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embeddings (Nickel and Kiela, 2017, 2018) as

follows: Roller et al. (2018) showed that Hearst

patterns can provide important constraints for hy-

pernymy extraction from distributional contexts.

However, it is also well-known that Hearst patterns

suffer from missing and incorrect extractions, as

words must co-occur in exactly the right pattern to

be detected successfully. For this reason, we first

extract potential is-a relationships from a corpus

using Hearst patterns and build a directed weighted

graph from these extractions. We then embed this

Hearst Graph in hyperbolic space to infer missing

hypernymy relations and remove wrong extractions.

By using hyperbolic space for the embedding, we

can exploit the following important advantages:

Consistency Hyperbolic entailment cones (Ganea

et al., 2018) allow us to enforce transitivity of

is-a-relations in the entire embedding space.

This improves the taxonomic consistency of

the model, as it enforces that (x,is-a, z) if

(x,is-a, y) and (y,is-a, z). To improve

optimization properties, we also propose a

new method to compute hyperbolic entailment

cones in the Lorentz model of hyperbolic space.

Efficiency Hyperbolic space allows for very low

dimensional embeddings of graphs with latent

hierarchies and heavy-tailed degree distribu-

tions. For embedding large Hearst graphs –

which exhibit both properties (e.g., see Fig-

ure 2) – this is an important advantage. In our

experiments, we will show that hyperbolic em-

beddings allow us to decrease the embedding

dimension by over an order of magnitude while

outperforming SVD-based methods.

Interpretability In hyperbolic embeddings, simi-

larity is captured via distance while the gener-

ality of terms is captured through their norms.

This makes it easy to interpret the embeddings

with regard to their hierarchical structure and

allows us to get additional insights, e.g., about

a term’s degree of generality.

Figure 1 shows an example of a two-dimensional

embedding of the Hearst graph that we use in our

experiments. Although we will use higher dimen-

sionalities for our final embedding, the visualiza-

tion serves as a good illustration of the hierarchical

structure that is obtained through the embedding.

2 Related Work

Hypernym detection Detecting is-a-relations

from text is a long-standing task in natural language

processing. A popular approach is to exploit high-

precision lexico-syntactic patterns as first proposed

by Hearst (1992). These patterns may be prede-

fined or learned automatically (Snow et al., 2005;

Shwartz et al., 2016; Nakashole et al., 2012). How-

ever, it is well known that such pattern-based meth-

ods suffer significantly from missing extractions as

terms must occur in exactly the right configuration

to be detected (Shwartz et al., 2016; Roller et al.,

2018). Recent works improve coverage by lever-

aging search engines (Kozareva and Hovy, 2010)

or by exploiting web-scale corpora (Seitner et al.,

2016); but also come with precision trade-offs.

To overcome the sparse extractions of pattern-

based methods, focus has recently shifted to dis-

tributional approaches which provide rich repre-

sentations of lexical meaning. These methods al-

leviate the sparsity issue but also require special-

ized similarity measures to distinguish different

lexical relationships. To date, most measures are

inspired by the Distributional Inclusion Hypothe-

sis (DIH; Geffet and Dagan 2005) which hypoth-

esizes that for a subsumption relation (cat, is-a,

mammal) the subordinate term (cat) should appear

in a subset of the contexts in which the superior

term (mammal) occurs. Unsupervised methods for

hypernymy detection based on distributional ap-

proaches include WeedsPrec (Weeds et al., 2004),

invCL (Lenci and Benotto, 2012), SLQS (Santus

et al., 2014), and DIVE (Chang et al., 2018). Dis-

tributional representations that are based on posi-

tional or dependency-based contexts may also cap-

ture crude Hearst-pattern-like features (Levy et al.,

2015; Roller and Erk, 2016). Shwartz et al. (2017)

showed that such contexts plays an important role

for the success of distributional methods. Camacho-

Collados et al. (2018) proposed a new shared task

for hypernym retrieval from text corpora.

Recently, Roller et al. (2018) performed a sys-

tematic study of unsupervised distributional and

pattern-based approaches for hypernym detection.

Their results showed that pattern-based methods

are able to outperform DIH-based methods on sev-

eral challenging hypernymy benchmarks. Key as-

pects to good performance were the extraction of

patterns from large text corpora and using embed-

ding methods to overcome the sparsity issue. Our

work builds on these findings by replacing their
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Figure 2: Frequency distribution of words appearing

in the Hearst pattern corpus (on a log-log scale).

embeddings with ones with a natural hierarchical

structure.

Taxonomy induction Although detecting hyper-

nymy relationships is an important and difficult

task, these systems alone do not produce rich taxo-

nomic graph structures (Camacho-Collados, 2017),

and complete taxonomy induction may be seen as

a parallel and complementary task.

Many works in this area consider a taxonomic

graph as the starting point, and consider a variety

of methods for growing or discovering areas of the

graph. For example, Snow et al. (2006) train a clas-

sifier to predict the likelihood of an edge in Word-

Net, and suggest new undiscovered edges, while

Kozareva and Hovy (2010) propose an algorithm

which repeatedly crawls for new edges using a web

search engine and an initial seed taxonomy. Cimi-

ano et al. (2005) considered learning ontologies

using Formal Concept Analysis. Similar works

consider noisy graphs discovered from Hearst pat-

terns, and provide algorithms for pruning edges

until a strict hierarchy remains (Velardi et al., 2005;

Kozareva and Hovy, 2010; Velardi et al., 2013).

Maedche and Staab (2001) proposed a method to

learn ontologies in a Semantic Web context.

Embeddings Recently, works have proposed a

variety of graph embedding techniques for rep-

resenting and recovering hierarchical structure.

Order-embeddings (Vendrov et al., 2016) repre-

sent text and images with embeddings where the

ordering over individual dimensions forms a par-

tially ordered set. Hyperbolic embeddings repre-

sent words in hyperbolic manifolds such as the

Poincaré ball and may be viewed as a continuous

analogue to tree-like structures (Nickel and Kiela,

2017, 2018). Recently, Tifrea et al. (2018) also pro-

posed an extension of GLOVE (Pennington et al.,

Pattern

X which is a (example | class | kind | . . . ) of Y
X (and | or) (any | some) other Y
X which is called Y
X is JJS (most)? Y
X a special case of Y
X is an Y that
X is a !(member | part | given) Y
!(features | properties) Y such as X1, X2, . . .
(Unlike | like) (most | all | any | other) Y, X
Y including X1, X2, . . .

Table 1: Hearst patterns used in this study. Patterns are

lemmatized, but listed as inflected for clarity.

2014) to hyperbolic space. In addition, works have

considered how distributional co-occurrences may

be used to augment order-embeddings (Li et al.,

2018) and hyperbolic embeddings (Dhingra et al.,

2018). Further methods have focused on the of-

ten complex overlapping structure of word classes,

and induced hierarchies using box-lattice structures

(Vilnis et al., 2018) and Gaussian word embeddings

(Athiwaratkun and Wilson, 2018). Compared to

many of the purely graph-based works, these meth-

ods generally require supervision of hierarchical

structure, and cannot learn taxonomies using only

unstructured noisy data.

3 Methods

In the following, we discuss our method for un-

supervised learning of concept hierarchies. We

first discuss the extraction and construction of the

Hearst graph, followed by a description of the Hy-

perbolic Embeddings.

3.1 Hearst Graph

The main idea introduced by Hearst (1992) is to

exploit certain lexico-syntactic patterns to detect

is-a relationships in natural language. For in-

stance, patterns like “NPy such as NPx” or “NPx
and other NPy” often indicate a hypernymy rela-

tionship (u,is-a, v). By treating unique noun

phrases as nodes in a large, directed graph, we may

construct a Hearst Graph using only unstructured

text and very limited prior knowledge in the form of

patterns. Table 1 lists the only patterns that we use

in this work. Formally, let E = {(u, v)}Ni=1 denote

the set of is-a relationships that have been ex-

tracted from a text corpus. Furthermore, let w(u, v)
denote how often we have extracted the relationship

(u,is-a, v). We then represent the extracted pat-

terns as a weighted directed graph G = (V,E,w)
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let Θ = {vi}
M
i=1 be the set of embeddings. To find

an embedding that minimizes the overall energy,

we then solve the optimization problem

Θ̂ = argmin
Θ∈Hn

∑

u,v ∈V

L(u, v) (4)

where

L(u, v) =

{

E(u, v) if (u, v) ∈ E

max(0, γ − E(u, v)) otherwise

is the max-margin loss as used in (Ganea et al.,

2018; Vendrov et al., 2016). The goal of Equa-

tion (4) is to find a joint embedding of all terms

that best explains the observed Hearst patterns.

To solve Equation (4), we follow Nickel and

Kiela (2018) and perform stochastic optimization

via Riemannian SGD (RSGD; Bonnabel 2013). In

RSGD, updates to the parameters v are computed

via

vt+1 = exp
vt
(−η grad f(vt)) (5)

where grad f(vt) denotes the Riemannian gradient

and η denotes the learning rate. In Equation 5, the

Riemannian gradient of f at v is computed via

grad f(vt) = proj
vt

(

g−1
ℓ ∇f(v)

)

where ∇f(v) denotes the Euclidean gradient of f
and where

proj
v
(x) = v + 〈v,x〉Lv

g−1
ℓ (v) = diag([−1, 1, . . . , 1])

denote the projection from the ambient space Rn+1

onto the tangent space TvL
n and the inverse of the

metric tensor, respectively. Finally, the exponential

map for Ln is computed via

exp
v
(x) = cosh(‖x‖L)v + sinh(‖x‖L)

x

‖x‖L

where ‖v‖L =
√

〈v,v〉L and v ∈ TxL
n.

As suggested by Nickel and Kiela (2018),

we initialize the embeddings close to the ori-

gin of L
n by sampling from the uniform dis-

tribution U(−0.001, 0.001) and by setting v0 to
√

1 + ||v′||2, what ensures that the sampled points

are located on the surface of the hyperboloid.

4 Experiments

To evaluate the efficacy of our method, we evaluate

on several commonly-used hypernymy benchmarks

(as described in (Roller et al., 2018)) as well as in a

reconstruction setting (as described in (Nickel and

Kiela, 2017)). Following Roller et al. (2018), we

compare to the following methods for unsupervised

hypernymy detection:

Pattern-Based Models Let E = {(x, y)}Ni=1 be

the set of Hearst patterns in our corpus, w(x, y) be

the count of how many times (x, y) occurs in E,

and W =
∑

(x,y)∈E w(x, y). We then consider the

following pattern-based methods:

Count Model (p) This model simply outputs the

count, or equivalently, the extraction probabilities

of Hearst patterns, i.e.,

p(x, y) =
w(x, y)

W

PPMI Model (ppmi) To correct for skewed oc-

currence probabilities, the PPMI model predicts

hypernymy relations based on the Positive Point-

wise Mutual Information over the Hearst pattern

corpus. Let p−(x) = Σ(x,y)∈Ew(x, y)/W and

p+(x) = Σ(y,x)∈Ew(y, x)/W , then:

ppmi(x, y) = max

(

0, log
p(x, y)

p−(x)p+(y)

)

SVD Count (sp) To account for missing relations,

we also compare against low-rank embeddings of

the Hearst corpus using Singular Value Decompo-

sition (SVD). Specifically, let X ∈ RMxM , such

that Xij = w(i, j)/W and UΣV ⊤ be the singular

value decomposition of X , then:

sp(x, y) = u⊤xΣrvy

SVD PPMI (spmi) We also evaluate against the

SVD of the PPMI matrix, which is identical to

sp(i, j), with the exception that Xij = ppmi(i, j),
instead of p(i, j). Roller et al. (2018) showed that

this method provides state-of-the-art results for un-

supervised hypernymy detection.

Hyperbolic Embeddings (HypeCones) We embed

the Hearst graph into hyperbolic space as described

in Section 3.2. At evaluation time, we predict the

likelihood using the model energy E(u, v).

Distributional Models The distributional mod-

els in our evaluation are based on the DIH, i.e., the

idea that contexts in which a narrow term x (ex:

cat) may appear should be a subset of the contexts

in which a broader term y (ex: animal) may appear.
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Detection (AP) Direction (Acc.) Graded (ρ)

BLESS EVAL LEDS SHWARTZ WBLESS BLESS WBLESS BIBLESS HYPERLEX

Cosine .12 .29 .71 .31 .53 .00 .54 .52 .14
WeedsPrec .19 .39 .87 .43 .68 .63 .59 .45 .43
invCL .18 .37 .89 .38 .66 .64 .60 .47 .43
SLQS .15 .35 .60 .38 .69 .75 .67 .51 .16

p(x, y) .49 .38 .71 .29 .74 .46 .69 .62 .62
ppmi(x, y) .45 .36 .70 .28 .72 .46 .68 .61 .60
sp(x, y) .66 .45 .81 .41 .91 .96 .84 .80 .51
spmi(x, y) .76 .48 .84 .44 .96 .96 .87 .85 .53

HypeCones .81 .50 .89 .50 .98 .94 .90 .87 .59

Table 2: Experimental results comparing distributional and pattern-based methods in all settings.

WeedsPrec The first distributional model we con-

sider is WeedsPrec (Weeds et al., 2004), which

captures the features of x which are included in the

set of more general term’s features, y:

WeedsPrec(x, y) =

∑n
i=1 xi · ✶yi>0
∑n

i=1 xi

invCL Lenci and Benotto (2012), introduce the

idea of distributional exclusion by also measuring

the degree to which the broader term contains con-

texts not used by the narrower term. The degree of

inclusion is denoted as:

CL(x, y) =

∑n
i=1min(xi, yi)
∑n

i=1 xi

To measure the inclusion of x and y and the non-

inclusion of y in x, invCL is then computed as

invCL(x, y) =
√

CL(x, y) · (1− CL(y, x))

SLQS The SLQS model is based on the informa-

tiveness hypothesis (Santus et al., 2014; Shwartz

et al., 2017), i.e., the idea that general words appear

mostly in uninformative contexts, as measured by

entropy. SLQS depends on the median entropy of

a term’s top k contexts:

Ex = medianki=1[H(ci)]

where H(ci) is the Shannon entropy of context ci
across all terms. SLQS is then defined as:

SLQS(x, y) = 1− Ex/Ey

Corpora and Preprocessing We construct our

Hearst graph using the same data, patterns, and pro-

cedure as described in (Roller et al., 2018): Hearst

patterns are extracted from the concatenation of

GigaWord and Wikipedia. The corpus is tokenized,

lemmatized, and POS-tagged using CoreNLP 3.8.0

(Manning et al., 2014). The full set of Hearst pat-

terns is provided in Table 1. These include proto-

typical Hearst patterns, like “animals [such as] big

cats”, as well as broader patterns like “New Year [is

the most important] holiday.” Noun phrases were

allowed to match limited modifiers, and produced

additional hits for the head of the noun phrase. The

final corpus contains circa 4.5M matched pairs,

431K unique pairs, and 243K unique terms.

Hypernymy Tasks We consider three distinct

subtasks for evaluating the performance of these

models for hypernymy prediction:

• Detection: Given a pair of words (u, v), deter-

mine if v is a hypernym of u.

• Direction: Given a pair (u, v), determine if u
is more general than v or vise versa.

• Graded Entailment: Given a pair of words (u,

v), determine the degree to which u is a v.

For detection, we evaluate all models on five

commonly-used benchmark datasets: BLESS (Ba-

roni and Lenci, 2011), LEDS (Baroni et al., 2012),

EVAL (Santus et al., 2015), SHWARTZ (Shwartz

et al., 2016), and WBLESS (Weeds et al., 2014),

In addition to positive hypernymy relations, these

datasets include negative samples in the form of

random pairs, co-hyponymy, antonymy, meronymy,

and adjectival relations. For directionality and

graded entailment, we also use BIBLESS (Kiela

et al., 2015) and HYPERLEX (Vulic et al., 2016).

We refer to Roller et al. (2018) for an in-depth dis-

cussion of these datasets. For all models, we use

the identical text corpus and tune hyperparameters

on the validation sets.
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Animals Plants Vehicles

All Missing Transitive All Missing Transitive All Missing Transitive

p(x, y) 350.18 512.28 455.27 271.38 393.98 363.73 43.12 82.57 66.10
ppmi(x, y) 350.47 512.28 455.38 271.40 393.98 363.76 43.20 82.57 66.16
sp(x, y) 56.56 77.10 11.22 43.40 64.70 17.88 9.19 26.98 14.84
spmi(x, y) 58.40 102.56 12.37 40.61 71.81 14.80 9.62 17.96 3.03

HypeCones 25.33 37.60 4.37 17.00 31.53 6.36 5.12 10.28 2.74
∆% 56.6 51.2 61.1 58.1 51.3 57.0 44.3 42.8 9.6

Table 3: Reconstruction of Animals, Plants, and Vehicles subtrees in WORDNET.

Table 2 shows the results for all tasks. It can

be seen that our proposed approach provides sub-

stantial gains on the detection and directionality

tasks and, overall, achieves state of the art re-

sults on seven of nine benchmarks. In addition,

our method clearly outperforms other embedding-

based approaches on HYPERLEX, although it can

not fully match the count-based methods. As Roller

et al. (2018) noted, this might be an artifact of the

evaluation metric, as count-based methods benefit

from their sparse-predictions in this setting.

Our method achieves also strong performance

when compared to Poincaré GLOVE on the task

of hypernymy prediction. While Tifrea et al.

(2018) report Spearman’s rho ρ = 0.421 on HY-

PERLEX and accuracy ACC = 0.790 on WBLESS,

our method achieves ρ = 0.59 (HYPERLEX) and

ACC = 0.909 (WBLESS). This illustrates the im-

portance of the distributional constraints that are

provided by Hearst patterns.

An additional benefit is the efficiency of our

embeddings. For all tasks, we have used a 20-

dimensional embedding for HYPECONES, while

the best results for SVD-based methods have been

achieved with 300 dimensions. This reduction in

parameters by over an order of magnitude clearly

highlights the efficiency of hyperbolic embeddings

for representing hierarchical structures.

Reconstruction In the following, we compare

embedding and pattern-based methods on the task

of reconstructing an entire subtree of WORDNET,

i.e., the animals, plants, and vehicles taxonomies,

as proposed by Kozareva and Hovy (2010). In

addition to predicting the existence of single hy-

pernymy relations, this allows us to evaluate the

performance of these models for inferring full tax-

onomies and to perform an ablation for the pre-

diction of missing and transitive relations. We fol-

low previous work (Bordes et al., 2013; Nickel

and Kiela, 2017) and report for each observed

relation (u, v) in WORDNET, its score ranked

against the score of the ground-truth negative

edges. In Table 3, All refers to the ranking of

all edges in the subtree, Missing to edges that are

not included in the Hearst graph G, Transitive to

missing transitive edges in G (i.e. for all edges

{(x, z) : (x, y), (y, z) ∈ E ∧ (x, z) /∈ E}).

It can be seen that our method clearly outper-

forms the SVD and count-based models with a rel-

ative improvement of typically over 40% over the

best non-hyperbolic model. Furthermore, our abla-

tion shows that HYPECONES improves the consis-

tency of the embedding due to its transitivity prop-

erty. For instance, in our Hearst Graph the relation

(male horse, is-a, equine) is missing. However,

since we correctly model that (male horse, is-a,

horse) and (horse, is-a, equine), by transitivity,

we also infer (male horse, is-a, equine), which

SVD fails to do.

5 Conclusion

In this work, we have proposed a new approach

for inferring concept hierarchies from large text

corpora. For this purpose, we combine Hearst pat-

terns with hyperbolic embeddings which allows

us to set appropriate constraints on the distribu-

tional contexts and to improve the consistency in

the embedding space. By computing a joint embed-

ding of all terms that best explains the extracted

Hearst patterns, we can then exploit these prop-

erties for improved hypernymy prediction. The

natural hierarchical structure of hyperbolic space

allows us also to learn very efficient embeddings

that reduce the required dimensionality substan-

tially over SVD-based methods. To improve op-

timization, we have furthermore proposed a new

method to compute entailment cones in the Lorentz

model of hyperbolic space. Experimentally, we

show that our embeddings achieve state-of-the-art

performance on a variety of commonly-used hyper-

nymy benchmarks.
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