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Abstract

We present a new method for sentiment lex-
icon induction that is designed to be appli-
cable to the entire range of typological di-
versity of the world’s languages. We eval-
uate our method on Parallel Bible Corpus+
(PBC+), a parallel corpus of 1593 languages.
The key idea is to use Byte Pair Encodings
(BPEs) as basic units for multilingual em-
beddings. Through zero-shot transfer from
English sentiment, we learn a seed lexicon
for each language in the domain of PBC+.
Through domain adaptation, we then gener-
alize the domain-specific lexicon to a general
one. We show – across typologically diverse
languages in PBC+ – good quality of seed and
general-domain sentiment lexicons by intrin-
sic and extrinsic and by automatic and human
evaluation. We make freely available our code,
seed sentiment lexicons for all 1593 languages
and induced general-domain sentiment lexi-
cons for 200 languages.1

1 Introduction

Lexicons play an important role in sentiment anal-
ysis. Sentiment lexicons are available for high-
resource languages like English (Pang et al., 2008;
Baccianella et al., 2010; Mohammad and Tur-
ney, 2013), but not for many low-resource lan-
guages. Researchers are trying to fill this gap by
inducing lexicons monolingually (Badaro et al.,
2014; Eskander and Rambow, 2015; Rouces et al.,
2018) as well as multilingually (Chen and Skiena,
2014), often by transfer from high-resource to
low-resource languages.

The world’s languages are heterogeneous – of
particular relevance for us is heterogeneity with
respect to morphology and with respect to mark-
ing token boundaries. This heterogeneity poses
difficulties when designing a universal approach

1cistern.cis.lmu.de

to lexicon induction that works for all languages
– implementing a high quality tokenizer and mor-
phological analyzer for each language is not fea-
sible short-term. Given the small number of
native speakers in low-resource languages (Gold-
hahn et al., 2016), crowdsourcing cannot easily be
carried out either.

To overcome this heterogeneity and provide
sentiment resources for low-resource languages,
we present a new approach to sentiment lexicon
induction that is universal – that is, it is appli-
cable to the full range of typologically different
languages – and apply it to 1593 languages. Our
method first takes a parallel corpus as input and
applies BPE (Gage, 1994) segmentation to it. We
then create a multilingual BPE embedding space,
from which a ZS (zero-shot) lexicon for each lan-
guage L is extracted by zero-shot transfer from
English sentiment to L. We use PBC+, an ex-
pansion of the Parallel Bible Corpus (Mayer and
Cysouw, 2014), as our parallel corpus. The ZS
lexicons show high quality, but are specific to the
domain of PBC+ (the Bible). We then adapt them
to the general domain. For brevity, we also use
generic to refer to general-domain.

Our method is universal and language-agnostic
– it does not require language-dependent prepro-
cessing. We carry out intrinsic and extrinsic, au-
tomatic and human evaluations on 95 languages.
Intrinsic evaluation shows that our approach pro-
duces word ratings that strongly correlate with
gold standard lexicons and human judgments. Ex-
trinsic evaluation on Twitter sentiment classifica-
tion demonstrates that our lexicons perform com-
parably or better than existing lexicons derived in
multilingual settings.

We chose an approach to sentiment analysis
based on lexicons in this paper because it is trans-
parent and meets high standards of explainabil-
ity. A classification decision can easily be traced
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back to the lexicon entries in the document that are
responsible. Many more complex methods, e.g.,
many deep learning approaches, do not meet this
standard. Transparency is of particular importance
for low-resource languages because error analysis
and verification are paramount when working with
small and noisy resources that are typical of low-
resource languages.

Our contributions: (i) We propose a new
method for inducing sentiment lexicons for a
broad range of typologically diverse languages.
We use BPEs as basic units and show that they
work well across languages. (ii) We carry out ex-
tensive evaluation to confirm correctness and high
quality of the created lexicons. (iii) We make our
code, the 1593 ZS seed sentiment lexicons and 200
generic sentiment lexicons freely available to the
community. This is the up-to-now largest senti-
ment resource in terms of language coverage that
has been published.

2 Related Work

Monolingual Lexicon Induction. Sentiment lex-
icons for many languages have been induced.
Eskander and Rambow (2015), Wang and Ku
(2016), and Rouces et al. (2018) create Arabic,
Chinese, and Swedish sentiment lexicons, respec-
tively. Monolingually induced sentiment lexicons
for specific domains like Twitter and finance are
also devised (Mohammad et al., 2013; Hamil-
ton et al., 2016). These methods are special-
ized such that applying them to other languages is
non-trivial. For example, Eskander and Rambow
(2015) link AraMorph (Buckwalter, 2004) with
SentiWordNet by additionally considering part-of-
speech information, which may not be available
in lexical resources in other languages. Inducing
Chinese sentiment lexicons (Wang and Ku, 2016)
needs properly tokenized corpora, which is not a
hard requirement in Swedish. In contrast, we aim
to design a method applicable to typologically di-
verse languages and we apply it to 1500+ lan-
guages.

Bi/Multi-Lingual Lexicon Induction. Gao
et al. (2015) propose a graph based method for
learning sentiment lexicons in target language by
leveraging English sentiment lexicons. They rely
on a high-quality word alignment, which is diffi-
cult to produce if languages are typologically di-
verse and the size of the parallel corpus is small.
Chen and Skiena (2014) devise a knowledge graph

eng The book of the history of Jesus Christ ,
son of David , son of Abraham :

fra Le livre de l’histoire de Jésus Christ ,
fils de David , fils d’Abraham :

jpn アブラハムの子，ダビデの子，
イエス･キリストについての歴史の書 :

Table 1: PBC+ verse 40001001 in three languages

based method to build sentiment lexicons for 136
major languages. Several linguistic resources such
as Google Translate and Wiktionary are used to
link words across languages. In contrast, our ap-
proach uses BPE embeddings to extract alignment
signals from the parallel corpus, an approach that
is better applicable across diverse languages. We
do not require resources like Wiktionary. We cover
more languages than Chen and Skiena (2014) and
more words (e.g., 300K for Amharic).

Language-Agnostic NLP. Language-agnostic
NLP has demonstrated strong performance in ar-
eas such as neural machine translation (NMT)
and universal representation learning. A partic-
ular difficulty is languages that do not mark to-
ken boundaries by whitespace such as Japanese.
We refer to them as non-segmented languages.
Sennrich et al. (2016) show the strength of
BPE in translating rare words. Kudo (2018)
introduces subword regularization that utilizes
multiple subword sequences to improve the ro-
bustness of NMT models. Sennrich et al.
(2016)’s subword-nmt2 requires preprocessing
(specifically, tokenization) for non-segmented lan-
guages, however, sentencepiece3 (Kudo and
Richardson, 2018) used by Kudo (2018) requires
no preprocessing even for non-segmented lan-
guages. This research indicates the potential of
language-agnostic NMT.

Effective representations of words (Schütze,
1993), e.g., word embeddings (Mikolov et al.,
2013; Pennington et al., 2014), have been ex-
tended to be bilingual (Ruder, 2017; Artetxe et al.,
2017) or multilingual (Dufter et al., 2018), with
(Artetxe et al., 2018) and without (Conneau et al.,
2017) supervision. Artetxe and Schwenk (2018)
train a language-agnostic BiLSTM encoder creat-
ing universal sentence representations of 93 lan-
guages, and performing strongly in crosslingual
tasks. Lample and Conneau (2019) show that
pretraining the encoders with a crosslingual lan-
guage model objective helps in achieving state-

2github.com/rsennrich/subword-nmt
3github.com/google/sentencepiece
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of-the-art results in crosslingual classification and
NMT. This research demonstrates the strength
of language-agnostic methods for representation
learning in NLP. Language-agnostic NLP mod-
els can generalize across languages without re-
quiring language-dependent preprocessing. These
advantages motivate us to design a universal ap-
proach for sentiment lexicon induction for 1500+
languages.

3 Method

Figure 1 shows the four steps of our method: (i)
BPE segmentation. (ii) Multilingual embedding
space creation. (iii) ZS lexicon induction. (iv) Do-
main adaptation to the general domain. We work
with the parallel corpus PBC+. PBC+ extends the
Parallel Bible Corpus by adding4 500 translations
of the New Testament in 334 languages, resulting
in a sentence-aligned parallel corpus containing
New Testament verses in 2164 translations of 1593
languages. Many languages have several transla-
tions of the New Testament in PBC+. We use the
term “edition” to refer to a single translation. Ta-
ble 1 shows a verse in three languages. As shown,
the Japanese (jpn) verse is not tokenized.

3.1 BPE Segmentation

Given the linguistic heterogeneity of the world’s
languages, it is crucial to first decide which type
of linguistic unit to use to represent a language L
in the multilingual space. The word, the linguis-
tic unit typically generated from whitespace tok-
enization, is not ideal for universal approaches be-
cause non-segmented languages require carefully
designed tokenizers. Character (or byte) n-gram
is an alternative unit (Wieting et al., 2016; Gillick
et al., 2016; Schütze, 2017; Dufter et al., 2018),
but the optimum length n varies across languages,
e.g., n = 2 may be suitable for Chinese (Foo and
Li, 2004), but clearly not for English.

In our desire to design a universal approach, we
use sentencepiece to segment PBC+ editions
in all 1593 languages into sequences of BPE seg-
ments. We will show that this segmentation works
across languages.

The widely used BPE segmentation algo-
rithm subword-nmt only considers BPE seg-
ments within words (Sennrich et al., 2016) and
some frequent BPEs are essentially valid words.

4We use github.com/ehsanasgari/1000Langs

sentencepiece adopts this setting for seg-
mented languages like English (Kudo, 2018). But
for non-segmented languages, sentencepiece
does not require any language-dependent prepro-
cessing – it learns a data-driven “tokenizer” on-
the-fly from raw text. Hence, sentencepiece
BPE segments can be larger linguistic units than
say, English words, e.g., phrases. Examples for
Japanese BPE segments in PBC+ are: “愛のうち
に” (in love) and “何と言えばよいでしょうか”
(what should I say).

We will use the term “BPE” to refer to all
BPE segments produced by sentencepiece,
including subwords, words and cross-token units
like phrases. Figure 1 (a) shows some sample
units. As shown, the English segments can be
words or subwords (underlined). Dominant con-
texts of shown subwords – insp: inspiration, in-
spired; crim: crime, criminals; blasphe: blas-
phemy, blasphemed; hest: highest, richest.

3.2 Multilingual Space Creation
We next create the multilingual space hosting
BPEs in 1593 languages of PBC+. We use the
Sentence ID (S-ID) method (Levy et al. (2017),
cf. also Le and Mikolov (2014)), a strong baseline
in multilingual embedding learning.

Given a sentence-aligned parallel corpus, the S-
ID method first creates an embedding training cor-
pus by recording co-occurrences between the sen-
tence ID and the sentence’s words (the New Tes-
tament verse ID and BPEs in our case) in all lan-
guages. Figure 2 shows examples from the train-
ing corpus; each BPE is associated with a 3-digit
ISO 639-3 language code. After that, an em-
bedding learner is applied to the created corpus to
learn the multilingual space. We use word2vec-
skipgram (Mikolov et al., 2013) as our embedding
learner.

3.3 Zero-Shot Transfer of English Sentiment
Embeddings encode sentiment information (Pen-
nington et al., 2014; Tang et al., 2014; Amir et al.,
2015; Rothe et al., 2016). We exploit this for
zero-shot transfer of English sentiment to the other
1592 languages. We train two linear SVMs to
classify sentiment of English BPE embeddings as
positive vs. non-positive (POS) and as negative vs.
non-negative (NEG).

We use this setup – as opposed to binary classi-
fication positive vs. negative – to address the fact
that some long BPE segments in non-segmented
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Generic Embeddings of LPBC+ ZS lexicon of L

Domain Adaptation

Generic DA (Domain-Adapted) Lexicon of L:

Pos Neg

[eng]

[jpn]

[fra]

enliven smiles . . . misfortune kill

素敵 楽しみ . . . 異臭 苦し紛れ

atout décoration . . . odieux répugner

(a) PBC+ ZS (zero-shot) lexicons:
Created by zero-shot crosslingual transfer

(b) Generic DA (domain-adapted) lexicons:
Created by PBC-to-general-domain adaptation

Figure 1: Universal sentiment lexicon induction. (a): S-ID multilingual space of BPEs and sentiment classification
hyperplanes (only the positive vs. non-positive plane is shown) learned from English. Underlined units are English
BPEs with strong sentiment. (b): Creating generic DA lexicons using PBC+ ZS lexicons and generic embeddings.

languages may encode both sentiments. Using
two SVMs allows us to identify then filter out seg-
ments with compositional sentiments during zero-
shot transfer. This setup also enables direct com-
parison with Dufter et al. (2018) in Table 2.

The two SVMs are then applied to all embed-
ding vectors in the multilingual space to yield a
ZS lexicon for each of the 1593 languages.

3.4 PBC+ to General Domain Adaptation

Our ZS lexicons show high quality (see §5.2), but
are specific to the PBC+ domain, i.e., the Bible.
We adapt them to the general domain by obtaining
generic embeddings and using ZS lexicon BPEs
as labels to predict the sentiment of each generic
embedding.

We assume that we have access to generic em-
beddings or, alternatively, that we can learn them
from a generic corpus. We now describe how
we predict the sentiment of generic embeddings.
Given the PBC+ ZS lexicon B and the generic em-

40001002 @Jesus:eng
40001002 @አብርሃም:amh
40001002 @òಗೂ:kan
40001002 @雅各:zho
66002003 བཟོད་བsrན་byས་:bod

· · · · · ·

Figure 2: Samples of S-ID embedding training cor-
pus. 40001002 and 66002003: S-ID, i.e., IDs of
New Testament verses. amh=Amharic, kan=Kannada,
zho=Chinese, bod=Tibetan.

bedding matrix ML ∈ Rn×d of language L, we
train a matrix QL ∈ Rd×d such that BPE pairs
with same sentiment (Gs ⊂ B × B) have small
l2 distance while BPE pairs with different senti-
ment (Gd ⊂ B × B) have large l2 distance, i.e.,
∀w, v ∈ B, w 6= v:

argmin
QL

∑
(w,v)∈Gd

−α‖PQL(ew − ev)‖2 +

∑
(w,v)∈Gs

(1− α)‖PQL(ew − ev)‖2 +
λ

2
‖PQL‖2F

where ew, ev ∈ Rd are embeddings of BPEs w, v.
d is embedding dimension. n is vocabulary size.
α ∈ [0, 1] is the hyperparameter balancing the
two sub-objectives. λ is a regularization weight.
P ∈ Rd×d is an identity matrix in the first dimen-
sion, i.e., a selector. This objective concentrates
sentiment information in an embedding vector to a
1-dimensional ultradense sentiment space, result-
ing in a real-valued generic sentiment score. We
minimize the objective using stochastic gradient
descent (SGD).

After training, the generic sentiment score of
BPE w in language L is computed as sw =
PQLew. We refer to this method as REG and
we call a lexicon computed by REG a generic DA
(domain-adapted) lexicon since we always adapt
from the Bible to the general domain in this paper.

REG is inspired by Densifier (Rothe et al.,
2016), which is state of the art on SemEval2015
10E (Rosenthal et al., 2015) – determining
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strength of association of Twitter terms with sen-
timent. Rothe et al. (2016) show that Densifier
induces high quality and coverage sentiment lex-
icons in a domain adaptation setup. Densifier
forces QL to be orthogonal to preserve the struc-
ture of the embedding space. As we are only
interested in accurate sentiment prediction, we
replace the orthogonality with l2 regularization:
λ
2‖PQL‖2F . The orthogonal constraint in Densi-
fier – computing an SVD after each batch update –
is expensive (O(d3)) and requires non-trivial train-
ing regime (Rothe et al., 2016). We will show that
our formalization delivers comparable results.

In our experiments, we can use the generic word
embeddings provided by Bojanowski et al. (2017)
for 157 languages. Additionally, Heinzerling and
Strube (2018) create generic BPE embeddings for
257 languages by segmenting Wikipedia articles
using sentencepiece then running GloVe on
the segmented corpora. As discussed above (§3.1),
some BPEs in the PBC+ ZS lexicons are words,
some are subwords – so we can utilize both sets.

4 Experiments

4.1 Datasets and Settings

We use the 7958 New Testament verses in PBC+
that were also used by Dufter et al. (2018) to create
the multilingual BPE embedding space. To cover
as many BPEs as we can, we segment each PBC+
edition three times with vocabulary sizes 2000,
4000 and 8000 using sentencepiece. S-ID
generates a 31GB embedding training corpus in-
cluding 7,414,810 BPEs in 1593 languages.

English training set. We employ VADER, a
simple but widely used rule-based model for gen-
eral sentiment analysis (Hutto and Gilbert, 2014),
to create sentiment labels for English BPEs. We
consider BPEs with sentiment score > +0.1 (resp.
6 -0.1) as positive (resp. negative). BPEs with
score 0 are treated as neutral. As a result, we
have 851 positive, 906 negative and 13,861 neu-
tral training BPEs in English. We uniformly sam-
ple 878 = floor((851 + 906)/2) neutral BPEs to
speed up training.

Zero-shot transfer. The two SVMs for POS
and NEG (§3.3) are trained on English training
set (see above), then applied to all vectors in the
multilingual BPE embedding space to create ZS
lexicons for 1593 languages. We only keep high-
confidence BPEs – those with a predicted proba-
bility for either POS or NEG of ≥ 0.7 (Platt et al.,

1999) – to ensure ZS lexicons encode clear senti-
ment signals. The PBC+ ZS lexicon of language
L is then the set of all high-confidence sentiment-
bearing BPEs from L.

Evaluation. Following Abdaoui et al. (2017),
Bar-Haim et al. (2017), Rouces et al. (2018), we
evaluate the quality of PBC+ ZS lexicons based on
gold sentiment lexicons in Japanese (JA) (concate-
nation of Kobayashi et al. (2005); Higashiyama
et al. (2008)), Czech (CZ) (Veselovská and Bo-
jar, 2013), German (DE) (Waltinger, 2010), Span-
ish (ES) (Perez-Rosas et al., 2012), French (FR)
(Abdaoui et al., 2017) and English (EN) (WHM
lexicon, the concatenation of Wilson et al. (2005),
Hu and Liu (2004) and Mohammad and Turney
(2013), created by Rothe et al. (2016)). F1 is eval-
uation metric. We always compute F1 on the inter-
section of our and gold lexicon. Gold lexicons are
also used in intrinsic evaluation of generic DA lex-
icons (Table 6). Additionally, the English WHM
lexicon is also used in the evaluation of the uni-
versality of our approach (Table 8).

For intrinsic evaluation of generic DA lexicons,
we compare our results with Densifier. Rothe et al.
(2016) provide embeddings and train/validation
splits of gold standard lexicons in CZ, DE, ES,
FR and EN – we also use them in our experi-
ments. We show (i) using GEN (the same training
words as Densifier), REG (§3.4) induces generic
lexicons in comparable quality; (ii) using PBC+
ZS lexicons, the induced generic DA lexicons are
also in high quality. Kendall’s τ (Kendall, 1938)
is evaluation metric. As Densifier is implemented
in MATLAB, we implement our model in NumPy
(Oliphant, 2006) which is more accessible to the
community.

For extrinsic evaluation of generic DA lexicons,
we carry out Twitter sentiment classification in
13 languages. For each language, we retrieve
≈12,000 tweets from the human annotated dataset
devised by Mozetič et al. (2016), and sample bal-
anced number of positive and negative tweets (for
clearer comparisons and descriptions) which are
then randomly split 80/20 into train/test. We com-
pare our lexicons with Chen and Skiena (2014)’s
work. Two classification models are used (§5.3) –
COUNT (count-based, Chen and Skiena (2014))
and ML (machine-learning-based, Eskander and
Rambow (2015)). Accuracy is evaluation metric.
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4.2 Hyperparameter Tuning
We train the multilingual BPE embedding space
using word2vec-skipgram with default parameters
except: 25 negative samples, 10−4 occurrence
threshold, 200 dimensions and 10 iterations.

We tune the two linear SVMs for POS and NEG
by 5-fold cross validation on English training set.

Following Rothe et al. (2016), when inducing
generic DA lexicons, we run a grid search on their
train/validation sets to find α and λ. With the
same settings, we additionally conduct an experi-
ment on Japanese (JA Wiki), a non-segmented lan-
guage, to show the universality of our approach.
For EN Twitter (SemEval2015 10E), we tune our
model on the trial (dev) set and report results
on the test set. In all experiments, we search
α ∈ {0.3, 0.4, 0.5, 0.6, 0.7}, λ ∈ {0.01, 0.1, 1}.
Learning rate is 0.1, batch size 100, and the maxi-
mum number of updating steps 30,000.

Following Eskander and Rambow (2015), in
machine-learning-based Twitter sentiment classi-
fication for each of the 13 languages, we find the
optimum SVM (positive vs. negative tweet) hyper-
parameters (C and kernel) by running 5-fold cross
validation on the training set.

5 Results and Discussion

5.1 Multilingual BPE Space Evaluation
We first evaluate the multilingual BPE space by
carrying out the crosslingual verse sentiment clas-
sification experiment in Dufter et al. (2018). Two
linear SVMs are trained on 2147 English train-
ing verses to classify the verse sentiment (posi-
tive vs. non-positive, i.e., POS, and negative vs.
non-negative, i.e., NEG). A verse is represented as
the TF-IDF weighted sum of the embeddings of its
BPEs. We then conduct the crosslingual verse sen-
timent analysis – using the SVMs to classify 476
test verses of Dufter et al. (2018)’s 1664 editions
in 1259 languages. Table 2 gives results averaged
over 1664 editions. Word and Char are two multi-
lingual spaces created by Dufter et al. (2018). For
Word, whitespace tokenization is used to segment
all editions. For Char, all editions are segmented
to sequences of overlapping byte-ngrams (length n
varies across languages, see Dufter et al. (2018)).
Next, the S-ID method is utilized to create the two
multilingual spaces.

The S-ID BPE space outperforms both S-ID
Word and S-ID Char spaces. This observa-
tion meets our expectation – the data-driven BPE

Word Char BPE
POS NEG POS NEG POS NEG

S-ID .79 .88 .65 .86 .81 .89

Table 2: F1 for verse sentiment classification. Bold:
our results. Word/Char are from Dufter et al. (2018).

ISO B W ∆ ISO B W ∆
lzh1 .82 .04 +.78 eng1 .88 .84 +.04
jpn1 .86 .19 +.67 fra1 .85 .85 -.00
khm2 .87 .21 +.66 deu1 .84 .83 +.01
khm3 .86 .25 +.61 spa1 .85 .85 +.00
ksw0 .86 .32 +.54 por1 .84 .87 -.03

Table 3: The most improved (left) editions when using
S-ID BPE (B) compared with S-ID Word (W). B and
W perform similarly on segmented languages (right)
like English (eng), French (fra), German (deu), Spanish
(spa) and Portuguese (por). Numbers are in F1.

segmentation is superior to splitting on whites-
pace (Word) or overlapping byte-ngram segmen-
tation (Char), for non-segmented languages like
Japanese whose PBC+ editions are not tokenized.

For the more challenging subtask POS, we
find the biggest improvement of S-ID BPE over
Word is for non-segmented languages like Clas-
sical Chinese (lzh), Japanese (jpn), Khmer (khm)
and S’gaw Karen (ksw) as shown in Table 3 (left).
For segmented languages, S-ID BPE delivers sim-
ilar performance as S-ID Word as shown in Table
3 (right). This observation also meets our expec-
tation – lots of BPEs in segmented languages are
essentially valid words.

These observations show the universality of
our approach. The sentiment information derived
from English is successfully transferred to hetero-
geneous languages without language-dependent
preprocessing – even for non-segmented lan-
guages.

5.2 PBC+ ZS (Zero-Shot) Lexicon Evaluation

Sample entries in the English ZS lexicon are
shown in Table 4 (left) as a qualitative evalu-
ation. Table 5 shows the high consistency be-
tween the PBC+ ZS lexicons and gold lexicons
in six languages. These results indicate that the

positive negative positive negative
magnificent fought #blessedbeyondbelief shats

privilege blamed alhamduillah #worstpain
enjoyed debauchery #365daysofgratitude theiving
salvation adulter #excellence #stuffynose
rejoices gloomy co-create sorethroat

Table 4: Sample entries in English ZS lexicon (left) and
DA lexicon with Twitter embeddings (right).
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two SVMs trained on English BPE embeddings
perform strongly in a zero-shot crosslingual set-
ting, and the resulting PBC+ ZS lexicons in dif-
ficult (morphologically rich, e.g., Czech; non-
segmented, e.g., Japanese) languages encode clear
sentiment information.

5.3 Generic DA (Domain-Adapted) Lexicon
Evaluation

Table 4 (right) qualitatively shows the most
sentiment-bearing words of the DA lexicon in-
duced with English ZS lexicon and Twitter embed-
dings (EN Twitter). Lots of top ranked words are
strong sentiment-bearing hashtags that never oc-
cur in the ZS lexicon domain, illustrating that our
approach functions well in the domain adaptation
setup. This observation is consistent with Densi-
fier (Rothe et al., 2016).

Intrinsic evaluation: ranking correlation.
We compute ranking correlation between our
generic DA lexicons and gold standard lexicons.
There are overlapping words between our PBC+
ZS lexicon BPEs and the validation/test sets used
by Rothe et al. (2016) – we discard these training
words for a clean comparison.

Columns (i) and (ii) of Table 6 show that REG
(§3.4) delivers results comparable to Densifier
(ORTH) when using the same set of generic train-
ing words (GEN) in lexicon induction. However,
our method is more efficient – no need to compute
the expensive SVD after every batch update.

Comparing columns (ii) and (iii), we see a
marginal decrease of τ between .020 and .057
when GEN is replaced by PBC+ ZS lexicons.
Note that PBC+ ZS lexicons have much fewer
training BPEs than GEN (e.g., 343 vs. 4298 in JA
Wiki) – this may contribute to the decrease. These
comparable results also reflect the correctness of
PBC+ ZS lexicons.

We also use α = 0.4 and λ = 0.01, the opti-
mal hyperparameter values found on the trial set
of EN Twitter, to induce generic DA lexicons for
the other languages. This is the common setting

JA CZ DE ES FR EN
F1 .883 .914 .903 .963 .916 .939
∩ size 120 141 788 63 407 1145
|PBC+| 728 1793 2827 1766 2193 2563

Table 5: High consistency between PBC+ ZS lexicons
and generic gold lexicons in JA and five languages
used in Rothe et al. (2016). ∩ size: intersection size.
|PBC+|: ZS lexicon size.

(i) (ii) (iii) (iv)
ORTH REG
GEN GEN PBC+/T PBC+/NT

CZ web .580 .576 .529 .524
DE web .654 .654 .634 .634
ES web .563 .568 .524 .514
FR web .544 .540 .514 .474
EN Tw. .654 .629 .583 .583
EN Ne. .622 .582 .562 .557
JA Wiki n/a .628 .571 .558

Table 6: Correlation (τ ) of generic DA lexicons with
gold standard lexicons. ORTH results are from Rothe
et al. (2016). The other columns use REG (§3.4).
Training words for lexicon induction are from Rothe
et al. (2016) (GEN) and from PBC+ ZS lexicons.

Algorithm 1 Creating tweet representation

1: procedure REPTWEET(String: Tweet, Dict: Lexicon)
2: words = Tweet.split(“ ”)
3: vec = [0.0, 0.0]
4: for w ∈ words do
5: val = Lexicon.get(w)
6: if val > 0 then
7: vec[0] = vec[0] + val
8: else if val < 0 then
9: vec[1] = vec[1] + val

10: else
11: continue
12: return vec

Figure 3: Creating the representation of a tweet in Twit-
ter sentiment classification using ML.

in real applications – other languages most likely
do not have validation sets available. Results are
shown in column (iv). Compared with tuned re-
sults (PBC+/T), performance slightly drops as the
hyperparameters are not tuned (PBC+/NT) for lan-
guages other than EN Twitter.

Overall, the performance differences between
GEN (based on generic gold standard lexicons)
and PBC+ (based on PBC+ ZS lexicons) are small
and τ correlations are high. The high quality of
generic DA lexicons in these six diverse (mor-
phologically rich and non-segmented) languages
shows the universality of our approach again – no
language-dependent preprocessing is needed.

Extrinsic evaluation: Twitter sentiment clas-
sification. Based on the subset of frequent words
only,5 we use the top 10% most positive and most
negative words for this evaluation. We compare
with the closest work – lexicons from Chen and
Skiena (2014).

Two classification models are used – word-
count-based model COUNT (Chen and Skiena,

5In all discussions, we consider words that are top 50%
frequent in the embedding vocabulary as “frequent” words.
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sqi bul hrv deu hun pol por rus srp slk slv spa swe x̄

COUNT C&S .55 .57 .57 .61 .61 .55 .57 .54 .51 .55 .64 .54 .57 .57
Ours .50 .60 .60 .56 .64 .62 .53 .65 .50 .61 .57 .55 .63 .58

ML C&S .58 .59 .60 .62 .64 .56 .54 .56 .51 .57 .66 .53 .59 .58
Ours .54 .65 .65 .64 .66 .66 .54 .67 .51 .64 .59 .57 .64 .61

Table 7: Accuracy of Twitter sentiment classification in Albanian (sqi), Bulgarian (bul), Croatian (hrv), German
(deu), Hungarian (hun), Polish (pol), Portuguese (por), Russian (rus), Serbian (srp), Slovak (slk), Slovenian (slv),
Spanish (spa) and Swedish (swe). Baseline of all experiments: 0.5.

2014), and machine-learning-based model ML
(Eskander and Rambow, 2015). COUNT labels a
tweet with the sentiment that has more word oc-
currences in the tweet (positive in case of ties).
COUNT does not require training and the results
are from all tweets for each language. In ML, the
vector representation of a tweet is created accord-
ing to Figure 3. Our generic DA lexicons support
computing real-valued vectors in this way. Chen
and Skiena (2014)’s lexicons are discrete (1/-1);
we use these discrete values when applying ML to
their lexicons. Finally, for each language, an SVM
is trained on the 2-dimensional vectors.

Table 7 shows results. The baseline accuracy is
0.5 for all experiments as our dataset is balanced.
Rows Ours and C&S show results using our and
Chen and Skiena (2014)’s lexicons respectively.
As shown, the two sets of lexicons give compara-
ble results in COUNT. But ML generally performs
better than COUNT, and our lexicons give better
classification results – our real-valued representa-
tion of tweets is superior to the discrete one com-
puted with Chen and Skiena (2014)’s lexicons.

Overall, intrinsic and extrinsic evaluations on
diverse languages demonstrate the high quality of
our generic DA lexicons.

5.4 Evaluation of Universality
We further conduct automatic and human evalua-
tions on 95 diverse languages to show the univer-
sality of our approach. We focus on intrinsic eval-
uation – verifying the correctness of PBC+ ZS lex-
icons with F1, and assessing the quality of generic
DA lexicons using τ . The extrinsic evaluation,
i.e., Twitter sentiment classification, is not feasi-
ble here due to missing human annotated Twitter
datasets in low-resource languages.

Automatic evaluation. Similar to Chen and
Skiena (2014); Abdaoui et al. (2017), we use
Google Translate (GT) for automatic evaluation –
given a non-English language L, we translate its
PBC+ ZS lexicon and generic DA lexicon into En-
glish. Translated English lexicons are then evalu-

ated against the gold English lexicon WHM.

GT supports 102 non-English languages. We
omit ten languages that (i) are not covered by
PBC+ (Corsican, Galician, Pashto, Yiddish); (ii)
are covered in PBC+, but not in the alphabet used
by GT (Malayalam); (iii) do not have public pre-
trained embeddings (Filipino, Hmong, Kyrgyz,
Sesotho); or (iv) are very close to another language
(we keep Croatian, but do not include Bosnian).
We conduct separate experiments for Bokmål and
Nynorsk, which are not distinguished by GT.
Thus, we evaluate on 93 languages. When trans-
lating words to English, we discard entries where
GT fails (i.e., output is identical to input). As GT
requires the uploaded file to be small (6 1MB), we
do the evaluation on uniformly sampled 600 top
1% positive and negative words that are frequent.
For ten languages (Chichewa, Hausa, Hawaiian,
Igbo, Lao, Maori, Samoan, Shona, Xhosa, Zulu)
that have very small embedding training corpora
(<5MB Wikipedia pages and articles) and vocab-
ulary sizes (e.g., 5000 for Hausa), we sample 200
words at 10%.

Table 8 shows results. We see that PBC+ ZS
lexicons show high consistency with gold labels
across all 93 languages (F1 columns), includ-
ing morphologically rich languages like Czech
and Turkish, and non-segmented languages like
Japanese and Khmer. The generic DA lexi-
cons show high correlation with gold labels (τ
columns) – with two exceptions. First, some
languages have low-quality embeddings due to
small embedding training corpora (e.g., Hawaiian:
998 KB; Igbo: 1014 KB) or because the train-
ing corpora apparently have low quality – e.g., the
Luxembourgish embedding vocabulary contains a
large amount of French and German words, sug-
gesting that it was trained on mixed text and that
the genuine Luxembourgish part is small. Second,
GT does not perform well for some of the lan-
guages, again this is the case for Luxembourgish
and also for Frisian. To give an example from Lux-
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Language F1 τ Language F1 τ Language F1 τ Language F1 τ Language F1 τ
Afrikaans .909 .508 Esperanto .933 .361 Italian .924 .591 Mongolian .840 .222 Sundanese .912 .409
Albanian .916 .570 Estonian .889 .606 Japanese .901 .411 Myanmar .916 .534 Shona .885 .223
Amharic .870 .418 Finnish .932 .584 Javanese .904 .398 Nepali .862 .491 Swedish .936 .621
Arabic .905 .509 French .919 .600 Kannada .921 .447 Nynorsk .853 .434 Sinhala .880 .540

Armenian .848 .524 Frisian .885 .065 Kazakh .893 .421 Punjabi .927 .506 Tajik .876 .436
Azerbaijani .768 .401 Georgian .908 .540 Khmer .906 .474 Persian .903 .390 Tamil .911 .513

Basque .898 .477 German .898 .548 Korean .897 .481 Polish .923 .530 Telugu .934 .297
Belarusian .915 .597 Greek .912 .570 Kurdish .925 .258 Portuguese .913 .574 Thai .867 .357

Bengali .910 .389 Gujarati .896 .479 Latin .927 .336 Romanian .917 .644 Turkish .897 .607
Bokmål .927 .625 Haitian .891 .238 Lao .834 .222 Russian .910 .596 Ukrainian .909 .612

Bulgarian .911 .511 Hausa .905 .184 Latvian .919 .538 Scots .848 .385 Urdu .825 .258
Catalan .937 .453 Hawaiian .951 .078 Lithuanian .922 .491 Serbian .957 .559 Uzbek .900 .361
Cebuano .917 .390 Hebrew .833 .522 Luxemb’gish .834 .031 Sindhi .845 .169 Vietnamese .840 .403
Chichewa .872 .061 Hindi .878 .447 Macedonian .918 .425 Slovak .942 .515 Welsh .879 .560
Chinese .889 .486 Hungarian .910 .502 Malagasy .923 .417 Samoan .857 .116 Xhosa .892 .057
Croatian .926 .519 Igbo .791 .088 Malay .892 .494 Swahili .842 .403 Yoruba .873 .188
Czech .915 .545 Icelandic .947 .417 Maori .836 .015 Slovenian .957 .483 Zulu .889 .226
Danish .936 .359 Indonesian .898 .498 Maltese .938 .488 Somali .954 .335
Dutch .906 .553 Irish .902 .476 Marathi .942 .479 Spanish .943 .428

Table 8: Intrinsic evaluation of our PBC+ ZS and generic DA lexicons in 93 languages. We see high consistency
(F1) between PBC+ ZS lexicons and gold labels across languages. The generic DA lexicons are strongly correlated
(τ ) with gold labels in most languages.

Hiligaynon Tibetan
τ size τ size

2-way .474 103 .542 64
3-way .357 188 .361 148

Table 9: Human evaluation of generic DA lexicons in
Hiligaynon and Tibetan. 2-way: positive, negative. 3-
way: positive, neutral, negative.

embourgish for both problems: “vergloust” and its
first nearest neighbor “verglousten” are translated
by GT as “glowed” and “forget about it”. We rec-
ommend to use the higher quality PBC+ ZS lexi-
con for these languages.

Apart from above exceptions, both F1 and τ are
reasonably high, evidencing that our universal ap-
proach is applicable to a broad range of typologi-
cally diverse languages.

We do human evaluation for Hiligaynon and
Tibetan, languages not supported by GT.

There are no public pretrained embeddings for
Hiligaynon. We train embeddings on a concate-
nation of texts from project Palito (Dita et al.,
2009) and Jehovah’s Witnesses e-books (www.
jw.org). From the generic DA Hiligaynon and
Tibetan lexicons, we uniformly sample 199 from
the top 10% positive and negative frequent BPEs.

Two Tibetan scholars and three Hiligaynon
speakers annotated these BPEs as positive, nega-
tive, neutral, unclear where the last category refers
to cases where the intended word is not apparent
from the BPE. We omit entries labeled as unclear
and compute τ . Table 9 shows τ averaged over an-
notators. We see that our lexicons have consistent
positive correlation with the human annotation in
both languages.

6 Conclusion

We proposed a universal approach for sentiment
lexicon induction. By creating a multilingual BPE
embedding space for 1500+ languages, we suc-
cessfully transfer sentiment to each language with-
out language-dependent preprocessing. We cre-
ated 1593 ZS (zero-shot) sentiment lexicons and
showed for a subset that they are highly consistent
with gold lexicons. To address the fact that the
small-size ZS lexicons are specific to PBC+’s do-
main, we conduct domain adaptation and induce
large-size generic DA (domain-adapted) lexicons
for 200 languages. Extensive intrinsic and extrin-
sic, automatic and human evaluations on 95 lan-
guages confirm the correctness and good quality
of our lexicons. We make our code and lexicons
freely available to the community.

To induce generic lexicons, our approach re-
quires generic embeddings, which are not always
available for low-resource languages. Solving this
problem is non-trivial as many low-resource lan-
guages have a limited amount of written text in
electronic form (and in any form). In such cases,
the PBC+ ZS lexicons can be utilized because they
also have high quality.
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