
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3146–3155
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

3146

Neural Decipherment via Minimum-Cost Flow: from Ugaritic to Linear B

Jiaming Luo
CSAIL, MIT

j luo@csail.mit.edu

Yuan Cao
Google Brain

yuancao@google.com

Regina Barzilay
CSAIL, MIT

regina@csail.mit.edu

Abstract

In this paper we propose a novel neural ap-
proach for automatic decipherment of lost lan-
guages. To compensate for the lack of strong
supervision signal, our model design is in-
formed by patterns in language change doc-
umented in historical linguistics. The model
utilizes an expressive sequence-to-sequence
model to capture character-level correspon-
dences between cognates. To effectively train
the model in an unsupervised manner, we in-
novate the training procedure by formalizing
it as a minimum-cost flow problem. When
applied to the decipherment of Ugaritic, we
achieve a 5.5% absolute improvement over
state-of-the-art results. We also report the
first automatic results in deciphering Linear B,
a syllabic language related to ancient Greek,
where our model correctly translates 67.3% of
cognates.1

1 Introduction

Decipherment is an ultimate low-resource chal-
lenge for both humans and machines. The lack
of parallel data and scarce quantities of ancient
text complicate the adoption of neural methods
that dominate modern machine translation. Even
for human experts this translation scenario proved
to be onerous: a typical decipherment spans
over decades and requires encyclopedic domain
knowledge, prohibitive manual effort and sheer
luck (Robinson, 2002). Moreover, techniques ap-
plied for the decipherment of one lost language are
rarely reusable for another language. As a result,
every significant human decipherment is consid-
ered to be one of a kind, “the rarest category of
achievement” (Pope, 1975).

Prior work has demonstrated the feasibility of
automatic decipherment. Snyder et al. (2010)

1Code and all datasets are hosted in https://
github.com/j-luo93/NeuroDecipher.

translated the ancient Semitic language Ugaritic
into Hebrew. Since both languages are derived
from the same proto-Semitic origin, the translation
involved matching their alphabets at the character
level and mapping cognates at the word level. The
effectiveness of their approach stemmed from its
ability to incorporate expansive linguistic knowl-
edge, including expected morphological corre-
spondences, the nature of alphabet-level align-
ment, etc. As with human decipherment, this ap-
proach is highly customized for a given language
pair and does not generalize to other lost lan-
guages.

In this paper, we introduce a neural decipher-
ment algorithm that delivers strong performances
across several languages with distinct linguistic
characteristics. As in prior work, our input con-
sists of text in a lost language and a non-parallel
corpus in a known related language. The model
is evaluated on the accuracy of aligning words
from the lost language to their counterparts in the
known language.

To maintain the language-independent nature
of the approach, we want to build the model
around the most basic decipherment principles ap-
plicable across multiple languages. These princi-
ples are informed by known patterns in language
change extensively documented in historical lin-
guistics (Campbell, 2013). At the character level,
we know that characters that originate from the
same proto-language have similar distributional
profiles with respect to their occurrences. An-
other important constraint at the character level is
that cognate alignment is monotonic since charac-
ter reorderings within cognate pairs are rare. At
the vocabulary level, we want to enforce skewed
mapping at the word level assuming roughly one-
to-one correspondence. Finally, we want to en-
sure that the resulting vocabulary mapping covers
a significant portion of the lost language vocabu-

https://github.com/j-luo93/NeuroDecipher
https://github.com/j-luo93/NeuroDecipher

3147

lary and can also account for the presence of words
which are not cognates.

Our model captures both character-level and
word-level constraints in a single generative
framework wherein vocabulary level alignment
is a latent variable. We model cognate genera-
tion process using a character-level sequence-to-
sequence model which is guided towards mono-
tonic rewriting via regularization. Distributional
similarity at the character level is achieved via
universal character embeddings. We enforce con-
straints on the vocabulary mapping via minimum-
cost flow formulation that controls structural spar-
sity and coverage on the global cognate as-
signment. The two components of the model
– sequence-to-sequence character alignment and
flow constraints – are trained jointly using an EM-
style procedure.

We evaluate our algorithm on two lost lan-
guages – Ugaritic and Linear B. In the case of
Ugaritic, we demonstrate improved performance
of cognate identification, yielding 5.5% abso-
lute improvement over previously published re-
sults (Snyder et al., 2010). This is achieved with-
out assuming access to the morphological infor-
mation in the known language.

To demonstrate the applicability of our model
to other linguistic families, we also consider de-
cipherment of Linear B, an ancient script dating
back to 1450BC. Linear B exhibits a number of
significant differences from Ugaritic, most noted
among them its syllabic writing system. It has not
been previously deciphered by automatic means.
We were able to correctly translate 67.3% of Lin-
ear B cognates into their Greek equivalents in the
decipherment scenario. Finally, we demonstrate
that the model achieves superior performance on
cognate datasets used in previous work (Berg-
Kirkpatrick and Klein, 2013).

2 Related Work

Decoding of Ciphered Texts Early work on de-
cipherment was primarily focused on man-made
ciphers, such as substitution ciphers. Most of these
approaches are based on EM algorithms which are
further adjusted for target decipherment scenarios.
These adjustments are informed by assumptions
about ciphers used to produce the data (Knight
and Yamada, 1999; Knight et al., 2006; Ravi and
Knight, 2011; Pourdamghani and Knight, 2017).
Besides the commonly used EM algorithm, (Nuhn

et al., 2013; Hauer et al., 2014; Kambhatla et al.,
2018) also tackles substitution decipherment and
formulate this problem as a heuristic search pro-
cedure, with guidance provided by an external lan-
guage model (LM) for candidate rescoring. So far,
techniques developed for man-made ciphers have
not been shown successful in deciphering archaeo-
logical data. This can be attributed to the inherent
complexity associated with processes behind lan-
guage evolution of related languages.

Nonparallel Machine Translation Advance-
ments in distributed representations kindled excit-
ing developments in this field, including transla-
tions at both the lexical and the sentence level.
Lexical translation is primarily formulated as
alignment of monolingual embedding spaces into
a crosslingual representation using adversarial
training (Conneau et al., 2017), VAE (Dou et al.,
2018), CCA (Haghighi et al., 2008; Faruqui and
Dyer, 2014) or mutual information (Mukherjee
et al., 2018). The constructed monolingual em-
bedding spaces are usually of high quality due to
the large amount of monolingual data available.
The improved quality of distributed representa-
tions has similarly strong impact on non-parallel
translation systems that operate at the sentence
level (Pourdamghani and Knight, 2017). In that
case, access to a powerful language model can par-
tially compensate for the lack of explicit parallel
supervision. Unfortunately, these methods cannot
be applied to ancient texts due to the scarcity of
available data.

Decoding of Ancient Texts (Snyder et al., 2010)
were the first to demonstrate the feasibility of au-
tomatic decipherment of a dead language using
non-parallel data. The success of their approach
can be attributed to cleverly designed Bayesian
model that structurally incorporated powerful lin-
guistic constraints. This includes customized
priors for alphabet matching, incorporation of
morphological structure, etc. (Berg-Kirkpatrick
and Klein, 2011) proposed an alternative deci-
pherment approach based on a relatively simple
model paired with sophisticated inference algo-
rithm. While their model performed well in a
noise-free scenario when matching vocabularies
only contain cognates, it has not been shown suc-
cessful in a full decipherment scenario. Our ap-
proach outperforms these models in both scenar-
ios. Moreover, we have demonstrated that the

3148

same architecture deciphers two distinct ancient
languages Ugaritic and Linear B. The latter re-
sult is particularly important given that Linear B is
a syllabic language.

3 Approach

The main challenge of the decipherment task is the
lack of strong supervision signal that guides stan-
dard machine translation algorithms. Therefore,
the proposed architecture has to effectively utilize
known patterns in language change to guide the
decipherment process. These properties are sum-
marized below:

1. Distributional Similarity of Matching Char-
acters: Since matching characters appear
in similar places in corresponding cognates,
their contexts should match.

2. Monotonic Character Mapping within Cog-
nates: Matching cognates rarely exhibit char-
acter reordering, therefore their alignment
should be order preserving.

3. Structural Sparsity of Cognate Mapping: It is
well-documented in historical linguistics that
cognate matches are mostly one-to-one, since
both words are derived from the same proto-
origin.

4. Significant Cognate Overlap Within Related
Languages: We expect that the derived vo-
cabulary mapping will have sufficient cover-
age for lost language cognates.

3.1 Generative framework
We encapsulate these basic decipherment princi-
ples into a single generative framework. Specif-
ically, we introduce a latent variable F = {fi,j}
that represents the word-level alignment between
the words in the lost languageX = {xi} and those
in the known language Y = {yj}. More formally,
we derive the joint probability

Pr(X ,Y) =
∑
F∈F

Pr(F) Pr(X|F) Pr(Y|F ,X)

∝
∑
F∈F

Pr(Y|X ,F)

=
∑
F∈F

∏
yj∈Y

Pr(yj |X ,F), (1)

by assuming a uniform prior on both Pr(F) and
Pr(X|F), and i.i.d. for every yj ∈ Y . We use F to

describe the set of valid values for the latent vari-
able F , subject to the global constraints as stated
in Property 3 and 4. More specifically, we utilize
a minimum-cost flow setup to enforce these prop-
erties.

The probability distribution Pr(yj |X ,F) is fur-
ther defined as

Pr(yj |X ,F) =
∑
xi∈X

fi,j · Prθ(yj |xi), (2)

where the conditional probability Prθ(yj |xi) is
modeled by a character-based neural network
parameterized by θ, which incorporates the
character-level constraints as stated in Property 1
and 2.

Directly optimizing Equation (1) is infeasi-
ble since it contains a summation over all valid
flows. To bypass this issue, we adopt an EM-
style iterative training regime. Specifically, the
training process involves two interleaving steps.
First, given the value of the flow F , the neural
model is trained to optimize the likelihood func-
tion

∏
yj∈Y Pr(yj |X ,F). Next, the flow is up-

dated by solving a minimum-cost flow problem
given the trained neural model. A detailed discus-
sion of the training process is presented in Sec-
tion 4.

We now proceed to provide details on both the
neural model and the minimum-flow setup.

3.2 Neural decipherment model
We use a character-based sequence-to-sequence
(seq2seq) model to incorporate the local con-
straints (Figure 1). Specifically, we integrate Prop-
erty 1 by using a shared universal character em-
bedding space and a residual connection. Further-
more, the property of monotonic rewriting is re-
alized by a regularization term based on edit dis-
tance. We detail each component in the following
paragraphs.

Universal character embedding We directly
require that character embeddings of the two lan-
guages reside in the same space. Specifically, we
assume that any character embedding in a given
language is a linear combination of universal em-
beddings. More formally, we use a universal em-
bedding matrix U ∈Mnu×d, a lost language char-
acter weight matrix Wx ∈ Mnx×nu and a known
language character weight matrix Wy ∈Mny×nu .
We use nu to denote the size of the universal char-
acter inventory, and nx, ny the number of unique

3149

...
LSTM LSTM LSTM...

LSTM LSTM LSTM...

<s> κ ς

Softmax Softmax Softmax...

Attention

κ ν

... ...

...

Lost language Known language

</s>

Figure 1: Architecture of our proposed model. For simplicity, we omit lines for residual connections linking
weighted sum of input embeddings and softmax. Inputs to the encoder and decoder are the lost and known lan-
guages respectively. See Sec. 3.2 for details.

characters in the lost and the known languages,
respectively. Embedding matrices for both lan-
guages are computed by

Ex = WxU,

Ey = WyU.

This formulation reflects the principle underlying
crosslingual embeddings such as MUSE (Conneau
et al., 2017). Along a similar line, previous work
has demonstrated the effectiveness of using uni-
versal word embeddings, in the context of low-
resource neural machine translation (Gu et al.,
2018).

Residual connection Character alignment is
mostly local in nature, but this fact is not re-
flected by how the next character is predicted by
the model. Specifically, the prediction is made
based on the context vector h̃, which is a nonlin-
ear function of the hidden states of the encoder and
the decoder. As a result, h̃ captures a much wider
context due to the nature of a recurrent neural net-
work.

To address this issue and directly improve the
quality of character alignment, we add a residual
connection from the encoder embedding layer to
the decoder projection layer. Specifically, letting
α be the predicted attention weights, we compute

c =
∑
i

αiEx(i),

ĥ = c⊕ h̃, (3)

where Ex(i) is the encoder character embedding
at position i, and c is the weighted character em-
bedding. ĥ is subsequently used to predict the next
character. A similar strategy has also been adopted

κ
ν
ω
σ
ο
ς

✔

✖

✔

✔

✔

✖

(Linear B)

(Greek)

Figure 2: An example of alignment between a Linear
B word and Greek word. 4 and 6 denote correct and
wrong alignment positions respectively. The misalign-
ment betweenE and ν incurs a deletion error;1 and
ζ incurs an insertion error.

by Nguyen and Chiang (2018) to refine the quality
of lexical translations in NMT.

Monotonic alignment regularization We de-
sign a regularization term that guides the model
towards monotonic rewriting. Specifically, we pe-
nalizes the model whenever insertions or deletions
occur. More concretely, for each word in the lost
language xi, we first compute the alignment prob-
ability Pr(ati|xi) over the input sequence at de-
coder time step t, predicted by the attention mech-
anism. Then we compute the expected alignment
position as

pti =
∑
k

k · Pr(ati = k|xi),

where k is any potential aligned position. The reg-
ularization term is subsequently defined as

Ω1({pti}) =
∑
t

(pti − pt−1i − 1)2. (4)

3150

S T

x1

y1

x2

y2

yM
xN

...

...
...

Figure 3: Minimum-cost flow. S, T stands for source
and sink respectively; xi, yj are the ith and jth word in
X and Y . Each edge is associated with a flow fij and
cost d̄ij . See Sec. 3.3 for details.

Note that no loss is incurred when the current
alignment position immediately follows the previ-
ous position, namely pti = pt−1i + 1. Furthermore,
we use a quadratic loss function to discourage ex-
pensive multi-character insertions and deletions.

For Linear B, we modify this regularization
term to accommodate the fact that it is a syllabic
language and usually one linear B script corre-
sponds to two Greek letters. Particularly, we use
the following regularization term for Linear B

Ω2({pti}) =
∑
t=1

(pti − pt−2i − 1)2. (5)

Figure 2 illustrates one alignment matrix from
Linear B to Greek. In this example, the Linear B
characterE is supposed to be aligned with Greek
characters ν and ω but only got assigned to ω,
hence incurring a deletion error;1 is supposed to
be only aligned to σ and o, but assigned an extra
alignment to ζ, incurring an insertion error.

3.3 Minimum-cost flow

The latent variable F captures the global con-
straints as stated in Property 3 and 4. Specifically,
F should identify a reasonable number of cog-
nate pairs between the two languages, while meet-
ing the requirement that word-level alignments are
one-to-one. To this end, we cast the task of identi-
fying cognate pairs as a minimum-cost flow prob-
lem (Figure 3). More concretely, we have three
sets of edges in the flow setup:

• fs,i: edges from the source node to the word
xi in the lost language,

• fj,t: edges from the word yj in the known
language to the sink node,

• fi,j : edges from xi to yj .

Each edge has a capacity of 1, effectively enforc-
ing the one-to-one constraint. Only the edges fi,j
have associated costs. We define this cost as the
expected distance between xi and yj :

d̄i,j = Ey∼Pr(y|xi) d(y, yj), (6)

where d(·, ·) is the edit distance function, and
Pr(y|xi) is given by the neural decipherment
model. We use a sampling procedure proposed
by Shen et al. (2016) to compute this expected
distance. To provide a reasonable coverage of the
cognate pairs, we further specify the demand con-
straint

∑
j fj,t = D with a given hyperparameter

D.
We note that the edit distance cost plays an es-

sential role of complementing the neural model.
Specifically, neural seq2seq models are notori-
ously inadequate at capturing insertions and dele-
tions, contributing to many issues of overgenera-
tion or undergeneration in NMT (Tu et al., 2016).
These problems are only accentuated due to a lack
of supervision. Using edit distance in the flow
setup helps alleviate this issue, since a misstep of
insertion or deletion by the neural model will still
generate a string that resembles the ground truth
in terms of edit distance. In other words, the edit
distance based flow can still recover from the mis-
takes the neural model makes.

4 Training

We note that with weak supervision, a powerful
neural model can produce linguistically degener-
ate solutions. To prevent the neural model from
getting stuck at an unreasonable local minimum,
we make three modifications detailed in the fol-
lowing paragraphs. The entire training procedure
is illustrated in Alg 1.

Flow decay The flow solver returns sparse val-
ues – the flow values for the edges are mostly zero.
It is likely that this will discard many true cognate
pairs, and the neural model trained on these sparse
values can be easily misled and get stuck at some
suboptimal local minimum.

To alleviate this issue, we apply an exponential
decay to the flow values, and compute an interpo-
lation between the new flow result and the previ-
ous one. Specifically, we update the flow at itera-
tion τ as

f
(τ)
i,j = γ · f (τ−1)i,j + (1− γ) · f̃ (τ)i,j ,∀i, j, (7)

3151

Algorithm 1 Iterative training

Require:
X , Y: vocabularies,
T : number of iterations,
N : number of cognate pairs to identify.

1: f
(0)
i,j ←

N
|X |·|Y| . Initialize

2: for τ ← 1 to T do
3: θ(τ)← MLE-TRAIN(f (τ−1)i,j)

4: d̄
(τ)
i,j ← EDIT-DIST(xi, yj , θ

(τ))

5: f̃
(τ)
i,j ← MIN-COST-FLOW(d̄

(τ)
i,j)

6: f
(τ)
i,j ← γ · f (τ−1)i,j + (1− γ) · f̃ (τ)i,j

7: RESET(θ(τ))

8: return f (T)i,j

9: function MLE-TRAIN(f (τ)i,j)

10: θ(τ) ← arg maxθ
∏
yj∈Y Prθ(yj |X ,F)

11: return θ(τ)

where f̃ (τ)i,j is the raw output given by the flow
solver, and γ is a hyperparameter.

Norm control Recall that the residual connec-
tion combines a weighted character embedding c,
and a context vector h̃ (Equation (3)). We ob-
serve that during training, h̃ has a much bigger
norm than c, essentially defeating the purpose of
improving character alignment by using a residual
connection. To address this issue, we rescale h̃ so
that the norm of h̃ does not exceed a certain per-
centage of the norm of c. More formally, given a
ratio r < 1.0, we compute the residual output as

ĥ = c⊕ (g · h̃)

g = min(r ∗ ‖c‖2
‖h̃‖2

, 1.0)

Periodic reset We re-initialize the parameters of
the neural model and reset the state of the opti-
mizer after each iteration. Empirically, we found
that our neural network can easily converge to a
suboptimal local minimum given a poor global
word-level alignment. Resetting the model param-
eters periodically helps with limiting the negative
effect caused by such alignments.

5 Experiments

Datasets We evaluate our system on the follow-
ing datasets:

• UGARITIC: Decipherment from Ugaritic to
Hebrew. Ugaritic is an ancient Semitic lan-
guage closely related to Hebrew, which was
used for the decipherment of Ugaritic. This
dataset has been previously used for deci-
pherment by Snyder et al. (2010).

• Linear B: Decipherment from Linear B to
Greek. Linear B is a syllabic writing system
used to write Mycenaean Greek dating back
to around 1450BC. Decipherment of a syl-
labic language like Linear B is significantly
harder, since it employs a much bigger in-
ventory of symbols (70 in our corpus), and
the symbols that have the same consonant or
vowel look nothing alike2.

We extracted pairs of Linear B scripts (i.e.,
words) and Greek pronunciations from a
compiled list of Linear B lexicon3. We pro-
cess the data by removing some uncertain
translations, eventually retaining 919 pairs in
total. The linear B scripts are kept as it is, and
we remove all diacritics in the Greek data.

We also consider a subset of the Greek
data to simulate an actual historical event
where many linear B syllabograms were de-
ciphered by being compared with Greek lo-
cation names. On the Greek side, we retain
455 proper nouns such as locations, names
of Gods or Goddesses, and personal names.
The entire vocabulary of the Linear B side is
kept as it is. This results in a dataset with
roughly 50% unpaired words on the Linear B
side. We call this subset Linear B/names.

To the best of our knowledge, our experiment
is the first attempt of deciphering Linear B
automatically.

• ROMANCE: Cognate detection between
three Romance languages. It contains pho-
netic transcriptions of cognates in Italian,
Spanish and Portuguese. This dataset has
been used by Hall and Klein (2010) and
Berg-Kirkpatrick and Klein (2011).

Data statistics are summarized in Table 1.

2For instance,k,K and T encode “ka”, “ke” and “te”,
respectively.

3https://archive.org/details/
LinearBLexicon/page/n5

https://archive.org/details/LinearBLexicon/page/n5
https://archive.org/details/LinearBLexicon/page/n5

3152

Dataset #Cognates #Tokens (lost/known) #Symbols (lost/known)
UGARITIC 2214 7353/41263 30/23
Linear B 919 919/919 70/28
Linear B/names 455 919/455 70/28
ROMANCE 583 583/583 25/31/28 (Es/It/Pt)

Table 1: Statistics of datasets used in our experiments.

Systems We report numbers for the following
systems:

• Bayesian: the Bayesian model by Snyder
et al. (2010) that automatically deciphered
Ugaritic to Hebrew

• Matcher: the system using combinatorial
optimization, proposed by Berg-Kirkpatrick
and Klein (2011).

• NeuroCipher: our proposed model.

We directly quote numbers from their papers for
the UGARITIC and ROMANCE datasets. To fa-
cilitate direct comparison, we follow the same data
processing procedure as documented in the litera-
ture.

Training details Our neural model uses a
biredictional-LSTM as the encoder and a single-
layer LSTM as the decoder. The dimensionality
of character embeddings and the hidden size of
LSTM are set to 250 for all experiments. The
size of the universal character inventory is 50 for
all datasets except Linear B for which we use
100. The hyperparameter for alignment regular-
ization is set to 0.5, and the ratio r to control the
norm of the context vector is set to 0.2. We use
ADAM (Kingma and Ba, 2015) to optimize the
neural model. To speed up the process of solving
the minimum-cost flow problem, we sparsify the
flow graph by only considering the top 5 candi-
dates for every xi. γ = 0.9 is used for the flow
decay on all datasets except on UGARITIC for
which we use γ = 0.25. We use the OR-Tools
optimization toolkit4 as the flow solver.

We found it beneficial to train our model only
on a randomly selected subset (10%) of the entire
corpus with the same percentage of noncognates,
and test it on the full dataset. It is common for
the dataset UGARITIC to contain several cognates
for the same Ugaritic word, and we found that

4https://github.com/google/or-tools

relaxing the capacity fj,t to 3 yields a better re-
sult. For Linear B, similar to the finding by (Berg-
Kirkpatrick and Klein, 2013), random restarting
and choosing the best model based on the objec-
tive produces substantial improvements. In sce-
narios where many unpaired cognates are present,
we follow Haghighi et al. (2008) to gradually in-
crease the number of cognate pairs to identify.

6 Results

UGARITIC We evaluate our system in two set-
tings. First, we test the model under the noise-
less condition where only cognates pairs are in-
cluded during training. This is the setting adopted
by Berg-Kirkpatrick and Klein (2011). Second,
we conduct experiments in the more difficult and
realistic scenario where there are unpaired words
in both Ugaritic and Hebrew. This is the noisy set-
ting considered by Snyder et al. (2010). As sum-
marized by Table 2, our system outperforms ex-
isting methods by 3.1% under the noiseless condi-
tion, and 5.5% under the noisy condition.

We note that the significant improvement under
the noisy condition is achieved without assuming
access to any morphological information in He-
brew. In costrast, previous system Bayesian
utilized an inventory of known morphemes and
complete morphological segmentations in Hebrew
during training. The significant gains in identify-
ing cognate pairs suggest that our proposed model
provide a strong and viable approach towards au-
tomatic decipherment.

System Noiseless Noisy
Matcher 90.4 -
Bayesian - 60.4
NeuroCipher 93.5 65.9

Table 2: Cognate identification accuracy (%) for
UGARITIC under noiseless and noisy conditions.
The noiseless baseline result is quoted from (Berg-
Kirkpatrick and Klein, 2011), and the noisy baseline
result is quoted from (Snyder et al., 2010).

https://github.com/google/or-tools

3153

System Linear B Linear B/names
NeuroCipher 84.7 67.3

Table 3: Cognate identification accuracy (%) for Lin-
earB under noiseless and noisy conditions.

Linear B To illustrate the applicability of our
system to other linguistic families, we evaluate
the model on Linear B and Linear B/names. Ta-
ble 3 shows that our system reaches high accu-
racy at 84.7% in the noiseless LinearB corpus, and
67.3% accuracy in the more challenging and real-
istic LinearB-names dataset.

We note that our system is able to achieve a rea-
sonable level of accuracy with minimal change to
the system. The only significant modification is
the usage of a slightly different alignment regular-
ization term (Equation (5)). We also note that this
language pair is not directly applicable to both of
the previous systems Bayesian and Matcher.
The flexibility of the neural decipherment model
is one of the major advantages of our approach.

ROMANCE Finally, we report results for RO-
MANCE (Hall and Klein, 2010) in Table 4, as
further verification of the efficacy of our system.
We include the average cognate detection accuracy
across all language pairs as well as the accuracies
for individual pairs. Note that in this experiment
the dataset does not contain unpaired words. Ta-
ble 4 shows that our system improves the overall
accuracy by 1.5%, mostly contributed by Es
It
and It
Pt.5

System EsIt EsPt ItPt Avg
Matcher 88.9 95.6 85.7 90.1
NeuroCipher 92.3 95.0 87.3 91.6

Table 4: Cognate identification accuracy (%) for RO-
MANCE. Avg means the average accuracy across all
six language pairs. EsIt, EsPt, ItPt are average accu-
racy for each language pair respectively (Es=Spanish,
It=Italian, Pt=Portuguese). Results for Matcher are
quoted from (Berg-Kirkpatrick and Klein, 2011).

Ablation study Finally, we investigate contribu-
tion of various components of the model archi-
tecture to the decipherment performance. Specif-
ically, we look at the design choices directly in-

5We nevertheless observed a slight drop for Es
Pt. How-
ever, for this language pair, the absolute accuracy is already
very high (≥ 95%). We therefore suspect that performance
on this language pair is close to saturation.

System UGARITIC

NeuroCipher 65.9
-monotonic 0.0
-residual 0.0
-flow 8.6

Table 5: Results for the noisy setting of UGARITIC.
-monotonic and -residual remove the mono-
tonic alignment regularization and the residual connec-
tion, and -flow does not use flow or iterative training.

formed by patterns in language change: In all
the above cases, the reduced decipherment model
fails. The first two cases reach 0% accuracy, and
the third one barely reaches 10%. This illustrates
the utmost importance of injecting prior linguistic
knowledge into the design of modeling and train-
ing, for the success of decipherment.

7 Conclusions

We proposed a novel neural decipherment ap-
proach. We design the model and training pro-
cedure following fundamental principles of deci-
pherment from historical linguistics, which effec-
tively guide the decipherment process without su-
pervision signal. We use a neural sequence-to-
sequence model to capture character-level cognate
generation process, for which the training proce-
dure is formulated as flow to impose vocabulary-
level structural sparsity. We evaluate our approach
on two lost languages, Ugaritic and Linear B, from
different linguistic families, and observed substan-
tially high accuracy in cognate identification. Our
approach also demonstrated significant improve-
ment over existing work on Romance languages.

Acknowledgments

This research is based upon work supported in part
by the Office of the Director of National Intel-
ligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA), via contract # FA8650-
17-C-9116. The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the official
policies, either expressed or implied, of ODNI,
IARPA, or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for governmental purposes notwithstand-
ing any copyright annotation therein. The authors
are also grateful for the support of MIT Quest for
Intelligence program.

3154

References
Taylor Berg-Kirkpatrick and Dan Klein. 2011. Simple

effective decipherment via combinatorial optimiza-
tion. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Process-
ing, pages 313–321. Association for Computational
Linguistics.

Taylor Berg-Kirkpatrick and Dan Klein. 2013. Deci-
pherment with a million random restarts. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 874–
878. Association for Computational Linguistics.

Lyle Campbell. 2013. Historical Linguistics: An Intro-
duction. Edinburgh University Press.

Alexis Conneau, Guillaume Lample, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2017.
Word translation without parallel data. arXiv
preprint arXiv:1710.04087.

Zi-Yi Dou, Zhi-Hao Zhou, and Shujian Huang. 2018.
Unsupervised bilingual lexicon induction via latent
variable models. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 621–626. Association for Com-
putational Linguistics.

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual
correlation. In Proceedings of the 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 462–471. Association
for Computational Linguistics.

Jiatao Gu, Hany Hassan, Jacob Devlin, and Victor OK
Li. 2018. Universal neural machine translation for
extremely low resource languages. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), volume 1, pages 344–354.

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick,
and Dan Klein. 2008. Learning bilingual lexicons
from monolingual corpora. In Proceedings of ACL-
08: HLT, pages 771–779. Association for Computa-
tional Linguistics.

David Hall and Dan Klein. 2010. Finding cognate
groups using phylogenies. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1030–1039. Association
for Computational Linguistics.

Bradley Hauer, Ryan Hayward, and Grzegorz Kondrak.
2014. Solving substitution ciphers with combined
language models. In Proceedings of COLING 2014,
the 25th International Conference on Computational
Linguistics: Technical Papers, pages 2314–2325.
Dublin City University and Association for Compu-
tational Linguistics.

Nishant Kambhatla, Anahita Mansouri Bigvand, and
Anoop Sarkar. 2018. Decipherment of substitution
ciphers with neural language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 869–874.
Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Kevin Knight, Anish Nair, Nishit Rathod, and Kenji
Yamada. 2006. Unsupervised analysis for deci-
pherment problems. In Proceedings of the COL-
ING/ACL 2006 Main Conference Poster Sessions,
pages 499–506. Association for Computational Lin-
guistics.

Kevin Knight and Kenji Yamada. 1999. A computa-
tional approach to deciphering unknown scripts. In
Unsupervised Learning in Natural Language Pro-
cessing.

Tanmoy Mukherjee, Makoto Yamada, and Timothy
Hospedales. 2018. Learning unsupervised word
translations without adversaries. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 627–632.

Toan Nguyen and David Chiang. 2018. Improving lex-
ical choice in neural machine translation. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), volume 1, pages 334–343.

Malte Nuhn, Julian Schamper, and Hermann Ney.
2013. Beam search for solving substitution ciphers.
In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1568–1576. Association for
Computational Linguistics.

Maurice Pope. 1975. The Story of Decipherment:
From Egyptian Hieroglyphic to Linear B. Thames
& Hudson.

Nima Pourdamghani and Kevin Knight. 2017. Deci-
phering related languages. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 2513–2518.

Sujith Ravi and Kevin Knight. 2011. Deciphering for-
eign language. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies-Volume 1,
pages 12–21. Association for Computational Lin-
guistics.

Andrew Robinson. 2002. Lost languages: the enigma
of the world’s undeciphered scripts.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum

3155

risk training for neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), volume 1, pages 1683–1692.

Benjamin Snyder, Regina Barzilay, and Kevin Knight.
2010. A statistical model for lost language deci-
pherment. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1048–1057. Association for Computa-
tional Linguistics.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1,
pages 76–85.

