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Abstract

In this paper, we propose to boost low-
resource cross-lingual document retrieval per-
formance with deep bilingual query-document
representations. We match queries and doc-
uments in both source and target languages
with four components, each of which is im-
plemented as a term interaction-based deep
neural network with cross-lingual word em-
beddings as input. By including query like-
lihood scores as extra features, our model ef-
fectively learns to rerank the retrieved docu-
ments by using a small number of relevance
labels for low-resource language pairs. Due
to the shared cross-lingual word embedding
space, the model can also be directly applied
to another language pair without any train-
ing label. Experimental results on the MA-
TERIAL dataset show that our model outper-
forms the competitive translation-based base-
lines on English-Swahili, English-Tagalog,
and English-Somali cross-lingual information
retrieval tasks.

1 Introduction

Cross-lingual relevance ranking, or Cross-Lingual
Information Retrieval (CLIR), is the task of rank-
ing foreign documents against a user query (Hull
and Grefenstette, 1996; Ballesteros and Croft,
1996; Oard and Hackett, 1997; Darwish and Oard,
2003). As multilingual documents are more acces-
sible, CLIR is increasingly more important when-
ever the relevant information is in other languages.

Traditional CLIR systems consist of two com-
ponents: machine translation and monolingual in-
formation retrieval. Based on the translation di-
rection, it can be further categorized into the doc-
ument translation and the query translation ap-
proaches (Nie, 2010). In both cases, we first
solve the translation problem, and the task is trans-
formed to the monolingual setting. However,
while conceptually simple, the performance of this
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Figure 1: Cross-lingual Relevance Ranking with Bilin-
gual Query and Document Representation.

modular approach is fundamentally limited by the
quality of machine translation.

Recently, many deep neural IR models have
shown promising results on monolingual data sets
(Huang et al., 2013; Guo et al., 2016; Pang et al.,
2016; Mitra et al., 2016, 2017; Xiong et al., 2017;
Hui et al., 2017, 2018; McDonald et al., 2018).
They learn a scoring function directly from the rel-
evance label of query-document pairs. However, it
is not clear how to use them when documents and
queries are not in the same language. Furthermore,
those deep neural networks need a large amount
of training data. This is expensive to get for low-
resource language pairs in our cross-lingual case.

In this paper, we propose a cross-lingual deep
relevance ranking architecture based on a bilingual
view of queries and documents. As shown in Fig-
ure 1, our model first translates queries and doc-
uments and then uses four components to match
them in both the source and target language. Each
component is implemented as a deep neural net-
work, and the final relevance score combines all
components which are jointly trained given the
relevance label. We implement this based on state-
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(a) Bilingual POSIT-DRMM. The colored box represents hidden states in bidirectional LSTM:s.
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(b) Bilingual PACRR-DRMM. The colored box represents cross-lingual word embeddings. Bilingual PACRR is the same

except it uses a single MLP at the final stage.

Figure 2: Model architecture. We only show the component of the source query with the target document.

of-the-art term interaction models because they
enable us to make use of cross-lingual embeddings
to explicitly encode terms of queries and docu-
ments even if they are in different languages. To
deal with the small amount of training data, we
first perform query likelihood retrieval and include
the score as an extra feature in our model. In this
way, the model effectively learns to rerank from
a small number of relevance labels. Furthermore,
since the word embeddings are aligned in the same
space, our model can directly transfer to another
language pair with no additional training data.

We evaluate our model on the MATERIAL CLIR
dataset with three language pairs including En-
glish to Swahili, English to Tagalog, and English
to Somali. Experimental results demonstrate that
our model outperforms other translation-based
query likelihood retrieval and monolingual deep
relevance ranking approaches.

2  Our Method

In cross-lingual document retrieval, given a user
query in the source language () and a document
in the target language D, the system computes
a relevance score s(@, D). As shown in Figure
1, our model first translates the document as D
or the query as Q, and then it uses four separate
components to match: (1) source query with
target document, (2) source query with source
document, (3) target query with source document,
(4) target query with target document. The
final relevance score combines all components:

s(Q, D) = s(Q, D) + s(Q, D) + 5(Q, D) + s(Q, D)

To implement each component, we extend three
state-of-the-art term interaction models: PACRR
(Position-Aware Convolutional Recurrent Rele-
vance Matching) proposed by Hui et al. (2017),
POSIT-DRMM (POoled SImilariTy DRMM) and
PACRR-DRMM proposed by McDonald et al.
(2018). In term interaction models, each query
term is scored to a document’s terms from the
interaction encodings, and scores for different
query terms are aggregated to produce the query-
document relevance score.

2.1 Bilingual POSIT-DRMM

This model is illustrated in Figure 2a. We first use
bidirectional LSTMs (Hochreiter and Schmidhu-
ber, 1997) to produce the context-sensitive encod-
ing of each query and document term. We also
add residual connection to combine the pre-trained
term embedding and the LSTM hidden states. For
the source query and document term, we can use
the pre-trained word embedding in the source lan-
guage. For the target query and document term,
we first align the pre-trained embedding in the tar-
get language to the source language and then use
this cross-lingual word embedding as the input
to LSTM. Thereafter, we produce the document-
aware query term encoding by applying max pool-
ing and k-max pooling over the cosine similarity
matrix of query and document terms. We then use
an MLP to produce term scores, and the relevance
score is a weighted sum over all terms in the query
with a term gating mechanism.
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EN->SW EN->TL EN->SO
# Document 813 844 695
# Document Token (Min/Avg/Max) 34/341/1724 32/404/2501 69/370/2671
Query Set QI Q2 Q3 QI Q2 @3 Ql
# Query 300 400 600 300 400 600 300
# Relevant Pairs 411 489 828 236 576 1018 496

Table 1: The MATERIAL dataset statistics. For SW and TL, we use the ANALYSIS document set with Q1 for
training, Q2 for dev, and Q3 for test. For transfer learning to SO, we use the DEV document set with Q1. Ql
contains open queries where performers can conduct any automatic or manual exploration while Q2 and Q3 are
closed queries where results must be generated with fully automatic systems with no human in the loop.

2.2 Bilingual PACRR and Bilingual
PACRR-DRMM

These models are shown in Figure 2b. We first
align the word embeddings in the target lan-
guage to the source language and build a query-
document similarity matrix that encodes the simi-
larity between the query and document term. De-
pending on the query language and document
language, we construct four matrices, SIMg p,
SIMQ’b, SIMQj), SIMQ’D, for each of the four
components. Then, we use convolutional neu-
ral networks over the similarity matrix to extract
n-gram matching features. We then use max-
pooling and k-max-pooling to produce the fea-
ture matrix where each row is a document-aware
encoding of a query term. The final step com-
putes the relevance score: Bilingual PACRR uses
an MLP on the whole feature matrix to get the
relevance score, while Bilingual PACRR-DRMM
first uses an MLP on individual rows to get query
term scores and then use a second layer to com-
bine them.

3 Related Work

Cross-lingual Information Retrieval. Tradi-
tional CLIR approaches include document trans-
lation and query translation, and more research ef-
forts are on the latter (Oard and Hackett, 1997,
Oard, 1998; McCarley, 1999; Franz et al., 1999).
Early methods use the dictionary to translate the
user query (Hull and Grefenstette, 1996; Balles-
teros and Croft, 1996; Pirkola, 1998). Other meth-
ods include the single best SMT query transla-
tion (Chin et al., 2014) and the weighted SMT
translation alternatives known as the probabilistic
structured query (PSQ) (Darwish and Oard, 2003;
Ture et al., 2012). Recently, Bai et al. (2010) and
Sokolov et al. (2013) propose methods to learn the
sparse query-document associations from super-
vised ranking signals on cross-lingual Wikipedia
and patent data, respectively. Furthermore, Vuli¢

and Moens (2015) and Litschko et al. (2018) use
cross-lingual word embeddings to represent both
queries and documents as vectors and perform IR
by computing the cosine similarity. Schamoni
et al. (2014) and Sasaki et al. (2018) also use
an automatic process to build CLIR datasets from
Wikipeida articles.

Neural Learning to Rank. Most of neural learn-
ing to rank models can be categorized in two
groups: representation based (Huang et al., 2013;
Shen et al., 2014) and interaction based (Pang
et al., 2016; Guo et al., 2016; Hui et al., 2017;
Xiong et al., 2017; McDonald et al., 2018). The
former builds representations of query and doc-
uments independently, and the matching is per-
formed at the final stage. The latter explicitly en-
codes the interaction between terms to direct cap-
ture word-level interaction patterns. For example,
the DRMM (Guo et al., 2016) first compares the
term embeddings of each pair of terms within the
query and the document and then generates fixed-
length matching histograms.

4 Experiments

Training and Inference. We first use the Indri'
system which uses query likelihood with Dirich-
let Smoothing (Zhai and Lafferty, 2004) to pre-
select the documents from the collection. To build
the training dataset, for each positive example in
the returned list, we randomly sample one nega-
tive example from the documents returned by In-
dri. The model is then trained with a binary cross-
entropy loss. On validation or testing set, we use
our prediction scores to rerank the documents re-
turned by Indri.

Extra Features. Following the previous work
(Severyn and Moschitti, 2015; Mohan et al., 2017;
McDonald et al., 2018), we compute the final rel-
evance score by a linear model to combine the
model output with the following set of extra fea-

"www.lemurproject.org/indri.php
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MAP P@20

EN->SW

EN->TL

NDCG@20 AQWV MAP P@20 NDCG@20 AQWV

Query Translation and Document Translation with Indri

Dictionary-Based Query Translation (DBQT) 20.93  4.86 28.65 6.50 20.01 542 27.01 5.93
Probabilistic Structured Query (PSQ) 27.16 5.81 36.03 1256 3520 8.18 44.04 19.81
Statistical MT (SMT) 2630 528 34.60 13.77 3731 877 46.77 21.90
Neural MT (NMT) 26.54 526 34.83 1570  33.83 8.20 43.17 18.56
Deep Relevance Ranking

PACRR 2469 524 32.85 11.73 3253 8.42 41.75 17.48
PACRR-DRMM 22.15 5.14 30.28 850 3259 8.60 42.17 16.59
POSIT-DRMM 2391  6.04 33.83 1206 25.16 8.15 34.80 9.28
Deep Relevance Ranking with Extra Features in Section 4

PACRR 27.03 534 35.36 14.18 4143 898 49.96 27.46
PACRR-DRMM 25.46 550 34.15 12.18 35.61 8.69 45.34 22.70
POSIT-DRMM 26.10 526 34.27 14.11 3935 9.24 48.41 25.01
Ours with Extra Features in Section 4: In-Language Training

Bilingual PACRR 29.64 575 38.27 17.87 43.02 9.63 52.27 29.12
Bilingual PACRR-DRMM 26.15 5.84 35.54 1292 3829 9.21 47.60 22.94
Bilingual POSIT-DRMM 30.13 6.28 39.68 18.69 43.67 9.73 52.80 29.12
Bilingual POSIT-DRMM (3-model ensemble) 31.60  6.37 41.25 20.19 4535 9.84 54.26 31.08

Table 2: Test set result on English to Swahili and English to Tagalog. We report the TREC ad-hoc retrieval
evaluation metrics (MAP, P@20, NDCG @20) and the Actual Query Weighted Value (AQWYV).

Train: EN->SW + EN->TL, Test: EN->SO

MAP P@20 AQWV
PSQ 1752 5.45 2.35
SMT 19.04 6.12 4.62
Bilingual POSIT-DRMM  20.58  6.51 5.71
+3-model ensemble 21.25 6.68 5.89

Table 3: Zero-shot transfer learning on English to So-
mali test set.

tures: (1) the Indri score with the language model-
ing approach to information retrieval. (2) the per-
centage of query terms with an exact match in the
document, including the regular percentage and
IDF weighted percentage. (3) the percentage of
query term bigrams matches in the document.

Cross-lingual Word Embeddings. We apply
the supervised iterative Procrustes approach (Xing
etal., 2015; Conneau et al., 2018) to align two pre-
trained mono-lingual fastText (Bojanowski et al.,
2016) word embeddings using the MUSE imple-
mentation”. To build the bilingual dictionary, we
use the translation pages of Wiktionary®. For
Swabhili, we build a training dictionary for 5301
words and a testing dictionary for 1326 words. For
Tagalog, the training dictionary and testing dictio-
nary contains 7088 and 1773 words, respectively.
For Somali, the corresponding number is 7633 and
1909. We then learn the cross-lingual word em-
beddings from Swabhili to English, from Tagalog

2github.com/facebookresearch/MUSE
Shttps://www.wiktionary.org/

to English, and from Somali to English. There-
fore, all three languages are in the same word em-
bedding space.

Data Sets and Evaluation Metrics. Our experi-
ments are evaluated on the MATERIAL* program
as summarized in Table 1. It consists of three lan-
guage pairs with English queries on Swahili (EN-
>SW), Tagalog (EN->TL), Somali documents
(EN->SO0).

We use the TREC ad-hoc retrieval evaluation
script® to compute Precision@20, Mean Average
Precision (MAP), Normalized Discounted Cumu-
lative Gain@20 (NDCG@20). We also report the
Actual Query Weighted Value (AQWYV) (NIST,
2017), a set-based metric with penalty for both
missing relevant and returning irrelevant docu-
ments. We use 8 = 40.0 and find the best global
fixed cutoff over all queries.

Baselines. For traditional CLIR approaches, we
use query translation and document translation
with the Indri system. For query translation, we
use Dictionary-Based Query Translation (DBQT)
and Probabilistic Structured Query (PSQ). For
document translation, we use Statistical Machine
Translation (SMT) and Neural Machine Transla-
tion (NMT). For SMT, we use the moses system
(Koehn et al., 2007) with word alignments us-
ing mGiza and 5-gram KenLLM language model
(Heafield, 2011). For NMT, we use sequence-to-

*www.iarpa.gov/index.php/
research-programs/material
Shttps://trec.nist.gov/trec_eval/
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sequence model with attention (Bahdanau et al.,
2015; Miceli Barone et al., 2017) implemented in
Marian (Junczys-Dowmunt et al., 2018).

For deep relevance ranking baselines, we in-
vestigate recent state-of-the-art models including
PACRR, PACRR-DRMM, and POSIT-DRMM.
These models and our methods all use an SMT-
based document translation as input.
Implementation Details. For POSIT-DRMM
and Bilingual POSIT-DRMM, we use the k-max-
pooling with £ = 5 and 0.3 dropout of the BiL-
STM output. For PACRR, PACRR-DRMM and
their bilingual counterparts, we use convolutional
filter sizes with [1,2,3], and each filter size has 32
filters. We use £ = 2 in the k-max-pooling. The
loss function is minimized using the Adam opti-
mizer (Kingma and Ba, 2014) with the training
batch size as 32. We monitor the MAP perfor-
mance on the development set after each epoch of
training to select the model which is used on the
test data.

4.1 Results and Discussion

Table 2 shows the result on EN->SW and EN-
>TL where we train and test on the same language
pair.

Performance of Baselines. For query translation,
PSQ is better than DBQT because PSQ uses a
weighted alternative to translate query terms and
does not limit to the fixed translation from the dic-
tionary as in DBQT. For document translation, we
find that both SMT and NMT have a similar per-
formance which is close to PSQ. The effectiveness
of different approaches depends on the language
pair (PSQ for EN->SW and SMT for EN->TL),
which is a similar finding with McCarley (1999)
and Franz et al. (1999). In our experiments with
deep relevance ranking models, we all use SMT
and PSQ because they have strong performances
in both language pairs and it is fair to compare.
Effect of Extra Features and Bilingual Rep-
resentation. While deep relevance ranking can
achieve decent performance, the extra features are
critical to achieve better results. Because the extra
features include the Indri score, the deep neural
model essentially learns to rerank the document
by effectively using a small number of training
examples. Furthermore, our models with bilin-
gual representations achieve better results in both
language pairs, giving additional 1-3 MAP im-
provements over their counterparts. To compare

language pairs, EN->TL has larger improvements
over EN->SW. This is because EN->TL has bet-
ter query translation, document translation, and
query likelihood retrieval results from the base-
lines, and thus it enjoys more benefits from our
model. We also found POSIT-DRMM works bet-
ter than the other two, suggesting term-gating is
useful especially when the query translation can
provide more alternatives. We then perform en-
sembling of POSIT-DRMM to further improve the
results.

Zero-Shot Transfer Learning. Table 3 shows
the result for a zero-shot transfer learning setting
where we train on EN->SW + EN->TL and di-
rectly test on EN->SO without using any Somali
relevance labels. This transfer learning delivers a
1-3 MAP improvement over PSQ and SMT. This
presents a promising approach to boost perfor-
mance by utilizing relevance labels from other lan-
guage pairs.

5 Conclusion

We propose to improve cross-lingual document re-
trieval by utilizing bilingual query-document in-
teractions and learning to rerank from a small
amount of training data for low-resource language
pairs. By aligning word embedding spaces for
multiple languages, the model can be directly ap-
plied under a zero-shot transfer setting when no
training data is available for another language pair.
We believe the idea of combining bilingual docu-
ment representations using cross-lingual word em-
beddings can be generalized to other models as
well.
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