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Abstract

State-of-the-art methods for unsupervised
bilingual word embeddings (BWE) train a
mapping function that maps pre-trained mono-
lingual word embeddings into a bilingual
space. Despite its remarkable results, unsuper-
vised mapping is also well-known to be lim-
ited by the dissimilarity between the original
word embedding spaces to be mapped. In this
work, we propose a new approach that trains
unsupervised BWE jointly on synthetic paral-
lel data generated through unsupervised ma-
chine translation. We demonstrate that ex-
isting algorithms that jointly train BWE are
very robust to noisy training data and show
that unsupervised BWE jointly trained signifi-
cantly outperform unsupervised mapped BWE
in several cross-lingual NLP tasks.

1 Introduction

Bilingual word embeddings (BWE) represent the
vocabulary of two languages in one common con-
tinuous vector space. They are known to be useful
in a wide range of cross-lingual NLP tasks.

The most prevalent methods for training BWE
are so-called mapping methods (Mikolov et al.,
2013a): word embeddings for two languages are
separately trained on respective monolingual data
and then mapped into one common embedding
space. The mapping function is usually trained us-
ing a small bilingual lexicon for supervision. Re-
cently, unsupervised mapping for BWE (Artetxe
et al., 2018a; Lample et al., 2018a), i.e., trained
without using any manually created bilingual re-
sources, has been shown to reach a performance
comparable to supervised BWE in several cross-
lingual NLP tasks. Unsupervised BWE are trained
with a three-step approach. First, word embed-
dings are roughly mapped into an initial BWE
space, for instance using adversarial training or an
heuristic mapping. Then, using the initial BWE,

a small synthetic bilingual lexicon is induced. Fi-
nally, a new BWE, which is expected to be better
than the initial BWE, is learned from the induced
lexicon through a pseudo-supervision with some
supervised mapping method. The last two steps
can be repeated to refine the BWE.

In spite of their success, unsupervised mapping
methods are inherently limited by the dissimilar-
ity between the original word embedding spaces
to be mapped. The feasibility of aligning two em-
bedding spaces relies on the assumption that they
are isomorphic. However, Sggaard et al. (2018)
showed that these spaces are, in general, far from
being isomorphic, and thus they result in sub-
optimal or degenerated unsupervised mappings.

On the other hand, supervised methods that
jointly train BWE from scratch (Upadhyay et al.,
2016), on parallel or comparable corpora, do not
have such limits since no pre-existing embedding
spaces and no mapping function are involved.
These methods jointly train BWE by exploiting
bilingual and monolingual contexts of words, ma-
terialized by sentence or document pairs, to learn
a single BWE space. However, they require large
bilingual resources for training. To the best of our
knowledge, joint training of BWE has never been
explored for unsupervised scenarios.

In this paper, we propose unsupervised joint
training of BWE. Our method is an extension of
previous work on unsupervised BWE: we propose
to generate, without supervision, synthetic parallel
sentences that can be directly exploited to jointly
train BWE with existing algorithms. We empiri-
cally show that this method learns better BWE for
several cross-lingual NLP tasks.

2 Pseudo-supervised joint training

On the strong assumption that existing algorithms
for joint training of BWE are robust enough even
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with very noisy parallel training data, we formu-
late the following research question:

Do synthetic sentence pairs supply use-
ful bilingual contextual information for
learning better BWE?

2.1 Bilingual skipgram

Previous work on joint training of BWE hypoth-
esizes that exploiting both monolingual and bilin-
gual contextual information yields better word em-
beddings, monolingually and bilingually.

Among several existing algorithms for joint
training of BWE, in this work, we use bilingual
skipgram (BIVEC) (Luong et al., 2015), which
has been shown to outperform other methods
in several NLP tasks (Upadhyay et al., 2016).
BIVEC uses the skipgram algorithm (Mikolov
et al., 2013b) to learn the word embeddings for
each language and exploits word alignments ob-
tained for parallel data in order to make the em-
beddings cross-lingual. Given a pair of sentences,
S1 in some language L1 and S5 in another lan-
guage L2, a word w; in 5] is replaced with its
aligned word a(w;) in S, so that the L1 context
can also be used for learning the embedding of the
L2 word. BIVEC has been shown to be robust to
noisy word alignments (Luong et al., 2015), which
is a significant advantage of this method in our
scenario using synthetic parallel data.

2.2 Training on synthetic parallel data

For an unsupervised training of BWE, the train-
ing data must also be generated in an unsupervised
way. To this end, we chose unsupervised machine
translation (MT). Recent work has shown signifi-
cant progress in unsupervised MT (Artetxe et al.,
2018b; Lample et al., 2018b) with generated trans-
lations of a reasonable quality. Both statistical
(SMT) and neural MT (NMT) have been adapted
to the unsupervised scenario. We chose unsuper-
vised SMT (USMT) to generate synthetic parallel
data since it generates better translations than un-
supervised NMT (Lample et al., 2018b).

Given an initial BWE, for instance learned
with unsupervised mapping methods, our method
works as follows (see also Figure 1). First, a
USMT is trained from monolingual data. We col-
lect a set of phrases made of up to L tokens, using
word2phrase,! for each of the source and target

'https://code.google.com/archive/p/
word2vec/
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Figure 1: Our joint training framework is on top of ex-
isting unsupervised mapping methods.

languages. As phrases, we also consider all the to-
ken types in each corpus. In our phrase table, each
L1 phrase is paired with its &£ most probable trans-
lations in L2 determined based on a score com-
puted from the given BWE.? The phrase table and
a language model trained on the L2 monolingual
data compose the initial USMT. Then, the USMT
is iteratively refined in the following manner.

o Synthetic parallel data are generated by trans-
lating monolingual data using the USMT.
Both L1-to-L2 and L2-to-L.1 translations can
be considered (Artetxe et al., 2019).

o A new phrase table is trained on the synthetic
parallel data to form a new USMT.

Finally, on the synthetic parallel data generated
by our USMT after V refinement steps, we jointly
train new BWE as described in Section 2.1.

Although this approach can efficiently generate
parallel data of a reasonable quality, as shown in
Figure 1, it heavily relies on the feasibility of map-
ping the word embeddings learned for L1 and L2
in the same space and used for the initial USMT. If
the mapping fails, we cannot expect USMT to gen-
erate useful data for jointly training BWE. Con-
versely, if the mapping succeeds, we can generate
data with bilingual contexts that may be useful to
jointly train BWE.

More importantly, we use USMT assuming that
BIVEC is robust enough to learn from very noisy
parallel data. Our intuition comes from the fact

2See for instance Equation 3 in Lample et al. (2018b).
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that SMT generates less diverse translations, with
a significantly different word frequency distribu-
tion than in translations naturally produced by hu-
mans. SMT is limited by the vocabulary of its
phrase table and will favor the generation of fre-
quent n-grams thanks to its language model. Same
words appear more frequently in similar contexts,
facilitating the training of word embeddings and
compensating, to some extent, for the noisiness
of the translations. In Appendix A, we provide
results of our preliminary experiments supporting
this assumption.

3 Experiments

Are BWE unsupervisedly and jointly
trained on noisy synthetic data better
than unsupervised mapped BWE?

To answer this question, we conducted experi-
ments in three different tasks with three language
pairs: English-German (en-de), English—French
(en-fr), and English-Indonesian (en-id).

3.1 Settings for training BWE

We trained monolingual word embeddings with
fastText (Bojanowski et al., 2017)? separately
on English (239M lines), German (237M lines),
and French (38M lines) News Crawl corpora pro-
vided by WMT* for en-de and en-fr. For en-
id, we used English (100M lines) and Indonesian
(77M lines) Common Crawl corpora.’ We then
mapped the word embeddings into a BWE space
using VECMAP,® one of the best and most robust
methods for unsupervised mapping (Glavas et al.,
2019). The resulting BWE were used as baselines
in our evaluation tasks and also to bootstrap our
USMT system.

Our initial USMT systems were induced with
the following configuration. Maximum phrase
length was set to six (L = 6). To make our ex-
periments reasonably fast, we selected the 300k
most frequent phrases referring to each monolin-
gual corpus, and retained 300-best target phrases
for each source phrase (k = 300). 4-gram lan-
guage models were trained with 1mp1lz (Heafield
et al., 2013). Then, USMT systems were refined

Shttps://github.com/facebookresearch/
fastText

4http://www.statmt.org/wmt19/

Shttp://commoncrawl.org

*https://github.com/artetxem/vecmap

four times (N = 4) and used to generate syn-
thetic parallel data by translating 10M sentences
randomly sampled from the monolingual data. Fi-
nally, on the synthetic parallel data, we trained
new BWE using BIVEC’ with the parameters used
in Upadhyay et al. (2016) and with word align-
ments determined by fast_align (Dyer et al.,
2013).8

We performed contrastive experiments for some
of our tasks with a simple method proposed by
Levy et al. (2017), denoted SENTID,” with its de-
fault parameters for training BWE. SENTID does
not optimize a joint objective but as for BIVEC
we trained it on the synthetic parallel data and
learned directly from scratch a single BWE space.
SENTID does not require word alignments, but in-
stead simply exploits sentence pair IDs as a bilin-
gual signal associated with each word and train
BWE by applying skipgram on a word/sentence-
ID matrix.

All the methods for training word embed-
dings were trained with 512 dimensions and their
-min-count parameter set to 5.

Note that in all our experiments, we filtered the
vocabulary so that all BWE spaces have the same
vocabulary when compared.

3.2 Task 1: Bilingual lexicon induction

Bilingual lexicon induction (BLI) is by far the
most popular evaluation task for BWE used by
previous work in spite of its limits (Glavas et al.,
2019). In contrast to previous work, we used much
larger test sets'? for each language pair.

Table 1 reports on accuracy in retrieving a cor-
rect translation with CSLS (Lample et al., 2018a)
for each source word of the test sets. For all the
tasks, BIVEC and SENTID achieved better accu-
racy than VECMAP. This supports our assumption
that even noisy synthetic parallel data can pro-
vide useful bilingual contexts for training BWE.
The largest improvements were observed for en-
id, with a gain of more than 10 points. Interest-
ingly, BIVEC and SENTID performed similarly,
pointing out that word alignments are not neces-
sary in our scenario. The accuracy was higher
when synthetic parallel data did not contain syn-

"nttps://github.com/1lmthang/bivec

8https://github.com/clab/fast_align

*https://bitbucket.org/omerlevy/xling_
embeddings

Yhttps://github.com/facebookresearch/
MUSE
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Data

Method en—de de—en en—fr fr—en en—id id—en
sre-tgt
VECMAP all-all 424 59.0 67.7 70.0 58.9 59.5
BIVEC 10M-0 45.8 59.2 73.9 71.3 70.4 69.7
SENTID 10M-0 45.8 60.1 74.4 71.8 69.8 69.2
BIVEC 0-10M 43.7 63.4 72.0 74.3 67.3 72.3
SENTID 0-10M 43.5 63.5 72.6 74.8 67.5 73.4
BIVEC 10M-10M 449 54.9 73.9 73.8 69.5 72.1
SENTID 10M-10M 454 62.1 74.2 74.0 69.4 73.0
Coverage ratio 15.1 14.7 24.8 26.9 27.8 254

Table 1: Accuracy in BLI for different BWE. The “Data” column indicates the number of sentences in the mono-
lingual data used to train BWE: e.g., “0” means that the data of the corresponding language has been generated by
USMT. For the last two rows, 20M synthetic sentence pairs have been used: 10M generated by L1—L2 and 10M
generated by L2—L1 USMT systems. The last row indicate coverage ratio for each test set by the BWE. Best
scores in each translation direction is presented in bold.

USMT Data en—de en—f{r en—id
src-tgt  Acc. BLEU Acc. BLEU Acc. BLEU
Step0  10M-0 47.1 (12.1) 741 (17.00 652 (13.6)
Step4 10M-0 464 (18.8) 756 (25.3) 694 (24.5)
Step0 0-10M 438 (16.0) 728 (18.6) 64.6 (17.7)
Step4 0-10M 440 (234) 735 (26.7) 664 (29.1)
Coverage ratio 14.3 23.1 23.0

Table 2: Accuracy in BLI using BWE learned with BIVEC on synthetic parallel sentences generated either by step
0 or step 4 of USMT. BLEU scores of the USMT systems that generated the data were evaluated on the test sets
presented in Section 3.3.

thetic English (“10M-0” for “en—x*" and “0-10M”
for “sx—en”). Using the concatenation of the syn-
thetic data generated by L1 —L2 and L2—L1 (last
two rows of the table) slightly underperformed the
best configuration despite the use of twice more
training data. This is presumably due to the pres-
ence of sentences of two very different natures,
synthetic and original, in the same language.

To evaluate the robustness of BIVEC, we com-
pared the performance to those obtained with nois-
ier synthetic data generated by the initial USMT
(without refinement). As shown in Table 2, we ob-
served comparable results, especially for en—de
and en—fr, confirming that this approach is very
robust to noisy training data.

Although BIVEC and SENTID used a sub-part
of the monolingual data used by VECMAP, their
vocabulary size can be larger. This unintuitive ob-
servation comes from the use of USMT to gener-
ate synthetic data: L1 words not covered by the
phrase table are directly copied in the translations.
As aresult, such L1 words are introduced into the
L2 vocabulary even if they do not appear in the

L2 monolingual data used to train VECMAP, artif-
ically increasing the coverage ratio'' of the lexi-
con. This side-effect of our method is especially
useful for instance for named entities that should
be kept as is. Since such words in L1 and their
copies in L2 cooccur frequently in synthetic data,
their embeddings are similar. Obviously, this side-
effect is interesting only for close languages and
may introduce numerous unwanted .1 words in
the L2 space. See Appendix B for some more anal-
yses.

3.3 Task 2: Machine translation

In the phrase table induction for USMT, both the
geometry of the space (when retrieving the k-
closest translations for a given source phrase) and
the embeddings themselves (when computing co-
sine similarity for the translation probability) play
an important role. Better BWE should lead to bet-

TAs a definition for coverage, we chose the one imple-
mented in VECMAP: the percentage of source words in a test
bilingual lexicon that are in the vocabulary of the source word
embeddings and that are paired with at least one target word
that is in the vocabulary of the target word embeddings.
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Method en—de
VECMAP 12.1 17.0 13.6

BIVEC 12.7 17.3 15.9
SENTID 12.8 17.3 15.8

en—fr en—id

Table 3: BLEU scores of USMT at step 0 with a phrase
table induced using different BWE.

ter phrase tables and consequently translations of
better quality. We thus regard USMT as an extrin-
sic evaluation task for BWE.

Table 3 shows BLEU scores for our USMT at
step 0 on en-de Newstest2016, en-fr Newstest2014
of WMT, and en-id ALT (Riza et al., 2016)'? test
sets. We observed from 0.3 (BIVEC, en—fT) to
2.5 (BIVEC, en—id) BLEU points of improve-
ments over USMT using VECMAP. Again, BIVEC
and SENTID performed similarly. However, note
that here USMT is merely an evaluation task:
the improvement observed at step O are practi-
cally useless for USMT, since we can often gain
much larger improvements through refinement as
described in Section 2.2. Consequently, we as-
sume that perfoming more iterations, i.e., retrain-
ing BWE on synthetic parallel data generated by
an USMT system initialized from unsupervised
joint BWE, will not improve either translation
quality or BWE quality.

3.4 Task 3: Monolingual word analogy

In the literature, VECMAP and BIVEC BWE have
been shown to perform as well as, or better than,
word embeddings trained exclusively on monolin-
gual data in monolingual tasks. Since we use sig-
nificantly less and noisier data for training BIVEC
than VECMAP, we assume that this observation
may not hold in our configuration.

We tested our assumption with the English word
analogy task of Mikolov et al. (2013b) by com-
paring VECMAP and BIVEC English word em-
beddings, with several different sets of en-fr syn-
thetic parallel data for training BIVEC. As shown
in Table 4, BIVEC led to significantly lower ac-
curacy than VECMAP, especially for the config-
uration trained on synthetic English (generated
from French) with a gap of 32.2 points. We
also observed a lower accuracy when using orig-
inal English, presumably due to the use of much
smaller data than for training VECMAP. However,

Phttp://www2.nict.go.jp/astrec-att/
member/mutiyama/ALT/

Method English data Accuracy
VECMAP 239M (en) 77.8
10M (en—fr) 65.7
BIVEC 10M (fr—en) 45.6
10M (fr—en) + 10M (en—fr) 62.3
239M (en) 79.1
10M (en—fr) 64.6
fastText  10M (fr—sen) 45.1

10M (fr—en) + 10M (en—fr) 61.2

Table 4: Results on the English word analogy task us-
ing the English word embeddings.

when training monolingual word embeddings us-
ing fastText on the same English data used for
training BIVEC, we observed that fast Text un-
derperforms BIVEC. This confirms that BIVEC
can take advantage of noisy but bilingual contexts
to monolingually improve word embeddings.

4 Conclusion and future work

We show in several cross-lingual NLP tasks that
unsupervised joint BWE achieved better results
than unsupervised mapped BWE. Our experi-
ments also highlight the robustness of joint train-
ing that can take advantage of bilingual contexts
even from very noisy synthetic parallel data. Since
our approach works on top of unsupervised map-
ping for BWE and uses synthetic data generated
by unsupervised MT, it will directly benefit from
any future advances in these two types of tech-
niques. Our approach has, however, a higher com-
putational cost due to the need of generating syn-
thetic parallel data, while generating more data
would also improve the vocabulary coverage.

As a future work, we would like to study, for
training BWE, the impact of the use of synthetic
parallel data generated by unsupervised NMT, or
of a different nature, such as translation pairs ex-
tracted from monolingual corpora without super-
vision. Such translation pairs are, in general, more
fluent but potentially much less accurate.
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Data en—de de—en en—fr fr—en en—id id—en
src tgt  Cov. Acc. Cov. Acc. Cov. Acc. Cov. Acc. Cov. Acc. Cov. Acc.

VECMAP all all 270 246 262 368 341 552 359 548 428 398 412 408

BIVEC 10M 0 243 606 229 700 324 743 331 735 356 733 326 746
SENTID 10M 0 243 605 229 705 324 750 331 738 356 729 326 743

BIVEC 0 10M 174 422 175 581 282 703 315 700 368 676 359 719
SENTID 0 10M 174 421 175 583 282 700 315 705 368 677 359 733

BIVEC oM 10M 273 570 263 622 373 702 391 700 46.1 698 446 730
SENTID 10M 10M 273 573 263 667 373 708 391 705 46.1 70.1 446 746

Method

Table 6: Results in BLI of VECMAP, BIVEC, and SENTID BWE, on the “full” Muse bilingual lexicons, without
filtering the vocabulary. In other words, the compared BWE do not have the same vocabulary. The coverage is
given by the VECMAP’s evaluation script.

A Preliminary experiment

To empirically test our assumption on the robust-
ness of BIVEC to noisiness of training data, we
performed a preliminary experiment. First, we
trained a low-quality SMT systems for en—de an
d en—fr on small parallel corpora.'® Then, a syn-
thetic version of Europarl is compiled by coupling
the English side of Europarl parallel corpora and
its German and French translations generated by
the SMT systems. Finally, with BIVEC, we ob-
tained two types of BWE respectively from the
original and the synthetic Europarl, and evaluated
them in bilingual lexicon induction (BLI) tasks on
the test sets used in Section 3.2.

Results are presented in Table 5. Despite the
poor performance of our SMT systems, BWE
learned from the synthetic Europarl were only
slightly less accurate for BLI than the BWE
learned from the original Europarl. This result
supports our assumption that BIVEC can exploit
noisy synthetic data produced by SMT.

B Bilingual lexicon induction: coverage
statistics

To show how the vocabulary coverage varies be-
tween BWE spaces, and to evaluate their impact
on the accuracy in BLI, we report in Table 6 the
coverage and the accuracy in BLI for all the BWE
evaluated without restricting their vocabulary to be
the same. Note that, because of the differences in
coverage, accuracy of joint BWE cannot directly
be compared with VECMAP BWE.

We used the News Commentary corpora provided by
WMT for en—de and en—r to train SMT systems perform-
ing at 15.4 and 20.1 BLEU points on Newstest2016 en-de and
Newstest2014 en-fr, respectively.
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