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Abstract

Automatic post-editing (APE) seeks to auto-
matically refine the output of a black-box ma-
chine translation (MT) system through human
post-edits. APE systems are usually trained by
complementing human post-edited data with
large, artificial data generated through back-
translations, a time-consuming process often
no easier than training a MT system from
scratch. In this paper, we propose an alter-
native where we fine-tune pre-trained BERT
models on both the encoder and decoder of an
APE system, exploring several parameter shar-
ing strategies. By only training on a dataset
of 23K sentences for 3 hours on a single GPU
we obtain results that are competitive with sys-
tems that were trained on 5M artificial sen-
tences. When we add this artificial data, our
method obtains state-of-the-art results.

1 Introduction

The goal of automatic post-editing (APE; Simard
et al., 2007) is to automatically correct the mistakes
produced by a black-box machine translation (MT)
system. APE is particularly appealing for rapidly
customizing MT, avoiding to train new systems
from scratch. Interfaces where human translators
can post-edit and improve the quality of MT sen-
tences (Alabau et al., 2014; Federico et al., 2014,
Denkowski, 2015; Hokamp, 2018) are a common
data source for APE models, since they provide
triplets of source sentences (src), machine trans-
lation outputs (mt ), and human post-edits (pe).
Unfortunately, human post-edits are typically
scarce. Existing APE systems circumvent this by
generating artificial triplets (Junczys-Dowmunt
and Grundkiewicz, 2016; Negri et al., 2018). How-
ever, this requires access to a high quality MT sys-
tem, similar to (or better than) the one used in the
black-box MT itself. This spoils the motivation of
APE as an alternative to large-scale MT training
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in the first place: the time to train MT systems in
order to extract these artificial triplets, combined
with the time to train an APE system on the result-
ing large dataset, may well exceed the time to train
a MT system from scratch.

Meanwhile, there have been many successes
of transfer learning for NLP: models such as
CoVe (McCann et al., 2017), ELMo (Peters et al.,
2018), OpenAl GPT (Radford et al., 2018), ULM-
FiT (Howard and Ruder, 2018), and BERT (Devlin
et al., 2019) obtain powerful representations by
training large-scale language models and use them
to improve performance in many sentence-level and
word-level tasks. However, a language generation
task such as APE presents additional challenges.

In this paper, we build upon the successes above
and show that transfer learning is an effective
and time-efficient strategy for APE, using a pre-
trained BERT model. This is an appealing strategy
in practice: while large language models like BERT
are expensive to train, this step is only done once
and covers many languages, reducing engineering
efforts substantially. This is in contrast with the
computational and time resources that creating arti-
ficial triplets for APE needs—these triplets need to
be created separately for every language pair that
one wishes to train an APE system for.

Current APE systems struggle to overcome the
MT baseline without additional data. This baseline
corresponds to leaving the MT uncorrected (“‘do-
nothing” baseline).! With only the small shared
task dataset (23K triplets), our proposed strategy
outperforms this baseline by —4.9 TER and +7.4
BLEU in the English-German WMT 2018 APE
shared task, with 3 hours of training on a single
GPU. Adding the artificial eSSCAPE dataset (Negri
et al., 2018) leads to a performance of 17.15 TER,
a new state of the art.

'Tf an APE system has worse performance than this base-
line, it is pointless to use it.
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Our main contributions are the following:

e We combine the ability of BERT to handle sen-
tence pair inputs together with its pre-trained
multilingual model, to use both the src and mt
in a cross-lingual encoder, that takes a multilin-
gual sentence pair as input.

o We show how pre-trained BERT models can also
be used and fine-tuned as the decoder in a lan-
guage generation task.

e We make a thorough empirical evaluation of dif-
ferent ways of coupling BERT models in an APE
system, comparing different options of parame-
ter sharing, initialization, and fine-tuning.

2 Automatic Post-Editing with BERT

2.1 Automatic Post-Editing

APE (Simard et al., 2007) is inspired by human
post-editing, in which a translator corrects mistakes
made by an MT system. APE systems are trained
from triplets (src, mt, pe), containing respec-
tively the source sentence, the machine-translated
sentence, and its post-edited version.

Artificial triplets. Since there is little data avail-
able (e.g WMT 2018 APE shared task has 23K
triplets), most research has focused on creating ar-
tificial triplets to achieve the scale that is needed
for powerful sequence-to-sequence models to out-
perform the MT baseline, either from “round-trip”
translations (Junczys-Dowmunt and Grundkiewicz,
2016) or starting from parallel data, as in the eS-
CAPE corpus of Negri et al. (2018), which contains
8M synthetic triplets.

Dual-Source Transformer. The current state of
the art in APE uses a Transformer (Vaswani et al.,
2017) with two encoders, for the src and mt,
and one decoder, for pe (Junczys-Dowmunt and
Grundkiewicz, 2018; Tebbifakhr et al., 2018).
When concatenating human post-edited data and
artificial triplets, these systems greatly improve the
MT baseline. However, little successes are known
using the shared task training data only.

By contrast, with transfer learning, our work out-
performs this baseline considerably, even without
any auxiliary synthetic dataset; and, as shown in
§3, it achieves state-of-the-art results by combining
it with the aforementioned artificial datasets.
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Figure 1: Dual-Source BERT. Dashed lines show

shared parameters in our best configuration.

2.2 BERT as a Cross-Lingual Encoder

Our transfer learning approach is based on the Bidi-
rectional Encoder Representations from Transform-
ers (BERT; Devlin et al., 2019). This model ob-
tains deep bidirectional representations by training
a Transformer (Vaswani et al., 2017) with a large-
scale dataset in a masked language modeling task
where the objective is to predict missing words in
a sentence. We use the BERTgasg model, which is
composed of L. = 12 self-attention layers, hidden
size H = 768, A = 12 attention heads, and feed-
forward inner layer size /' = 3072. In addition to
the word and learned position embeddings, BERT
also has segment embeddings to differentiate be-
tween a segment A and a segment B—this is useful
for tasks such as natural language inference, which
involve two sentences. In the case of APE, there is
also a pair of input sentences (src, mt) which are
in different languages. Since one of the released
BERT models was jointly pre-trained on 104 lan-
guages,” we use this multilingual BERT pre-trained
model to encode the bilingual input pair of APE.
Therefore, the whole encoder of our APE model
is the multilingual BERT: we encode both src and

2 https://github.com/google-research/

bert/blob/master/multilingual.md
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mt in the same encoder and use the segment embed-
dings to differentiate between languages (Figure 1).
We reset positional embeddings when the mt starts,
since it is not a continuation of src.

2.3 BERT as a Decoder

Prior work has incorporated pre-trained models
in encoders, but not as decoders of sequence-to-
sequence models. Doing so requires a strategy
for generating fluently from the pre-trained model.
Note that the bidirectionality of BERT is lost, since
the model cannot look at words that have not been
generated yet, and it is an open question how to
learn decoder-specific blocks (e.g. context atten-
tion), which are absent in the pre-trained model.

One of our key contributions is to use BERT in
the decoder by experimenting different strategies
for initializing and sharing the self and context at-
tention layers and the positionwise feed-forward
layers. We tie together the encoder and decoder
embeddings weights (word, position, and segment)
along with the decoder output layer (transpose of
the word embedding layer). We use the same seg-
ment embedding for the target sentence (pe) and
the second sentence in the encoder (mt) since they
are in the same language. The full architecture is
shown in Figure 1. We experiment with the fol-
lowing strategies for coupling BERT pre-trained
models in the decoder:

e Transformer. A Transformer decoder as de-
scribed in Vaswani et al. (2017) without any
shared parameters, with the BERTgasg dimen-
sions and randomly initialized weights.

e Pre-trained BERT. This initializes the decoder
with the pre-trained BERT model. The only com-
ponent initialized randomly is the context atten-
tion (CA) layer, which is absent in BERT. Un-
like in the original BERT model—which only
encodes sentences—a mask in the self-attention
is required to prevent the model from looking to
subsequent tokens in the target sentence.

o BERT initialized context attention. Instead of
a random initialization, we initialize the context
attention layers with the weights of the corre-
sponding BERT self-attention layers.

o Shared self-attention. Instead of just having the
same initialization, the self-attentions (SA) in the
encoder and decoder are tied during training.

e Context attention shared with self-attention.
We take a step further and fie the context atten-

tion and self attention weights—making all the
attention transformation matrices (self and con-
text) in the encoder and decoder tied.

e Shared feed-forward. We tie the feed-forward
weights (FF) between the encoder and decoder.

3 Experiments

We now describe our experimental results. Our
models were implemented on a fork of OpenNMT-
py (Klein et al., 2017) using a Pytorch (Paszke et al.,
2017) re-implementation of BERT.?> Our model’s
implementation is publicly available.*

Datasets. We use the data from the WMT 2018
APE shared task (Chatterjee et al., 2018) (English-
German SMT), which consists of 23,000 triplets
for training, 1,000 for validation, and 2,000 for
testing. In some of our experiments, we also use
the eSCAPE corpus (Negri et al., 2018), which
comprises about 8M sentences; when doing so, we
oversample 35x the shared task data to cover 10%
of the final training data. We segment words with
WordPiece (Wu et al., 2016), with the same vocab-
ulary used in the Multilingual BERT. At training
time, we discard triplets with 200+ tokens in the
combination of src and mt or 100+ tokens in pe.
For evaluation, we use TER (Snover et al., 2006)
and tokenized BLEU (Papineni et al., 2002).

TER] BLEU?T
Transformer decoder 20.33 69.31
Pre-trained BERT 20.83 69.11
with CA < SA 18.91 71.81
and SA <> Encoder SA  18.44 72.25
and CA < SA 18.75 71.83
and FF <> Encoder FF  19.04 71.53

Table 1: Ablation study of decoder configurations, by
gradually having more shared parameters between the
encoder and decoder (trained without synthetic data).
<> denotes parameter tying and < an initialization.

Training Details. We use Adam (Kingma and
Ba, 2014) with a triangular learning rate sched-
ule that increases linearly during the first 5,000
steps until 5 x 107> and has a linear decay after-
wards. When using BERT components, we use a

*https://github.com/huggingface/
pytorch-pretrained-BERT

*https://github.com/deep-spin/
OpenNMT-APE
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test 2016 test 2017 test 2018

Model Train Size TER] BLEUT TER| BLEUt TER| BLEU?T
MT baseline (Uncorrected) 24.76 62.11 24.48 62.49 24.24 62.99
Bérard et al. (2017) 23K 22.89 — 23.08 65.57 — —
Junczys-Dowmunt and Grundkiewicz (2018) sM 18.92 70.86 19.49 69.72 — —
Junczys-Dowmunt and Grundkiewicz (2018) x4 18.86 71.04 19.03 70.46 — —
Tebbifakhr et al. (2018) — — — — 18.62 71.04
Junczys-Dowmunt and Grundkiewicz (2018) 8M 17.81 72.79 18.10 T1.72 — —
Junczys-Dowmunt and Grundkiewicz (2018) x4 17.34 73.43 17.47 72.84 18.00 72.52
Dual-Source Transformer! 27.80 60.76 27.73 59.78 28.00 59.98
BERT Enc. + Transformer Dec. (Ours) 23K 20.23 68.98 21.02 67.47 20.93 67.60
BERT Enc. + BERT Dec. (Ours) 18.88 71.61 19.03 70.66 19.34 70.41
BERT Enc. + BERT Dec. x4 (Ours) 18.05 72.39 18.07 71.90 18.91 70.94
BERT Enc. + BERT Dec. (Ours) &M 16.91 74.29 17.26 73.42 17.71 72.74
BERT Enc. + BERT Dec. x4 (Ours) 16.49 74.98 16.83 73.94 17.15 73.60

Table 2: Results on the WMT 2016-18 APE shared task datasets. Our single models trained on the 23K dataset
took only 3h20m to converge on a single Nvidia GeForce GTX 1080 GPU, while results for models trained on
8M triplets take approximately 2 days on the same GPU. Models marked with “x4” are ensembles of 4 models.
Dual-Source Transformer! is a comparable re-implementation of Junczys-Dowmunt and Grundkiewicz (2018).

£9 weight decay of 0.01. We apply dropout (Srivas-
tava et al., 2014) with pg,., = 0.1 to all layers and
use label smoothing with ¢ = 0.1 (Pereyra et al.,
2017). For the small data experiments, we use a
batch size of 1024 tokens and save checkpoints ev-
ery 1,000 steps; when using the eSCAPE corpus,
we increase this to 2048 tokens and 10,000 steps.
The checkpoints are created with the exponential
moving average strategy of Junczys-Dowmunt et al.
(2018) with a decay of 104, At test time, we select
the model with best TER on the development set,
and apply beam search with a beam size of 8 and
average length penalty.

Initialization and Parameter Sharing. Table 1
compares the different decoder strategies described
in §2.3 on the WMT 2018 validation set. The best
results were achieved by sharing the self-attention
between encoder and decoder, and by initializing
(but not sharing) the context attention with the same
weights as the self-attention. Regarding the self-
attention sharing, we hypothesize that its benefits
are due to both encoder and decoder sharing a com-
mon language in their input (in the mt and pe sen-
tence, respectively). Future work will investigate if
this is still beneficial when the source and target lan-
guages are less similar. On the other hand, the ini-
tialization of the context attention with BERT’s self-
attention weights is essential to reap the benefits

of BERT representations in the decoder—without
it, using BERT decreases performance when com-
pared to a regular transformer decoder. This might
be due to the fact that context attention and self-
attention share the same neural block architecture
(multi-head attention) and thus the context atten-
tion benefits from the pre-trained BERT’s better
weight initialization. No benefit was observed from
sharing the feed-forward weights.

Final Results. Finally, Table 2 shows our re-
sults on the WMT 2016-18 test sets. The model
named BERT Enc. + BERT Dec. corresponds to
the best setting found in Table 1, while BERT
Enc. + Transformer Dec. only uses BERT in the
encoder. We show results for single models and
ensembles of 4 independent models.

Using the small shared task dataset only (23K
triplets), our single BERT Enc. + BERT Dec. model
surpasses the MT baseline by a large margin
(—4.90 TER in test 2018). The only system we are
aware to beat the MT baseline with only the shared
task data is Bérard et al. (2017), which we also
outperform (—4.05 TER in test 2017). With only
about 3 GPU-hours and on a much smaller dataset,
our model reaches a performance that is compara-
ble to an ensemble of the best WMT 2018 system
with an artificial dataset of SM triplets (+0.02 TER
in test 2016), which is much more expensive to
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train. With 4x ensembling, we get competitive
results with systems trained on 8M triplets.

When adding the eSCAPE corpus (8M triplets),
performance surpasses the state of the art in all
test sets. By ensembling, we improve even further,
achieving a final 17.15 TER score in test 2018
(—0.85 TER than the previous state of the art).

4 Related Work

In their Dual-Source Transformer model, Junczys-
Dowmunt and Grundkiewicz (2018) also found
gains by tying together encoder parameters, and
the embeddings of both encoders and decoder. Our
work confirms this but shows further gains by using
segment embeddings and more careful sharing and
initialization strategies. Sachan and Neubig (2018)
explore parameter sharing between Transformer
layers. However, they focus on sharing decoder
parameters in a one-to-many multilingual MT sys-
tem. In our work, we share parameters between the
encoder and the decoder.

As stated in §3, Bérard et al. (2017) also showed
improved results over the MT baseline, using exclu-
sively the shared task data. Their system outputs
edit operations that decide whether to insert, keep
or delete tokens from the machine translated sen-
tence. Instead of relying on edit operations, our
approach mitigates the small amount of data with
transfer learning through BERT.

Our work makes use of the recent advances
in transfer learning for NLP (Peters et al., 2018;
Howard and Ruder, 2018; Radford et al., 2018; De-
vlin et al., 2019). Pre-training these large language
models has largely improved the state of the art of
the GLUE benchmark (Wang et al., 2018). Particu-
larly, our work uses the BERT pre-trained model
and makes use of the representations obtained not
only in the encoder but also on the decoder in a
language generation task.

More closely related to our work, Lample and
Conneau (2019) pre-trained a BERT-like language
model using parallel data, which they used to ini-
tialize the encoder and decoder for supervised and
unsupervised MT systems. They also used seg-
ment embeddings (along with word and position
embeddings) to differentiate between a pair of sen-
tences in different languages. However, this is only
used in one of the pre-training phases of the lan-
guage model (translation language modelling) and
not in the downstream task. In our work, we use
segment embeddings during the downstream task

itself, which is a perfect fit to the APE task.

Lopes et al. (2019) used our model on the harder
English-German NMT subtask to obtain better
TER performance than previous state of the art. To
obtain this result, the transfer learning capabilities
of BERT were not enough and further engineering
effort was required. Particularly, a conservative-
ness factor was added during beam decoding to
constrain the changes the APE system can make
to the mt output. Furthermore, the authors used a
data weighting method to augment the importance
of data samples that have lower TER. By doing
this, data samples that required less post-editing ef-
fort are assigned higher weights during the training
loop. Since the NMT system does very few errors
on this domain this data weighting is important for
the APE model to learn to do fewer corrections to
the mt output. However, their approach required
the creation of an artificial dataset to obtain a per-
formance that improved the MT baseline. We leave
it for future work to investigate better methods to
obtain results that improve the baseline using only
real post-edited data in these smaller APE datasets.

5 Conclusion and Future Work

We proposed a transfer learning approach to APE
using BERT pre-trained models and careful param-
eter sharing. We explored various ways for cou-
pling BERT in the decoder for language generation.
We found it beneficial to initialize the context atten-
tion of the decoder with BERT’s self-attention and
to tie together the parameters of the self-attention
layers between the encoder and decoder. Using
a small dataset, our results are competitive with
systems trained on a large amount of artificial data,
with much faster training. By adding artificial data,
we obtain a new state of the art in APE.

In future work, we would like to do an extensive
analysis on the capabilities of BERT and transfer
learning in general for different domains and lan-
guage pairs in APE.

Acknowledgments

This work was supported by the European Re-
search Council (ERC StG DeepSPIN 758969),
and by the Fundacdo para a Ciéncia e Tecnolo-
gia through contracts UID/EEA/50008/2019 and
CMUPERI/TIC/0046/2014 (GoLocal). We thank
the anonymous reviewers for their feedback.

3054



References

Vicent Alabau, Christian Buck, Michael Carl, Fran-
cisco Casacuberta, Mercedes Garcia-Martinez, Ul-
rich Germann, Jesis Gonzalez-Rubio, Robin Hill,
Philipp Koehn, Luis Leiva, et al. 2014. CAS-
MACAT: A Computer-assisted Translation Work-
bench. In Proceedings of the Demonstrations at
EACL.

Alexandre Bérard, Laurent Besacier, and Olivier
Pietquin. 2017. LIG-CRIStAL Submission for the
WMT 2017 Automatic Post-Editing Task. In Pro-
ceedings of WMTI7.

Rajen Chatterjee, Matteo Negri, Raphael Rubino, and
Marco Turchi. 2018. Findings of the WMT 2018
Shared Task on Automatic Post-Editing. In Proceed-
ings of WMTI8.

Michael Denkowski. 2015. Machine Translation for
Human Translators. Ph.D. thesis, Carnegie Mellon
University.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of NAACL.

Marcello Federico, Nicola Bertoldi, Mauro Cettolo,
Matteo Negri, Marco Turchi, Marco Trombetti,
Alessandro Cattelan, Antonio Farina, Domenico
Lupinetti, Andrea Martines, et al. 2014. The Mate-
Cat Tool. In Proceedings of COLING, System
Demonstrations.

Christopher M Hokamp. 2018. Deep Interactive Text
Prediction and Quality Estimation in Translation In-
terfaces. Ph.D. thesis, Dublin City University.

Jeremy Howard and Sebastian Ruder. 2018. Universal
Language Model Fine-tuning for Text Classification.
In Proceedings of ACL.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2016. Log-linear Combinations of Monolingual and
Bilingual Neural Machine Translation Models for
Automatic Post-Editing. In Proceedings of WMT1I6.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2018. MS-UEdin Submission to the WMT2018
APE Shared Task: Dual-Source Transformer for Au-
tomatic Post-Editing. In Proceedings of WMT1I8.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann, Al-
ham Fikri Aji, Nikolay Bogoychev, et al. 2018. Mar-
ian: Fast Neural Machine Translation in C++. In
Proceedings of ACL, System Demonstrations.

Adam:
preprint

Diederik P Kingma and Jimmy Ba. 2014.
A Method for Stochastic Optimization.
arXiv:1412.6980.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander Rush. 2017. OpenNMT: Open-
Source Toolkit for Neural Machine Translation. In
Proceedings of ACL 2017, System Demonstrations.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual Language Model Pretraining.  preprint
arXiv:1901.07291.

Anténio V. Lopes, M. Amin Farajian, Gongalo M.
Correia, Jonay Trenous, and André F. T. Martins.
2019. Unbabel’s Submission to the WMT2019 APE
Shared Task: BERT-based Encoder-Decoder for Au-
tomatic Post-Editing. In Proceedings of WMT1I9.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in Translation:
Contextualized Word Vectors. In Proceedings of
NeurlIPS.

Matteo Negri, Marco Turchi, Rajen Chatterjee, and
Nicola Bertoldi. 2018. eSCAPE: a Large-scale Syn-
thetic Corpus for Automatic Post-Editing. In Pro-
ceedings of LREC.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proceedings
of ACL.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
Proceedings of NeurlPS Autodiff Workshop.

Gabriel Pereyra, George Tucker, Jan Chorowski,
Lukasz Kaiser, and Geoffrey Hinton. 2017. Regu-
larizing Neural Networks by Penalizing Confident
Output Distributions. preprint arXiv:1701.06548.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of NAACL.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving Language Under-
standing by Generative Pre-Training. preprint.

Devendra Sachan and Graham Neubig. 2018. Pa-
rameter Sharing Methods for Multilingual Self-
Attentional Translation Models. In Proceedings of
WMTIS.

Michel Simard, Nicola Ueffing, Pierre Isabelle, and
Roland Kuhn. 2007. Rule-Based Translation with
Statistical Phrase-Based Post-Editing. In Proceed-
ings of WMTO7.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A Study of
Translation Edit Rate with Targeted Human Annota-
tion. In Proceedings of AMTA.

3055


http://www.aclweb.org/anthology/E14-2007.pdf
http://www.aclweb.org/anthology/E14-2007.pdf
http://www.aclweb.org/anthology/E14-2007.pdf
http://www.aclweb.org/anthology/W17-4772
http://www.aclweb.org/anthology/W17-4772
http://www.aclweb.org/anthology/W18-6453
http://www.aclweb.org/anthology/W18-6453
https://www.lti.cs.cmu.edu/sites/default/files/research/thesis/2015/michael_denkowski_machine_translation_for_human_translators.pdf
https://www.lti.cs.cmu.edu/sites/default/files/research/thesis/2015/michael_denkowski_machine_translation_for_human_translators.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
http://www.aclweb.org/anthology/C14-2028
http://www.aclweb.org/anthology/C14-2028
http://doras.dcu.ie/22664/1/chris_hokamp_thesis_DORAS_12.9.2018.pdf
http://doras.dcu.ie/22664/1/chris_hokamp_thesis_DORAS_12.9.2018.pdf
http://doras.dcu.ie/22664/1/chris_hokamp_thesis_DORAS_12.9.2018.pdf
http://www.aclweb.org/anthology/P18-1031
http://www.aclweb.org/anthology/P18-1031
http://www.statmt.org/wmt16/pdf/W16-2378.pdf
http://www.statmt.org/wmt16/pdf/W16-2378.pdf
http://www.statmt.org/wmt16/pdf/W16-2378.pdf
http://www.statmt.org/wmt18/pdf/WMT095.pdf
http://www.statmt.org/wmt18/pdf/WMT095.pdf
http://www.statmt.org/wmt18/pdf/WMT095.pdf
http://www.aclweb.org/anthology/P18-4020
http://www.aclweb.org/anthology/P18-4020
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
http://www.aclweb.org/anthology/P17-4012
http://www.aclweb.org/anthology/P17-4012
https://arxiv.org/pdf/1901.07291.pdf
https://arxiv.org/pdf/1901.07291.pdf
https://arxiv.org/abs/1905.13068
https://arxiv.org/abs/1905.13068
https://arxiv.org/abs/1905.13068
https://papers.nips.cc/paper/7209-learned-in-translation-contextualized-word-vectors.pdf
https://papers.nips.cc/paper/7209-learned-in-translation-contextualized-word-vectors.pdf
http://www.aclweb.org/anthology/L18-1004
http://www.aclweb.org/anthology/L18-1004
http://anthology.aclweb.org/P/P02/P02-1040.pdf
http://anthology.aclweb.org/P/P02/P02-1040.pdf
https://pdfs.semanticscholar.org/b36a/5bb1707bb9c70025294b3a310138aae8327a.pdf
https://arxiv.org/pdf/1701.06548
https://arxiv.org/pdf/1701.06548
https://arxiv.org/pdf/1701.06548
http://www.aclweb.org/anthology/N18-1202
http://www.aclweb.org/anthology/N18-1202
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
http://www.aclweb.org/anthology/W18-6327
http://www.aclweb.org/anthology/W18-6327
http://www.aclweb.org/anthology/W18-6327
http://www.aclweb.org/anthology/W07-0728
http://www.aclweb.org/anthology/W07-0728
http://mt-archive.info/AMTA-2006-Snover.pdf
http://mt-archive.info/AMTA-2006-Snover.pdf
http://mt-archive.info/AMTA-2006-Snover.pdf

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929-1958.

Amirhossein Tebbifakhr, Ruchit Agrawal, Matteo Ne-
gri, and Marco Turchi. 2018. Multi-source Trans-
former with Combined Losses for Automatic Post-
Editing. In Proceedings of WMTIS8.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Proceedings of NeurIPS.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A Multi-Task Benchmark and Analysis Plat-
form for Natural Language Understanding. In Pro-
ceedings of EMNLP Workshop BlackboxNLP.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016.  Google’s Neural Ma-
chine Translation System: Bridging the Gap be-
tween Human and Machine Translation. preprint
arXiv:1609.08144.

3056


http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
http://www.statmt.org/wmt18/pdf/WMT099.pdf
http://www.statmt.org/wmt18/pdf/WMT099.pdf
http://www.statmt.org/wmt18/pdf/WMT099.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://www.aclweb.org/anthology/W18-5446
http://www.aclweb.org/anthology/W18-5446
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf
https://arxiv.org/pdf/1609.08144.pdf

