspectxaspect.
Second, since each word xqi in question inter-

acts all words in answer xa and vice versa, its im-

portance can be measured as the summation of the

strengths of all these interactions, i.e., matching

scores computed in Eq.(7). Therefore, we perform

row/column-wise summation operation over the

normalized matching matrices, i.e., α̂a =
∑

i S
r
i:

and α̂q =
∑

j S
c
:j , where α̂a = [.., α̂a

j , ..] ∈ R
Ea

and α̂q = [.., α̂q
i , ..] ∈ R

Eq
are matching score

vectors. Finally, the bidirectional attention is com-

puted as follows:

• Question-to-Answer Attention (Q2A). We

first perform softmax operation over α̂a to com-

pute the attention weight αa
j of word xaj in an-

swer text as αa
j =

exp(α̂a
j )

∑Ea

t=1 exp(α̂
a
t )

. Then, the vec-

tor sa ∈ R
d of the answer text is computed as a

weighted sum of hidden state haj based on the at-

tention weight αa
j , i.e., sa =

∑Ea

j=1 α
a
jh

a
j .

• Answer-to-Question Attention (A2Q). Sim-

ilar to question-to-answer attention, the question

vector sq ∈ R
d is computed based on attention

weight αq
i =

exp(α̂q
i )∑Eq

t=1 exp(α̂
q
t )

, i.e., sq =
∑Eq

i=1 α
q
ih

q
i .

Subsequently, we concatenate the answer vector

sa and question vector sq so as to obtain the vector

representation r ∈ R
2d of the QA text pair P , i.e.,

r = sa ⊕ sq.

Softmax Decoder. To perform ASC-QA, we

feed the vector r to a softmax classifier, i.e., β =
Wr + b, where β ∈ R

C is the output vector.

Then, the probability of labeling sentence with

sentiment polarity l ∈ [1, C] is computed by pθ =
exp(βl)∑C

c=1 exp(βc)
. Finally, the label with the highest

probability stands for the predicted sentiment po-

larity towards aspect xaspectxaspectxaspect.

3.3 Optimization via Policy Gradient and
Back-Propagation

The parameters in RBAN are divided into two

groups: 1) θqr and θar for policy networks pqπ, paπ in

two fundamental RAWS modules. 2) θ for the rest

parts including word embeddings, LSTM, bidirec-

tional attention and softmax decoder.

For θqr , we optimize it with policy gradient algo-

rithm (Sutton et al., 1999). In detail, we first obtain

an aspect-relevant reward Rq according to Eq.(3)

after pqπ finishes all actions. Then, the policy gra-

dient w.r.t. θqr is computed by differentiating the

maximized expected reward J(θqr) as follows:

∇θqr
J(θqr) = Eoq∼pqπ

[
Eq∑
i=1

Rq∇θqr
log pqπ(o

q
i |sqi )]

(8)
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where ∇θqr
J(θqr) is estimated by using Monte-

Carlo simulation (Sutton et al., 1999) to sample

some action sequences over question texts. Simi-

larly, the policy gradient w.r.t. θar is computed as:

∇θarJ(θ
a
r ) = Eoa∼paπ [

Ea∑
j=1

Ra∇θar log p
a
π(o

a
j |sqj)]

(9)

For θ, we optimize it with back-propagation. In

detail, the objective of learning θ is to minimize

the cross-entropy loss function in the classification

phase as follows:

J(θ) = E(P,xaspectxaspectxaspect,y)∼D[− log p(y|(P,xaspectxaspectxaspect))]
(10)

where (P,xaspectxaspectxaspect, y) denotes QA text pair P with

given aspect xaspectxaspectxaspect from dataset D; y is ground-

truth sentiment polarity towards aspect xaspectxaspectxaspect.
Note that, during model training, θqr and θqr are

not updated in early stage, and thus two RAWS

modules select all words in question and answer.

When θ is optimized until the loss over develop-

ment set does not decrease significantly, we then

begin to optimize θ, θqr and θar simultaneously.

4 Experimentation

We systematically evaluate the performance of our

proposed RBAN approach to ASC-QA on the cor-

pus as described in Section 2.

4.1 Experimental Settings
Data Settings. As introduced in Section 2, we

have annotated QA text pairs from three different

domains listed in Table 2. For each domain, we

randomly split the annotated data into training, de-

velopment, and testing sets with the ratio of 8:1:1.

Word Embedding. We first adopt FudanNLP

(Qiu et al., 2013) to perform word segmentation

over our collected 150k Chinese QA text pairs.

Then, we employ these QA text pairs to pre-train

200-dimension word vectors with skip-gram6.

Hyper-parameters. In all our experiments,

word embeddings are optimized during training.

The dimensions of LSTM hidden states are set to

be 200. The other hyper-parameters are tuned ac-

cording to the development set. Specifically, we

adopt Adam optimizer (Kingma and Ba, 2014)

with an initial learning rate of 0.01 for cross-

entropy training and adopt the SGD optimizer with

6 https://github.com/dav/word2vec

a learning rate of 0.002 for all policy gradients

training. Regularization weight of parameters is

10−5, dropout rate is 0.25 and batch size is 32.

Evaluation Metrics. The performance is eval-

uated using Accuracy (Acc.) and Macro-F1 (F1)

(Wang et al., 2018a). Moreover, t-test is used to

evaluate the significance (Yang and Liu, 1999).

Task Definition. Our proposed ASC-QA con-

sists of two sub-tasks: 1) Term-level ASC-QA.
Given a set of pre-identified aspect terms, this sub-

task is to determine the polarity towards each as-

pect term inside a QA text pair. 2) Category-level
ASC-QA. Given a set of pre-identified aspect cat-

egories, this sub-task is to determine the polarity

towards each aspect category discussed in a QA

text pair.

4.2 Baselines
For comparison, we implement several state-of-

the-art approaches to ASC as baselines. Since the

input of all these approaches should be a single se-

quence, we concatenate question and answer text

to generate a single sequence. Besides, we em-

ploy some QA matching approaches to ASC-QA

and implement several basic versions of RBAN as

baselines. Note that, for fair comparison, all the

above baselines adopt the same pre-trained word

embeddings as RBAN.

The baselines are listed as follows in detail: 1)
LSTM (Wang et al., 2016). This approach only

adopts a standard LSTM network to model the

text without considering aspect information. 2)
RAM (Chen et al., 2017). This is a state-of-the-

art deep memory network approach to ASC. 3)
GCAE (Xue and Li, 2018). This is a state-of-

the-art approach to ASC which combines CNN

and gating mechanisms to learn text representa-

tion. 4) S-LSTM (Wang and Lu, 2018). This is a

state-of-the-art approach to ASC which considers

structural dependencies between targets and opin-

ion terms. 5) BIDAF (Seo et al., 2016). This is

a QA matching approach to reading comprehen-

sion. We substitute its decoding layer with soft-

max decoder to perform ASC-QA. 6) HMN (Shen

et al., 2018a). This is a QA matching approach

to coarse-grained sentiment classification towards

QA style reviews. 7) MAMC (Yin et al., 2017).

This is a QA matching approach to ASC which

proposes a hierarchical iterative attention to learn

the aspect-specific text representation. 8) RBAN
w/o RAWS. Our RBAN approach without using

RAWS modules. 9) RBAN w/o Q2A. Our RBAN
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Approaches
Term-level ASC-QA Category-level ASC-QA

Bags Cosmetics Electronics Bags Cosmetics Electronics
F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc.

LSTM (Wang et al., 2016) 0.571 0.757 0.582 0.771 0.534 0.756 0.528 0.773 0.493 0.739 0.522 0.752

RAM (Chen et al., 2017) 0.605 0.782 0.614 0.805 0.557 0.788 0.561 0.795 0.519 0.762 0.579 0.792

GCAE (Xue and Li, 2018) 0.617 0.779 0.623 0.819 0.570 0.781 0.590 0.787 0.514 0.791 0.576 0.788

S-LSTM (Wang and Lu, 2018) 0.615 0.824 0.623 0.821 0.569 0.794 0.587 0.828 0.522 0.788 0.581 0.801

BIDAF (Seo et al., 2016) 0.613 0.815 0.618 0.813 0.558 0.809 0.592 0.830 0.515 0.788 0.571 0.787

HMN (Shen et al., 2018a) 0.607 0.817 0.615 0.821 0.561 0.802 0.606 0.827 0.512 0.798 0.579 0.804

MAMC (Yin et al., 2017) 0.621 0.825 0.629 0.823 0.562 0.815 0.612 0.837 0.524 0.794 0.582 0.805

RBAN w/o RAWS 0.623 0.826 0.633 0.827 0.578 0.817 0.616 0.839 0.532 0.804 0.591 0.813

RBAN w/o Q2A 0.595 0.788 0.614 0.817 0.569 0.779 0.578 0.814 0.514 0.788 0.569 0.782

RBAN w/o A2Q 0.623 0.837 0.639 0.834 0.588 0.821 0.617 0.845 0.536 0.815 0.603 0.826

RBAN 0.648 0.856 0.662 0.855 0.616 0.833 0.634 0.869 0.557 0.833 0.625 0.839

Table 3: Performances of all the approaches to two sub-tasks, i.e., Term-level and Category-level ASC-QA. In

each sub-task, all approaches are evaluated in three different domains, i.e., Bags, Cosmetics and Electronics.

approach without using question-to-answer atten-

tion. 10) RBAN w/o A2Q. Our RBAN approach

without using answer-to-question attention.

4.3 Experimental Results

Table 3 shows the performances of different ap-

proaches to ASC-QA. From this table, we can see

that all the three state-of-the-art ASC approaches,

i.e., RAM, GCAE and S-LSTM, perform bet-

ter than LSTM. This confirms the usefulness of

considering aspect information in ASC. Besides,

both the attention based approaches RAM and S-
LSTM achieve comparable or better performance

than GCAE. This result demonstrates the useful-

ness of a proper attention mechanism to model as-

pect information.

The two QA matching approaches, i.e., BIDAF
and HMN could achieve comparable performance

with the three state-of-the-art ASC approaches,

and MAMC even beats all of them. This indi-

cates the appropriateness of treating question and

answer in a QA style review as two parallel units

instead of a single sequence in ASC-QA.

Furthermore, our RBAN w/o RAWS approach

(i.e., without considering aspect information) per-

forms consistently better than MAMC. This en-

courages to employ bidirectional attention to learn

the representation vectors of both the question and

answer in order to capture the sentiment informa-

tion therein. Besides, it’s interesting to notice that

RBAN w/o A2Q (i.e., without question vector sq)

performs much better than RBAN w/o Q2A (i.e.,

without answer vector sa). This is due to the fact

that the main sentiment polarity towards aspect is

usually expressed in the answer text.

In comparison, when using RAWS, RBAN per-

forms best and significantly outperforms RBAN
w/o RAWS (p-value < 0.05), which encourages

to discard noisy words for a specific aspect in both

the question and answer sides. Impressively, in

the sub-task of Term-level ASC-QA, compared

to LSTM, RBAN achieves average improvements

of 7.97% (F1) and 8.67% (Acc.) in three do-

mains. In the sub-task of Category-level ASC-
QA, compared to LSTM, RBAN achieves aver-

age improvements of 9.1% (F1) and 9.23% (Acc.).

Significance test shows that these improvements

are all significant (p-value < 0.05). These results

encourage to incorporate both RAWS and bidirec-

tional attentions to tackle ASC-QA.

5 Analysis and Discussion

Case Study. We provide a qualitative analysis

of our approach on the development set. Specifi-

cally, in Figure 4, we visualize the attention matrix

Sr in RBAN towards aspect “operating speed”

in two cases, i.e., not using RAWS (Figure 4(a))

and using RAWS (Figure 4(b)). In Figure 4(a),

color blue denotes attention weight (the darker the

more important), we can find that both aspect “bat-
tery life” and aspect “operating speed” in question

have been successfully matched with their corre-

sponding answer phrases, i.e., “very durable” and

“quite slow and obtuse”. However, RBAN with-
out RAWS can’t discard noisy words (e.g., “bat-
tery life”, “durable”) for aspect “operating speed”.

In Figure 4(b), color white denotes the word inside

question or answer has been discarded, we can

find that RBAN is capable of effectively discard-

ing noisy words such as “battery” and “durable”

and highlighting those significant words such as

“slow” and “obtuse” for aspect “operating speed”.
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(a) RBAN without RAWS (b) RBAN with RAWS

Figure 4: Attention matrices for a QA text pair (each row is a question word and each column is an answer word).

(a) and (b) show attention matrices of RBAN without RAWS and RBAN towards aspect term “operating speed”.

Error Analysis. We randomly analyze 100 er-

ror cases in the experiments, which can be roughly

categorized into 5 types. 1) 27% errors are be-

cause that the answer length is too short. An ex-

ample is “Question: Is the screen good? Answer:

No.”. 2) 24% errors are due to negation words. An

example is “the case is not good”. Our approach

fails to select the word “not” and incorrectly pre-

dicts positive polarity. This inspires us to optimize

our approach so as to capture the negation scope

better in the future. 3) 19% errors are due to the

wrong prediction on recognizing neutral instances.

The shortage of neutral training examples makes

the prediction of neutral instances very difficult.

4) 16% errors are due to comparative opinions. An

example is “macos is much better than Windows”.

Our approach incorrectly predicts positive for as-

pect “Windows”. 5) Finally, 14% errors are due to

mistakes during Chinese word segmentation. An

example is “好难看(very ugly)”. It’s incorrectly

segmented into “好(good)|难(hard)|看(look)” and

predicted as positive. This encourages to improve

the performance of word segmentation on infor-

mal customer reviews.

6 Related Work
Existing studies on Aspect Sentiment Classifica-

tion (ASC) could be divided into two groups ac-

cording to the different level of text, i.e., sentence-

level ASC and document-level ASC.

Sentence-level ASC is typically regarded as a

sentence-level text classification which aims to in-

corporate aspect information into a model. Re-

cently, Wang et al. (2016); Ma et al. (2017) pro-

pose an attention based LSTM to ASC by explor-

ing the connection between an aspect and the con-

tent of a sentence. Tang et al. (2016b), Chen et al.

(2017) and Wang et al. (2018b) employ memory

networks to model the context and aspect. Wang

and Lu (2018) propose a segmentation attention to

capture structural dependency between target and

opinion terms.

Document-level ASC aims to predict sentiment

ratings for aspects inside a long text. Traditional

studies (Titov and McDonald, 2008; Wang et al.,

2010; Pontiki et al., 2016) solve document-level

ASC as a sub-problem by utilizing heuristic based

methods or topic models. Recently, Lei et al.

(2016) focus on extracting rationales for aspects

in a document. Li et al. (2018) propose an user-

aware attention approach to document-level ASC.

Yin et al. (2017) model document-level ASC as a

machine comprehension problem, of which the in-

put is also a parallel unit, i.e., question and answer.

However, their question texts are pseudo and arti-

ficially constructed. This disaccords with the fact

that real-world question texts also possibly involve

multi-aspect and sentiment information.

Unlike all the above studies, this paper performs

ASC on a different type of text, i.e., QA style re-

views. To the best of our knowledge, this is the

first attempt to perform ASC on QA style reviews.

7 Conclusion
In this paper, we propose a new task, i.e., Aspect

Sentiment Classification towards Question An-

swering (ASC-QA). Specifically, we first build a

high-quality human annotated benchmark corpus.

Then, we design a reinforced bidirectional atten-

tion network (RBAN) approach to address ASC-

QA. Empirical studies show that our proposed ap-

proach significantly outperforms several state-of-

the-art baselines in the task of ASC-QA. In our fu-

ture work, we would like to solve other challenges

in ASC-QA such as data imbalance and negation

detection to improve the performance. Further-

more, we would like to explore the effectiveness

of our approach to ASC-QA in other languages.
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Núria Bel, Salud Marı́a Jiménez Zafra, and Gülsen
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