
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2963–2977
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

2963

Interpretable Neural Predictions with Differentiable Binary Variables

Wilker Aziz
ILLC

University of Amsterdam
w.aziz@uva.nl

Ivan Titov
ILLC, University of Amsterdam
ILCC, University of Edinburgh
ititov@inf.ed.ac.uk

Abstract

The success of neural networks comes hand
in hand with a desire for more interpretabil-
ity. We focus on text classifiers and make them
more interpretable by having them provide
a justification—a rationale—for their predic-
tions. We approach this problem by jointly
training two neural network models: a latent
model that selects a rationale (i.e. a short
and informative part of the input text), and
a classifier that learns from the words in the
rationale alone. Previous work proposed to
assign binary latent masks to input positions
and to promote short selections via sparsity-
inducing penalties such as L0 regularisation.
We propose a latent model that mixes discrete
and continuous behaviour allowing at the same
time for binary selections and gradient-based
training without REINFORCE. In our formu-
lation, we can tractably compute the expected
value of penalties such as L0, which allows us
to directly optimise the model towards a pre-
specified text selection rate. We show that our
approach is competitive with previous work on
rationale extraction, and explore further uses
in attention mechanisms.

1 Introduction

Neural networks are bringing incredible perfor-
mance gains on text classification tasks (Howard
and Ruder, 2018; Peters et al., 2018; Devlin
et al., 2019). However, this power comes hand in
hand with a desire for more interpretability, even
though its definition may differ (Lipton, 2016).
While it is useful to obtain high classification
accuracy, with more data available than ever
before it also becomes increasingly important to
justify predictions. Imagine having to classify a
large collection of documents, while verifying
that the classifications make sense. It would be
extremely time-consuming to read each document
to evaluate the results. Moreover, if we do not

pours a dark amber color with decent head that does
not recede much . it ’s a tad too dark to see the

carbonation , but fairs well . smells of roasted malts
and mouthfeel is quite strong in the sense that you
can get a good taste of it before you even swallow .

Rationale Extractor

pours a dark amber color with decent head that does
not recede much . it ’s a tad too dark to see the

carbonation , but fairs well . smells of roasted malts
and mouthfeel is quite strong in the sense that you
can get a good taste of it before you even swallow .

Classifier

look: FFFF

Figure 1: Rationale extraction for a beer review.

know why a prediction was made, we do not know
if we can trust it.

What if the model could provide us the most
important parts of the document, as a justification
for its prediction? That is exactly the focus of this
paper. We use a setting that was pioneered by Lei
et al. (2016). A rationale is defined to be a short
yet sufficient part of the input text; short so that it
makes clear what is most important, and sufficient
so that a correct prediction can be made from the
rationale alone. One neural network learns to ex-
tract the rationale, while another neural network,
with separate parameters, learns to make a predic-
tion from just the rationale. Lei et al. model this
by assigning a binary Bernoulli variable to each
input word. The rationale then consists of all the
words for which a 1 was sampled. Because gradi-
ents do not flow through discrete samples, the ra-
tionale extractor is optimized using REINFORCE
(Williams, 1992). An L0 regularizer is used to
make sure the rationale is short.

We propose an alternative to purely discrete se-
lectors for which gradient estimation is possible
without REINFORCE, instead relying on a repa-

Jasmijn Bastings
ILLC

University of Amsterdam
bastings@uva.nl

2964

rameterization of a random variable that exhibits
both continuous and discrete behavior (Louizos
et al., 2017). To promote compact rationales,
we employ a relaxed form of L0 regularization
(Louizos et al., 2017), penalizing the objective as
a function of the expected proportion of selected
text. We also propose the use of Lagrangian re-
laxation to target a specific rate of selected input
text.

Our contributions are summarized as follows:1

1. we present a differentiable approach to ex-
tractive rationales (§2) including an objective
that allows for specifying how much text is to
be extracted (§4);

2. we introduce HardKuma (§3), which gives
support to binary outcomes and allows for
reparameterized gradient estimates;

3. we empirically show that our approach is
competitive with previous work and that
HardKuma has further applications, e.g. in
attention mechanisms. (§6).

2 Latent Rationale

We are interested in making NN-based text clas-
sifiers interpretable by (i) uncovering which parts
of the input text contribute features for classifica-
tion, and (ii) basing decisions on only a fraction
of the input text (a rationale). Lei et al. (2016)
approached (i) by inducing binary latent selectors
that control which input positions are available to
an NN encoder that learns features for classifica-
tion/regression, and (ii) by regularising their archi-
tectures using sparsity-inducing penalties on latent
assignments. In this section we put their approach
under a probabilistic light, and this will then more
naturally lead to our proposed method.

In text classification, an input x is mapped to a
distribution over target labels:

Y |x ∼ Cat(f(x; θ)) , (1)

where we have a neural network architecture
f(·; θ) parameterize the model—θ collectively de-
notes the parameters of the NN layers in f . That
is, an NN maps from data space (e.g. sentences,
short paragraphs, or premise-hypothesis pairs) to
the categorical parameter space (i.e. a vector of
class probabilities). For the sake of concreteness,

1Code available at https://github.com/
bastings/interpretable_predictions.

consider the input a sequence x = 〈x1, . . . , xn〉.
A target y is typically a categorical outcome, such
as a sentiment class or an entailment decision, but
with an appropriate choice of likelihood it could
also be a numerical score (continuous or integer).

Lei et al. (2016) augment this model with a
collection of latent variables which we denote by
z = 〈z1, . . . , zn〉. These variables are responsible
for regulating which portions of the input x con-
tribute with predictors (i.e. features) to the clas-
sifier. The model formulation changes as follows:

Zi|x ∼ Bern(gi(x;φ))

Y |x, z ∼ Cat(f(x� z; θ))
(2)

where an NN g(·;φ) predicts a sequence of n
Bernoulli parameters—one per latent variable—
and the classifier is modified such that zi indicates
whether or not xi is available for encoding. We
can think of the sequence z as a binary gating
mechanism used to select a rationale, which with
some abuse of notation we denote by x�z. Figure
1 illustrates the approach.

Parameter estimation for this model can be done
by maximizing a lower bound E(φ, θ) on the log-
likelihood of the data derived by application of
Jensen’s inequality:2

logP (y|x) = logEP (z|x,φ) [P (y|x, z, θ)]
JI
≥ EP (z|x,φ) [logP (y|x, z, θ)] = E(φ, θ) .

(3)

These latent rationales approach the first objec-
tive, namely, uncovering which parts of the input
text contribute towards a decision. However note
that an NN controls the Bernoulli parameters, thus
nothing prevents this NN from selecting the whole
of the input, thus defaulting to a standard text clas-
sifier. To promote compact rationales, Lei et al.
(2016) impose sparsity-inducing penalties on la-
tent selectors. They penalise for the total number
of selected words, L0 in (4), as well as, for the to-
tal number of transitions, fused lasso in (4), and
approach the following optimization problem

min
φ,θ
−E(φ, θ)+λ0

n∑
i=1

zi︸ ︷︷ ︸
L0(z)

+λ1

n−1∑
i=1

|zi − zi+1|︸ ︷︷ ︸
fused lasso

(4)

via gradient-based optimisation, where λ0 and λ1
are fixed hyperparameters. The objective is how-
ever intractable to compute, the lowerbound, in

2This can be seen as variational inference (Jordan et al.,
1999) where we perform approximate inference using a data-
dependent prior P (z|x, φ).

https://github.com/bastings/interpretable_predictions
https://github.com/bastings/interpretable_predictions

2965

particular, requires marginalization of O(2n) bi-
nary sequences. For that reason, Lei et al. sam-
ple latent assignments and work with gradient es-
timates using REINFORCE (Williams, 1992).

The key ingredients are, therefore, binary la-
tent variables and sparsity-inducing regulariza-
tion, and therefore the solution is marked by non-
differentiability. We propose to replace Bernoulli
variables by rectified continuous random variables
(Socci et al., 1998), for they exhibit both discrete
and continuous behaviour. Moreover, they are
amenable to reparameterization in terms of a fixed
random source (Kingma and Welling, 2014), in
which case gradient estimation is possible without
REINFORCE. Following Louizos et al. (2017),
we exploit one such distribution to relax L0 reg-
ularization and thus promote compact rationales
with a differentiable objective. In section 3, we in-
troduce this distribution and present its properties.
In section 4, we employ a Lagrangian relaxation to
automatically target a pre-specified selection rate.
And finally, in section 5 we present an example for
sentiment classification.

3 Hard Kumaraswamy Distribution

Key to our model is a novel distribution that ex-
hibits both continuous and discrete behaviour, in
this section we introduce it. With non-negligible
probability, samples from this distribution evalu-
ate to exactly 0 or exactly 1. In a nutshell: i)
we start from a distribution over the open inter-
val (0, 1) (see dashed curve in Figure 2); ii) we
then stretch its support from l < 0 to r > 1 in
order to include {0} and {1} (see solid curve in
Figure 2); finally, iii) we collapse the probability
mass over the interval (l, 0] to {0}, and similarly,
the probability mass over the interval [1, r) to {1}
(shaded areas in Figure 2). This stretch-and-rectify
technique was proposed by Louizos et al. (2017),
who rectified samples from the BinaryConcrete
(or GumbelSoftmax) distribution (Maddison et al.,
2017; Jang et al., 2017). We adapted their tech-
nique to the Kumaraswamy distribution motivated
by its close resemblance to a Beta distribution, for
which we have stronger intuitions (for example, its
two shape parameters transit rather naturally from
unimodal to bimodal configurations of the distri-
bution). In the following, we introduce this new
distribution formally.3

3We use uppercase letters for random variables (e.g. K,
T , and H) and lowercase for assignments (e.g. k, t, h). For a

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5
Kuma(0.5, 0.5, ­0.1, 1.1)
Kuma(0.5, 0.5)

Figure 2: The HardKuma distribution: we start from a
Kuma(0.5, 0.5), and stretch its support to the interval
(−0.1, 1.1), finally we collapse all mass before 0 to {0}
and all mass after 1 to {1}.

3.1 Kumaraswamy distribution
The Kumaraswamy distribution (Kumaraswamy,
1980) is a two-parameters distribution over the
open interval (0, 1), we denote a Kumaraswamy-
distributed variable by K ∼ Kuma(a, b), where
a ∈ R>0 and b ∈ R>0 control the distribution’s
shape. The dashed curve in Figure 2 illustrates the
density of Kuma(0.5, 0.5). For more details in-
cluding its pdf and cdf, consult Appendix A.

The Kumaraswamy is a close relative of the
Beta distribution, though not itself an exponential
family, with a simple cdf whose inverse

F−1K (u; a, b) =
(
1− (1− u)1/b

)1/a
, (5)

for u ∈ [0, 1], can be used to obtain samples

F−1K (U ;α, β) ∼ Kuma(α, β) (6)

by transformation of a uniform random source
U ∼ U(0, 1). We can use this fact to reparame-
terize expectations (Nalisnick and Smyth, 2016).

3.2 Rectified Kumaraswamy
We stretch the support of the Kumaraswamy dis-
tribution to include 0 and 1. The resulting variable
T ∼ Kuma(a, b, l, r) takes on values in the open
interval (l, r) where l < 0 and r > 1, with cdf

FT (t; a, b, l, r) = FK((t− l)/(r − l); a, b) . (7)

We now define a rectified random variable, de-
noted by H ∼ HardKuma(a, b, l, r), by passing

random variable K, fK(k;α) is the probability density func-
tion (pdf), conditioned on parameters α, and FK(k;α) is the
cumulative distribution function (cdf).

2966

a sample T ∼ Kuma(a, b, l, r) through a hard-
sigmoid, i.e. h = min(1,max(0, t)). The re-
sulting variable is defined over the closed inter-
val [0, 1]. Note that while there is 0 probability of
sampling t = 0, sampling h = 0 corresponds to
sampling any t ∈ (l, 0], a set whose mass under
Kuma(t|a, b, l, r) is available in closed form:

P(H = 0) = FK

(
−l
r−l ; a, b

)
. (8)

That is because all negative values of t are de-
terministically mapped to zero. Similarly, sam-
ples t ∈ [1, r) are all deterministically mapped to
h = 1, whose total mass amounts to

P(H = 1) = 1− FK
(
1−l
r−l ; a, b

)
. (9)

See Figure 2 for an illustration, and Appendix A
for the complete derivations.

3.3 Reparameterization and gradients

Because this rectified variable is built upon a
Kumaraswamy, it admits a reparameterisation in
terms of a uniform variable U ∼ U(0, 1). We
need to first sample a uniform variable in the open
interval (0, 1) and transform the result to a Ku-
maraswamy variable via the inverse cdf (10a), then
shift and scale the result to cover the stretched sup-
port (10b), and finally, apply the rectifier in order
to get a sample in the closed interval [0, 1] (10c).

k = F−1K (u; a, b) (10a)

t = l + (r − l)k (10b)

h = min(1,max(0, t)) , (10c)

We denote this h = s(u; a, b, l, r) for short.
Note that this transformation has two discontinuity
points, namely, t = 0 and t = 1. Though recall,
the probability of sampling t exactly 0 or exactly 1
is zero, which essentially means stochasticity cir-
cumvents points of non-differentiability of the rec-
tifier (see Appendix A.3).

4 Controlled Sparsity

Following Louizos et al. (2017), we relax non-
differentiable penalties by computing them on ex-
pectation under our latent model p(z|x, φ). In ad-
dition, we propose the use of Lagrangian relax-
ation to target specific values for the penalties.

Thanks to the tractable Kumaraswamy cdf, the ex-
pected value of L0(z) is known in closed form

Ep(z|x) [L0(z)]
ind
=

n∑
i=1

Ep(zi|x) [I[zi 6= 0]]

=
n∑
i=1

1− P(Zi = 0) ,

(11)

where P(Zi = 0) = FK

(
−l
r−l ; ai, bi

)
. This quan-

tity is a tractable and differentiable function of the
parameters φ of the latent model. We can also
compute a relaxation of fused lasso by comput-
ing the expected number of zero-to-nonzero and
nonzero-to-zero changes:

Ep(z|x)

[
n−1∑
i=1

I[zi = 0, zi+1 6= 0]

]

+ Ep(z|x)

[
n−1∑
i=1

I[zi 6= 0, zi+1 = 0]

]
ind
=

n−1∑
i=1

P(Zi = 0)(1− P(Zi+1 = 0))

+ (1− P(Zi = 0))P(Zi+1 = 0) .

(12)

In both cases, we make the assumption that latent
variables are independent given x, in Appendix
B.1.2 we discuss how to estimate the regularizers
for a model p(zi|x, z<i) that conditions on the pre-
fix z<i of sampled HardKuma assignments.

We can use regularizers to promote sparsity,
but just how much text will our final model se-
lect? Ideally, we would target specific values r and
solve a constrained optimization problem. In prac-
tice, constrained optimisation is very challenging,
thus we employ Lagrangian relaxation instead:

max
λ∈R

min
φ,θ
−E(φ, θ) + λ>(R(φ)− r) (13)

where R(φ) is a vector of regularisers, e.g. ex-
pectedL0 and expected fused lasso, and λ is a vec-
tor of Lagrangian multipliers λ. Note how this dif-
fers from the treatment of Lei et al. (2016) shown
in (4) where regularizers are computed for as-
signments, rather than on expectation, and where
λ0, λ1 are fixed hyperparameters.

5 Sentiment Classification

As a concrete example, consider the case of senti-
ment classification where x is a sentence and y is a

2967

5-way sentiment class (from very negative to very
positive). The model consists of

Zi ∼ HardKuma(ai, bi, l, r)

Y |x, z ∼ Cat(f(x� z; θ))
(14)

where the shape parameters a, b = g(x;φ), i.e.
two sequences of n strictly positive scalars, are
predicted by a NN, and the support boundaries
(l, r) are fixed hyperparameters.

We first specify an architecture that parameter-
izes latent selectors and then use a reparameterized
sample to restrict which parts of the input con-
tribute encodings for classification:4

ei = emb(xi)

hn1 = birnn(en1 ;φr)

ui ∼ U(0, 1)

ai = fa(hi;φa)

bi = fb(hi;φb)

zi = s(ui; ai, bi, l, r)

where emb(·) is an embedding layer, birnn(·;φr)
is a bidirectional encoder, fa(·;φa) and fb(·;φb)
are feed-forward transformations with softplus
outputs, and s(·) turns the uniform sample ui into
the latent selector zi (see §3). We then use the
sampled z to modulate inputs to the classifier:

ei = emb(xi)

h
(fwd)
i = rnn(h

(fwd)
i−1 , zi ei; θfwd)

h
(bwd)
i = rnn(h

(bwd)
i+1 , zi ei; θbwd)

o = fo(h
(fwd)
n ,h

(bwd)
1 ; θo)

where rnn(·; θfwd) and rnn(·; θbwd) are recurrent
cells such as LSTMs (Hochreiter and Schmidhu-
ber, 1997) that process the sequence in different
directions, and fo(·; θo) is a feed-forward transfor-
mation with softmax output. Note how zi modu-
lates features ei of the input xi that are available
to the recurrent composition function.

We then obtain gradient estimates of E(φ, θ) via
Monte Carlo (MC) sampling from

E(φ, θ) = EU(0,I) [logP (y|x, sφ(u, x), θ)] (15)

where z = sφ(u, x) is a shorthand for element-
wise application of the transformation from uni-
form samples to HardKuma samples. This repa-
rameterisation is the key to gradient estimation
through stochastic computation graphs (Kingma
and Welling, 2014; Rezende et al., 2014).

4We describe architectures using blocks denoted by
layer(inputs; subset of parameters), boldface letters for vec-
tors, and the shorthand vn

1 for a sequence 〈v1, . . . ,vn〉.

SVM (Lei et al., 2016) 0.0154
BiLSTM (Lei et al., 2016) 0.0094
BiRCNN (Lei et al., 2016) 0.0087

BiLSTM (ours) 0.0089
BiRCNN (ours) 0.0088

Table 1: MSE on the BeerAdvocate test set.

Deterministic predictions. At test time we
make predictions based on what is the most likely
assignment for each zi. We arg max across con-
figurations of the distribution, namely, zi = 0,
zi = 1, or 0 < zi < 1. When the continuous
interval is more likely, we take the expected value
of the underlying Kumaraswamy variable.

6 Experiments

We perform experiments on multi-aspect senti-
ment analysis to compare with previous work, as
well as experiments on sentiment classification
and natural language inference. All models were
implemented in PyTorch, and Appendix B pro-
vides implementation details.

Goal. When rationalizing predictions, our goal
is to perform as well as systems using the full input
text, while using only a subset of the input text,
leaving unnecessary words out for interpretability.

6.1 Multi-aspect Sentiment Analysis

In our first experiment we compare directly with
previous work on rationalizing predictions (Lei
et al., 2016). We replicate their setting.

Data. A pre-processed subset of the BeerAdvo-
cate5 data set is used (McAuley et al., 2012). It
consists of 220,000 beer reviews, where multiple
aspects (e.g. look, smell, taste) are rated. As
shown in Figure 1, a review typically consists of
multiple sentences, and contains a 0-5 star rating
(e.g. 3.5 stars) for each aspect. Lei et al. mapped
the ratings to scalars in [0, 1].

Model. We use the models described in §5 with
two small modifications: 1) since this is a regres-
sion task, we use a sigmoid activation in the output
layer of the classifier rather than a softmax,6 and

5https://www.beeradvocate.com/
6From a likelihood learning point of view, we would have

assumed a Logit-Normal likelihood, however, to stay closer
to Lei et al. (2016), we employ mean squared error.

https://www.beeradvocate.com/

2968

Method
Look Smell Taste

% Precision % Selected % Precision % Selected % Precision % Selected

Attention (Lei et al.) 80.6 13 88.4 7 65.3 7
Bernoulli (Lei et al.) 96.3 14 95.1 7 80.2 7
Bernoulli (reimpl.) 94.8 13 95.1 7 80.5 7
HardKuma 98.1 13 96.8 7 89.8 7

Table 2: Precision (% of selected words that was also annotated as the gold rationale) and selected (% of words
not zeroed out) per aspect. In the attention baseline, the top 13% (7%) of words with highest attention weights are
used for classification. Models were selected based on validation loss.

2) we use an extra RNN to condition zi on z<i:

ai = fa(hi, si−1;φa) (16a)

bi = fb(hi, si−1;φb) (16b)

si = rnn(hi, zi, si−1;φs) (16c)

For a fair comparison we follow Lei et al. by using
RCNN7 cells rather than LSTM cells for encoding
sentences on this task. Since this cell is not widely
used, we verified its performance in Table 1. We
observe that the BiRCNN performs on par with the
BiLSTM (while using 50% fewer parameters), and
similarly to previous results.

Evaluation. A test set with sentence-level ratio-
nale annotations is available. The precision of a ra-
tionale is defined as the percentage of words with
z 6= 0 that is part of the annotation. We also eval-
uate the predictions made from the rationale using
mean squared error (MSE).

Baselines. For our baseline we reimplemented
the approach of Lei et al. (2016) which we call
Bernoulli after the distribution they use to sample
z from. We also report their attention baseline,
in which an attention score is computed for each
word, after which it is simply thresholded to select
the top-k percent as the rationale.

Results. Table 2 shows the precision and the per-
centage of selected words for the first three as-
pects. The models here have been selected based
on validation MSE and were tuned to select a sim-
ilar percentage of words (‘selected’). We observe
that our Bernoulli reimplementation reaches the
precision similar to previous work, doing a little
bit worse for the ‘look’ aspect. Our HardKuma
managed to get even higher precision, and it ex-
tracted exactly the percentage of text that we spec-

7An RCNN cell can replace any LSTM cell and works
well on text classification problems. See appendix B.

0% 20% 40% 60% 80% 100%
Selected Text

0.008

0.009

0.010

0.011

0.012

0.013

M
SE

Figure 3: MSE of all aspects for various percentages of
extracted text. HardKuma (blue crosses) has lower er-
ror than Bernoulli (red circles; open circles taken from
Lei et al. (2016)) for similar amount of extracted text.
The full-text baseline (black star) gets the best MSE.

ified (see §4).8 Figure 3 shows the MSE for all as-
pects for various percentages of extracted text. We
observe that HardKuma does better with a smaller
percentage of text selected. The performance be-
comes more similar as more text is selected.

6.2 Sentiment Classification

We also experiment on the Stanford Sentiment
Treebank (SST) (Socher et al., 2013). There are 5
sentiment classes: very negative, negative, neutral,
positive, and very positive. Here we use the Hard-
Kuma model described in §5, a Bernoulli model
trained with REINFORCE, as well as a BiLSTM.

Results. Figure 4 shows the classification accu-
racy for various percentages of selected text. We
observe that HardKuma outperforms the Bernoulli
model at each percentage of selected text. Hard-
Kuma reaches full-text baseline performance al-
ready around 40% extracted text. At that point,
it obtains a test score of 45.84, versus 42.22 for
Bernoulli and 47.4±0.8 for the full-text baseline.

8We tried to use Lagrangian relaxation for the Bernoulli
model, but this led to instabilities (e.g. all words selected).

2969

0% 20% 40% 60% 80% 100%
Selected Text

30%

35%

40%

45%

50%
A

cc
ur

ac
y

Figure 4: SST validation accuracy for various percent-
ages of extracted text. HardKuma (blue crosses) has
higher accuracy than Bernoulli (red circles) for similar
amount of text, and reaches the full-text baseline (black
star, 46.3± 2σ with σ = 0.7) around 40% text.

ve
ry

ne
ga

tiv
e

ne
ga

tiv
e

ne
utr

al

po
sit

ive

ve
ry

po
sit

ive

14
6

99
2

18
23

1

15
11

39
4

11
9

60
3 33

78

80
3

26
4

11
2

48
9

38
06

79
5

29
9

Total
HardKuma
Bernoulli

Figure 5: The number of words in each sentiment class
for the full validation set, the HardKuma (24% selected
text) and Bernoulli (25% text).

Analysis. We wonder what kind of words are
dropped when we select smaller amounts of text.
For this analysis we exploit the word-level senti-
ment annotations in SST, which allows us to track
the sentiment of words in the rationale. Figure 5
shows that a large portion of dropped words have
neutral sentiment, and it seems plausible that ex-
actly those words are not important features for
classification. We also see that HardKuma drops
(relatively) more neutral words than Bernoulli.

6.3 Natural Language Inference

In Natural language inference (NLI), given a
premise sentence x(p) and a hypothesis sentence
x(h), the goal is to predict their relation y which
can be contradiction, entailment, or neutral. As
our dataset we use the Stanford Natural Language
Inference (SNLI) corpus (Bowman et al., 2015).

Baseline. We use the Decomposable Attention
model (DA) of Parikh et al. (2016).9 DA does not
make use of LSTMs, but rather uses attention to
find connections between the premise and the hy-

9Better results e.g. Chen et al. (2017) and data sets for
NLI exist, but are not the focus of this paper.

pothesis that are predictive of the relation. Each
word in the premise attends to each word in the
hypothesis, and vice versa, resulting in a set of
comparison vectors which are then aggregated for
a final prediction. If there is no link between a
word pair, it is not considered for prediction.

Model. Because the premise and hypothesis in-
teract, it does not make sense to extract a ra-
tionale for the premise and hypothesis indepen-
dently. Instead, we replace the attention between
premise and hypothesis with HardKuma attention.
Whereas in the baseline a similarity matrix is
softmax-normalized across rows (premise to hy-
pothesis) and columns (hypothesis to premise) to
produce attention matrices, in our model each cell
in the attention matrix is sampled from a Hard-
Kuma parameterized by (a, b). To promote spar-
sity, we use the relaxed L0 to specify the desired
percentage of non-zero attention cells. The result-
ing matrix does not need further normalization.

Results. With a target rate of 10%, the Hard-
Kuma model achieved 8.5% non-zero attention.
Table 3 shows that, even with so many zeros in the
attention matrices, it only does about 1% worse
compared to the DA baseline. Figure 6 shows an
example of HardKuma attention, with additional
examples in Appendix B. We leave further explo-
rations with HardKuma attention for future work.

Model Dev Test

LSTM (Bowman et al., 2016) – 80.6
DA (Parikh et al., 2016) – 86.3

DA (reimplementation) 86.9 86.5
DA with HardKuma attention 86.0 85.5

Table 3: SNLI results (accuracy).

<s
>

T
he

m
an

is w
al

ki
ng

hi
s

ca
t

.

<s>

Young

man

walking

dog

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 77 21 0 0 0 0

 0 0 0 0 88 0 0 0

 0 0 0 0 0 0 86 0

Figure 6: Example of HardKuma attention between a
premise (rows) and hypothesis (columns) in SNLI (cell
values shown in multiples of 10−2).

2970

7 Related Work

This work has connections with work on inter-
pretability, learning from rationales, sparse struc-
tures, and rectified distributions. We discuss each
of those areas.

Interpretability. Machine learning research has
been focusing more and more on interpretability
(Gilpin et al., 2018). However, there are many
nuances to interpretability (Lipton, 2016), and
amongst them we focus on model transparency.

One strategy is to extract a simpler, inter-
pretable model from a neural network, though this
comes at the cost of performance. For example,
Thrun (1995) extract if-then rules, while Craven
and Shavlik (1996) extract decision trees.

There is also work on making word vectors
more interpretable. Faruqui et al. (2015) make
word vectors more sparse, and Herbelot and Vec-
chi (2015) learn to map distributional word vectors
to model-theoretic semantic vectors.

Similarly to Lei et al. (2016), Titov and McDon-
ald (2008) extract informative fragments of text
by jointly training a classifier and a model pre-
dicting a stochastic mask, while relying on Gibbs
sampling to do so. Their focus is on using the
sentiment labels as a weak supervision signal for
opinion summarization rather than on rationaliz-
ing classifier predictions.

There are also related approaches that aim to
interpret an already-trained model, in contrast to
Lei et al. (2016) and our approach where the ra-
tionale is jointly modeled. Ribeiro et al. (2016)
make any classifier interpretable by approximat-
ing it locally with a linear proxy model in an
approach called LIME, and Alvarez-Melis and
Jaakkola (2017) propose a framework that returns
input-output pairs that are causally related.

Learning from rationales. Our work is differ-
ent from approaches that aim to improve clas-
sification using rationales as an additional input
(Zaidan et al., 2007; Zaidan and Eisner, 2008;
Zhang et al., 2016). Instead, our rationales are la-
tent and we are interested in uncovering them. We
only use annotated rationales for evaluation.

Sparse layers. Also arguing for enhanced inter-
pretability, Niculae and Blondel (2017) propose a
framework for learning sparsely activated atten-
tion layers based on smoothing the max opera-
tor. They derive a number of relaxations to max,

including softmax itself, but in particular, they
target relaxations such as sparsemax (Martins
and Astudillo, 2016) which, unlike softmax, are
sparse (i.e. produce vectors of probability values
with components that evaluate to exactly 0). Their
activation functions are themselves solutions to
convex optimization problems, to which they pro-
vide efficient forward and backward passes. The
technique can be seen as a deterministic sparsely
activated layer which they use as a drop-in replace-
ment to standard attention mechanisms. In con-
trast, in this paper we focus on binary outcomes
rather than K-valued ones. Niculae et al. (2018)
extend the framework to structured discrete spaces
where they learn sparse parameterizations of dis-
crete latent models. In this context, parameter es-
timation requires exact marginalization of discrete
variables or gradient estimation via REINFORCE.
They show that oftentimes distributions are sparse
enough to enable exact marginal inference.

Peng et al. (2018) propose SPIGOT, a proxy
gradient to the non-differentiable arg max op-
erator. This proxy requires an arg max solver
(e.g. Viterbi for structured prediction) and, like the
straight-through estimator (Bengio et al., 2013), is
a biased estimator. Though, unlike ST it is effi-
cient for structured variables. In contrast, in this
work we chose to focus on unbiased estimators.

Rectified Distributions. The idea of rectified
distributions has been around for some time. The
rectified Gaussian distribution (Socci et al., 1998),
in particular, has found applications to factor anal-
ysis (Harva and Kaban, 2005) and approximate
inference in graphical models (Winn and Bishop,
2005). Louizos et al. (2017) propose to stretch and
rectify samples from the BinaryConcrete (or Gum-
belSoftmax) distribution (Maddison et al., 2017;
Jang et al., 2017). They use rectified variables
to induce sparsity in parameter space via a relax-
ation to L0. We adapt their technique to promote
sparse activations instead. Rolfe (2017) learns a
relaxation of a discrete random variable based on a
tractable mixture of a point mass at zero and a con-
tinuous reparameterizable density, thus enabling
reparameterized sampling from the half-closed in-
terval [0,∞). In contrast, with HardKuma we fo-
cused on giving support to both 0s and 1s.

8 Conclusions

We presented a differentiable approach to extrac-
tive rationales, including an objective that allows

2971

for specifying how much text is to be extracted.
To allow for reparameterized gradient estimates
and support for binary outcomes we introduced
the HardKuma distribution. Apart from extract-
ing rationales, we showed that HardKuma has fur-
ther potential uses, which we demonstrated on
premise-hypothesis attention in SNLI. We leave
further explorations for future work.

Acknowledgments

We thank Luca Falorsi for pointing us to
Louizos et al. (2017), which inspired the Hard-
Kumaraswamy distribution. This work has re-
ceived funding from the European Research Coun-
cil (ERC StG BroadSem 678254), the Euro-
pean Union’s Horizon 2020 research and inno-
vation programme (grant agreement No 825299,
GoURMET), and the Dutch National Science
Foundation (NWO VIDI 639.022.518, NWO VICI
277-89-002).

References
David Alvarez-Melis and Tommi Jaakkola. 2017. A

causal framework for explaining the predictions of
black-box sequence-to-sequence models. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 412–
421. Association for Computational Linguistics.

Yoshua Bengio, Nicholas Léonard, and Aaron
Courville. 2013. Estimating or propagating gradi-
ents through stochastic neurons for conditional com-
putation. arXiv preprint arXiv:1308.3432.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642. Association for Computational Linguis-
tics.

Samuel R. Bowman, Jon Gauthier, Abhinav Ras-
togi, Raghav Gupta, Christopher D. Manning, and
Christopher Potts. 2016. A fast unified model for
parsing and sentence understanding. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1466–1477. Association for Computa-
tional Linguistics.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced lstm for
natural language inference. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1657–1668. Association for Computational Linguis-
tics.

Mark Craven and Jude W Shavlik. 1996. Extracting
tree-structured representations of trained networks.
In Advances in neural information processing sys-
tems, pages 24–30.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers). Association for
Computational Linguistics.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah A. Smith. 2015. Sparse overcom-
plete word vector representations. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1491–1500. Asso-
ciation for Computational Linguistics.

Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Ba-
jwa, Michael Specter, and Lalana Kagal. 2018. Ex-
plaining explanations: An overview of interpretabil-
ity of machine learning. In 2018 IEEE 5th Inter-
national Conference on Data Science and Advanced
Analytics (DSAA), pages 80–89. IEEE.

Markus Harva and Ata Kaban. 2005. A variational
bayesian method for rectified factor analysis. In
Proceedings. 2005 IEEE International Joint Confer-
ence on Neural Networks, 2005., volume 1, pages
185–190. IEEE.

Aurélie Herbelot and Eva Maria Vecchi. 2015. Build-
ing a shared world: mapping distributional to model-
theoretic semantic spaces. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 22–32. Association for
Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339. Association for Com-
putational Linguistics.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categor-
ical reparameterization with gumbel-softmax. Inter-
national Conference on Learning Representations.

MichaelI. Jordan, Zoubin Ghahramani, TommiS.
Jaakkola, and LawrenceK. Saul. 1999. An intro-
duction to variational methods for graphical models.
Machine Learning, 37(2):183–233.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In International Con-
ference on Learning Representations.

https://doi.org/10.18653/v1/D17-1042
https://doi.org/10.18653/v1/D17-1042
https://doi.org/10.18653/v1/D17-1042
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/P16-1139
https://doi.org/10.18653/v1/P16-1139
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.3115/v1/P15-1144
https://doi.org/10.3115/v1/P15-1144
https://doi.org/10.18653/v1/D15-1003
https://doi.org/10.18653/v1/D15-1003
https://doi.org/10.18653/v1/D15-1003
https://doi.org/10.1162/neco.1997.9.8.1735
http://aclweb.org/anthology/P18-1031
http://aclweb.org/anthology/P18-1031

2972

Ponnambalam Kumaraswamy. 1980. A generalized
probability density function for double-bounded
random processes. Journal of Hydrology, 46(1-
2):79–88.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 107–117. Associ-
ation for Computational Linguistics.

Zachary Chase Lipton. 2016. The mythos of model
interpretability. ICML Workshop on Human Inter-
pretability in Machine Learning (WHI 2016).

Christos Louizos, Max Welling, and Diederik P
Kingma. 2017. Learning sparse neural net-
works through l 0 regularization. arXiv preprint
arXiv:1712.01312.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continous re-
laxation of discrete random variables. International
Conference on Learning Representations.

Andre Martins and Ramon Astudillo. 2016. From soft-
max to sparsemax: A sparse model of attention and
multi-label classification. In International Confer-
ence on Machine Learning, pages 1614–1623.

Julian McAuley, Jure Leskovec, and Dan Jurafsky.
2012. Learning attitudes and attributes from multi-
aspect reviews. In Data Mining (ICDM), 2012 IEEE
12th International Conference on, pages 1020–
1025. IEEE.

Eric Nalisnick and Padhraic Smyth. 2016. Stick-
breaking variational autoencoders. arXiv preprint
arXiv:1605.06197.

Vlad Niculae and Mathieu Blondel. 2017. A regular-
ized framework for sparse and structured neural at-
tention. In Advances in Neural Information Process-
ing Systems, pages 3338–3348.

Vlad Niculae, André F. T. Martins, and Claire Cardie.
2018. Towards dynamic computation graphs via
sparse latent structure. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 905–911. Association for
Computational Linguistics.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2249–2255.
Association for Computational Linguistics.

Hao Peng, Sam Thomson, and Noah A. Smith. 2018.
Backpropagating through structured argmax using a
spigot. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1863–1873. Asso-
ciation for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237. Association for Computational Linguistics.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. 2014. Stochastic backpropagation and ap-
proximate inference in deep generative models. In
Proceedings of the 31st International Conference
on Machine Learning, volume 32 of Proceedings of
Machine Learning Research, pages 1278–1286, Be-
jing, China. PMLR.

Marco Ribeiro, Sameer Singh, and Carlos Guestrin.
2016. “why should i trust you?”: Explaining the pre-
dictions of any classifier. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 97–101. Association for Computa-
tional Linguistics.

Jason Tyler Rolfe. 2017. Discrete variational autoen-
coders. In ICLR.

Nicholas D. Socci, Daniel D. Lee, and H. Sebastian
Seung. 1998. The rectified gaussian distribution. In
M. I. Jordan, M. J. Kearns, and S. A. Solla, editors,
Advances in Neural Information Processing Systems
10, pages 350–356. MIT Press.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1631–1642. Association for Computa-
tional Linguistics.

Sebastian Thrun. 1995. Extracting rules from artificial
neural networks with distributed representations. In
Advances in neural information processing systems,
pages 505–512.

Ivan Titov and Ryan McDonald. 2008. A joint model
of text and aspect ratings for sentiment summariza-
tion. In Proceedings of ACL.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

John Winn and Christopher M Bishop. 2005. Varia-
tional message passing. Journal of Machine Learn-
ing Research, 6(Apr):661–694.

Omar Zaidan and Jason Eisner. 2008. Modeling anno-
tators: A generative approach to learning from an-
notator rationales. In Proceedings of the 2008 Con-
ference on Empirical Methods in Natural Language
Processing, pages 31–40, Honolulu, Hawaii. Asso-
ciation for Computational Linguistics.

https://doi.org/10.18653/v1/D16-1011
http://aclweb.org/anthology/D18-1108
http://aclweb.org/anthology/D18-1108
https://doi.org/10.18653/v1/D16-1244
https://doi.org/10.18653/v1/D16-1244
http://aclweb.org/anthology/P18-1173
http://aclweb.org/anthology/P18-1173
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
http://proceedings.mlr.press/v32/rezende14.html
http://proceedings.mlr.press/v32/rezende14.html
https://doi.org/10.18653/v1/N16-3020
https://doi.org/10.18653/v1/N16-3020
http://aclweb.org/anthology/D13-1170
http://aclweb.org/anthology/D13-1170
http://aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D08-1004
https://www.aclweb.org/anthology/D08-1004
https://www.aclweb.org/anthology/D08-1004

2973

Omar Zaidan, Jason Eisner, and Christine Piatko. 2007.
Using “annotator rationales” to improve machine
learning for text categorization. In Human Lan-
guage Technologies 2007: The Conference of the
North American Chapter of the Association for
Computational Linguistics; Proceedings of the Main
Conference, pages 260–267. Association for Com-
putational Linguistics.

Ye Zhang, Iain Marshall, and Byron C. Wallace. 2016.
Rationale-augmented convolutional neural networks
for text classification. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 795–804, Austin, Texas.
Association for Computational Linguistics.

http://aclweb.org/anthology/N07-1033
http://aclweb.org/anthology/N07-1033
https://doi.org/10.18653/v1/D16-1076
https://doi.org/10.18653/v1/D16-1076

2974

A Kumaraswamy distribution

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5
(0.5, 0.5)
(5, 1)
(2, 2)
(2, 5)
(0.1, 0.1)
(1.0, 1.0)

Figure 7: Kuma plots for various (a, b) parameters.

A Kumaraswamy-distributed variable K ∼
Kuma(a, b) takes on values in the open interval
(0, 1) and has density

fK(k; a, b) = abka−1(1− ka)b−1 , (17)

where a ∈ R>0 and b ∈ R>0 are shape param-
eters. Its cumulative distribution takes a simple
closed-form expression

FK(k; a, b) =

∫ k

0
fK(ξ|a, b)dξ (18a)

= 1− (1− ka)b , (18b)

with inverse

F−1K (u; a, b) =
(
1− (1− u)1/b

)1/a
. (19)

A.1 Generalised-support Kumaraswamy

We can generalise the support of a Kumaraswamy
variable by specifying two constants l < r and
transforming a random variable K ∼ Kuma(a, b)
to obtain T ∼ Kuma(a, b, l, r) as shown in (20,
left).

t = l + (r − l)k k = (t− l)/(r − l) (20)

The density of the resulting variable is

fT (t; a, b, l, r) (21a)

= fK

(
t−l
r−l ; a, b

) ∣∣∣∣dkdt
∣∣∣∣ (21b)

= fK

(
t−l
r−l ; a, b

) 1

(r − l)
(21c)

where r − l > 0 by definition. This affine trans-
formation leaves the cdf unchanged, i.e.

FT (t0; a, b, l, r) =

∫ t0

−∞
fT (t; a, b, l, r)dt

=

∫ t0

−∞
fK

(
t−l
r−l ; a, b

) 1

(r − l)
dt

=

∫ t0−l
r−l

−∞
fK(k; a, b)

1

(r − l)
(r − l)dk

= FK

(
t0−l
r−l ; a, b

)
.

(22)

Thus we can obtain samples from this generalised-
support Kumaraswamy by sampling from a uni-
form distribution U(0, 1), applying the inverse
transform (19), then shifting and scaling the sam-
ple according to (20, left).

A.2 Rectified Kumaraswamy
First, we stretch a Kumaraswamy distribution to
include 0 and 1 in its support, that is, with l < 0
and r > 1, we define T ∼ Kuma(a, b, l, r). Then
we apply a hard-sigmoid transformation to this
variable, that is, h = min(0,max(1, t)), which
results in a rectified distribution which gives sup-
port to the closed interval [0, 1]. We denote this
rectified variable by

H ∼ HardKuma(a, b, l, r) (23)

whose distribution function is

fH(h; a, b, l, r) =

P(h = 0)δ(h) + P(h = 1)δ(h− 1)

+ P(0 < h < 1)
fT (h; a, b, l, r)1(0,1)(h)

P(0 < h < 1)

(24)

where

P(h = 0) = P(t ≤ 0)

= FT (0; a, b, l, r) = FK(− l/(r − l); a, b)
(25)

is the probability of sampling exactly 0, where

P(h = 1) = P(t ≥ 1) = 1− P(t < 1)

= 1− FT (1; a, b, l, r)
= 1− FK((1− l)/(r − l); a, b)

(26)

is the probability of sampling exactly 1, and

P(0 < h < 1) = 1−P(h = 0)−P(h = 1) (27)

is the probability of drawing a continuous value
in (0, 1). Note that we used the result in (22) to
express these probabilities in terms of the tractable
cdf of the original Kumaraswamy variable.

2975

A.3 Reparameterized gradients

Let us consider the case where we need deriva-
tives of a function L(u) of the underlying uniform
variable u, as when we compute reparameterized
gradients in variational inference. Note that

∂L
∂u

=
∂L
∂h
× ∂h

∂t
× ∂t

∂k
× ∂k

∂u
, (28)

by chain rule. The term ∂L
∂h depends on a differen-

tiable observation model and poses no challenge;
the term ∂h

∂t is the derivative of the hard-sigmoid
function, which is 0 for t < 0 or t > 1, 1 for
0 < t < 1, and undefined for t ∈ {0, 1}; the
term ∂t

∂k = r − l follows directly from (20, left);
the term ∂k

∂u = ∂
∂uF

−1
K (u; a, b) depends on the

Kumaraswamy inverse cdf (19) and also poses no
challenge. Thus the only two discontinuities hap-
pen for t ∈ {0, 1}, which is a 0 measure set under
the stretched Kumaraswamy: we say this reparam-
eterisation is differentiable almost everywhere, a
useful property which essentially circumvents the
discontinuity points of the rectifier.

A.4 HardKumaraswamy PDF and CDF

Figure 8 plots the pdf of the HardKumaraswamy
for various a and b parameters. Figure 9 does the
same but with the cdf.

Figure 8: HardKuma pdf for various (a, b).

B Implementation Details

B.1 Multi-aspect Sentiment Analysis

Our hyperparameters are taken from Lei et al.
(2016) and listed in Table 4. The pre-trained
word embeddings and data sets are available on-
line at http://people.csail.mit.edu/
taolei/beer/. We train for 100 epochs and

Figure 9: HardKuma cdf for various (a, b).

select the best models based on validation loss.
For the MSE trade-off experiments on all aspects
combined, we train for a maximum of 50 epochs.

Optimizer Adam
Learning rate 0.0004
Word embeddings 200D (Wiki, fixed)
Hidden size 200
Batch size 256
Dropout 0.1, 0.2
Weight decay 1 ∗ 10−6
Cell RCNN

Table 4: Beer hyperparameters.

For the Bernoulli baselines we vary L0 weight
λ1 among {0.0002, 0.0003, 0.0004}, just as in the
original paper. We set the fused lasso (coherence)
weight λ2 to 2 ∗ λ1.

For the HardKuma models we set a target se-
lection rate to the values targeted in Table 2, and
optimize to this end using the Lagrange multi-
plier. We chose the fused lasso weight from
{0.0001, 0.0002, 0.0003, 0.0004}.

B.1.1 Recurrent Unit

In our multi-aspect sentiment analysis experi-
ments we use the RCNN of Lei et al. (2016). Intu-
itively, the RCNN is supposed to capture n-gram
features that are not necessarily consecutive. We
use the bigram version (filter width n = 2) used in

http://people.csail.mit.edu/taolei/beer/
http://people.csail.mit.edu/taolei/beer/

2976

Lei et al. (2016), which is defined as:

λt = σ(W λxt + Uλht−1 + bλ)

c
(1)
t = λt � c

(1)
t−1 + (1− λt)�W1xt

c
(2)
t = λt � c

(2)
t−1 + (1− λt)� (c

(1)
t−1 +W2xt)

ht = tanh
(
c
(2)
t + b

)
B.1.2 Expected values for dependent latent

variables
The expected L0 is a chain of nested expectations,
and we solve each term

Ep(zi|x,z<i) [I[zi 6= 0] | z<i]

= 1− FK
(
−l
r−l ; ai, bi

) (29)

as a function of a sampled prefix, and the shape
parameters ai, bi = gi(x, z<i;φ) are predicted in
sequence.

B.2 Sentiment Classification (SST)
For sentiment classification we make use of the
PyTorch bidirectional LSTM module for encod-
ing sentences, for both the rationale extractor and
the classifier. The BiLSTM final states are con-
catenated, after which a linear layer followed by
a softmax produces the prediction. Hyperparame-
ters are listed in Table 5. We apply dropout to the
embeddings and to the input of the output layer.

Optimizer Adam
Learning rate 0.0002
Word embeddings 300D Glove (fixed)
Hidden size 150
Batch size 25
Dropout 0.5
Weight decay 1 ∗ 10−6
Cell LSTM

Table 5: SST hyperparameters.

B.3 Natural Language Inference (SNLI)
Our hyperparameters are taken from Parikh et al.
(2016) and listed in Table 6. Different from Parikh
et al. is that we use Adam as the optimizer and a
batch size of 64. Word embeddings are projected
to 200 dimensions with a trained linear layer. Un-
known words are mapped to 100 unknown word
classes based on the MD5 hash function, just as
in Parikh et al. (2016), and unknown word vectors
are randomly initialized. We train for 100 epochs,

evaluate every 1000 updates, and select the best
model based on validation loss. Figure 10 shows
a correct and incorrect example with HardKuma
attention for each relation type (entailment, con-
tradiction, neutral).

Optimizer Adam
Learning rate 0.0001
Word embeddings 300D (Glove, fixed)
Hidden size 200
Batch size 64
Dropout 0.2

Table 6: SNLI hyperparameters.

2977

<s
>

T
he

tw
o

do
gs

ar
e

bl
ac

k

.

<s>

Two

black

dogs

running

 0 0 0 0 0 0 0

 0 0 0 0 0 0 0

 0 0 0 0 0 100 0

 0 0 0 90 0 0 0

 0 0 0 23 0 0 0

(a) Entailment (correct)

<s
>

F
ou

r

pe
op

le

in a ki
tc

he
n

co
ok

in
g

.

<s>

Four

people

in

a

kitchen

 0 0 0 0 0 0 0 0

 0 89 0 0 0 0 0 0

 0 0 53 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0

 0 0 0 0 0 100 74 0

(b) Entailment (incorrect, pred: neutral)

<s
>

T
hr

ee

ca
ts

ra
ce

on a tr
ac

k

.

<s>

Three

dogs

racing

on

racetrack

 0 0 0 0 0 0 0 0

 0 84 0 0 0 0 0 0

 0 0 100 0 0 0 18 0

 0 0 0 87 0 0 43 0

 0 0 0 0 0 0 0 0

 0 0 33 48 0 0 73 0

(c) Contradiction (correct)

<s
>

a co
up

le

on a m
ot

or
cy

cl
e

<s>

A

person

on

a

motorcycle

.

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 15 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 89

 0 0 0 0 0 0

(d) Contradiction (incorrect, pred: entailment)

<s
>

T
he

y

ar
e

in th
e

de
se

rt

.

<s>

People

walking

through

dirt

.

 0 0 0 0 0 0 0

 0 0 0 0 0 0 0

 0 0 0 0 0 0 0

 0 0 0 0 0 0 0

 0 0 0 0 0 81 0

 0 0 0 0 0 0 0

(e) Neutral (correct)

<s
>

A do
g

fo
un

d

a bo
ne

<s>

A

dog

gnawing

on

a

bone

.

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 89 13 0 12

 0 0 0 0 0 47

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 12 14 0 76

 0 0 0 0 0 0

(f) Neutral (incorrect, pred: entailment)

Figure 10: HardKuma attention in SNLI for entailment, contradiction, and neutral.

