
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2952–2962
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

2952

Correlating neural and symbolic representations of language

Grzegorz Chrupała
Tilburg University

g.chrupala@uvt.nl

Afra Alishahi
Tilburg University

a.alishahi@uvt.nl

Abstract

Analysis methods which enable us to better
understand the representations and functioning
of neural models of language are increasingly
needed as deep learning becomes the domi-
nant approach in NLP. Here we present two
methods based on Representational Similarity
Analysis (RSA) and Tree Kernels (TK) which
allow us to directly quantify how strongly the
information encoded in neural activation pat-
terns corresponds to information represented
by symbolic structures such as syntax trees.
We first validate our methods on the case of
a simple synthetic language for arithmetic ex-
pressions with clearly defined syntax and se-
mantics, and show that they exhibit the ex-
pected pattern of results. We then apply our
methods to correlate neural representations
of English sentences with their constituency
parse trees.

1 Introduction

Analysis methods which allow us to better under-
stand the representations and functioning of neu-
ral models of language are increasingly needed as
deep learning becomes the dominant approach to
natural language processing. A popular technique
for analyzing neural representations involves pre-
dicting information of interest from the activation
patterns, typically using a simple predictive model
such as a linear classifier or regressor. If the model
is able to predict this information with high accu-
racy, the inference is that the neural representation
encodes it. We refer to these as diagnostic models.

One important limitation of this method of anal-
ysis is that it is only easily applicable to rela-
tively simple types of target information, which
are amenable to be predicted via linear regression
or classification. Should we wish to decode acti-
vation patterns into a structured target such as a
syntax tree, we would need to resort to complex

structure prediction algorithms, running the risk
that the analytic method becomes no simpler than
the actual neural model.

Here we introduce an alternative approach
based on correlating neural representations of sen-
tences and structured symbolic representations
commonly used in linguistics. Crucially, the cor-
relation is in similarity space rather than in the
original representation space, removing most con-
straints on the types of representations we can use.
Our approach is an extension of the Representa-
tional Similarity Analysis (RSA) method, initially
introduced by Kriegeskorte et al. (2008) in the
context of understanding neural activation patterns
in human brains.

In this work we propose to apply RSA to neural
representations of strings from a language on one
side, and to structured symbolic representations of
these strings on the other side. To capture the sim-
ilarities between these symbolic representations,
we use a tree kernel, a metric to compute the pro-
portion of common substructures between trees.
This approach enables straightforward compari-
son of neural and symbolic-linguistic representa-
tions. Furthermore, we introduce RSAREGRESS, a
similarity-based analytic method which combines
features of RSA and of diagnostic models.

We validate both techniques on neural models
which process a synthetic language for arithmetic
expressions with a simple syntax and semantics
and show that they behave as expected in this con-
trolled setting. We further apply our techniques
to two neural models trained on English text, In-
fersent (Conneau et al., 2017) and BERT (Devlin
et al., 2018), and show that both models encode a
substantial amount of syntactic information com-
pared to random models and simple bag-of-words
representations; we also show that according to
our metrics syntax is most salient in the interme-
diate layers of BERT.



2953

2 Related work

2.1 Analytic methods
The dominance of deep learning models in NLP
has brought an increasing interest in techniques
to analyze these models and gain insight into
how they encode linguistic information. For an
overview of analysis techniques, see Belinkov and
Glass (2019). The most widespread family of
techniques are diagnostic models, which use the
internal activations of neural networks trained on
a particular task as input to another predictive
model. The success of such a predictive model is
then interpreted as evidence that the predicted in-
formation has been encoded by the original neural
model. The approach has also been called aux-
iliary task (Adi et al., 2017), decoding (Alishahi
et al., 2017), diagnostic classifier (Hupkes et al.,
2018) or probing (Conneau et al., 2018).

Diagnostic models have used a range of predic-
tive tasks, but since their main purpose is to help
us better understand the dynamics of a complex
model, they themselves need to be kept simple and
interpretable. This means that the predicted infor-
mation in these techniques is typically limited to
simple class labels or values, as opposed to sym-
bolic, structured representations of interest to lin-
guists such as syntactic trees. In order to work
around this limitation Tenney et al. (2019) present
a method for probing complex structures via a for-
mulation named edge probing, where classifiers
are trained to predict various lexical, syntactic and
semantic relations between representation of word
spans within a sentence.

Another important consideration when analyz-
ing neural encodings is the fact that a randomly
initialized network will often show non-random
activation patterns. The reason for this depends
on each particular case, but may involve the dy-
namics of the network itself as well as features of
the input data. For a discussion of this issue in the
context of diagnostic models see Zhang and Bow-
man (2018).

Alternative approaches have been proposed to
analyzing neural models of language. For exam-
ple, Saphra and Lopez (2019) train a language
model and parallel recurrent models for POS, se-
mantic and topic tagging, and measure the correla-
tion between the neural representations of the lan-
guage model and the taggers.

Others modify the neural architecture itself
to make it more interpretable: Croce et al.

(2018) adapt layerwise relevance propagation
(Bach et al., 2015) to Kernel-based Deep Archi-
tectures (Croce et al., 2017) in order to retrieve
examples which motivate model decisions. A vec-
tor representation for a given structured symbolic
input is built based on kernel evaluations between
the input and a subset of training examples known
as landmarks, and the network decision is then
traced back to the landmarks which had most in-
fluence on it. In our work we also use kernels be-
tween symbolic structures, but rather than building
a particular interpretable model we propose a gen-
eral analytical framework.

2.2 Representation Similarity Analysis
Kriegeskorte et al. (2008) present RSA as a vari-
ant of pattern-information analysis, to be applied
for understanding neural activation patterns in hu-
man brains, for example syntactic computations
(Tyler et al., 2013) or sensory cortical process-
ing (Yamins and DiCarlo, 2016). The core idea
is to find connections between data from neu-
roimaging, behavioral experiments and computa-
tional modeling by correlating representations of
stimuli in each of these representation spaces via
their pairwise (dis)similarities. RSA has also been
used for measuring similarities between neural-
network representation spaces (e.g. Bouchacourt
and Baroni, 2018; Chrupała, 2019).

2.3 Tree kernels
For extending RSA to a structured represen-
tation space, we need a metric for measuring
(dis)similarity between two structured representa-
tions. Kernels provide a suitable framework for
this purpose: Collins and Duffy (2002) introduce
convolutional kernels for syntactic parse trees as a
metric which quantifies similarity between trees as
the number of overlapping tree fragments between
them, and introduce a polynomial time algorithm
to compute these kernels; Moschitti (2006) pro-
pose an efficient algorithm for computing tree ker-
nels in linear average running time.

2.4 Synthetic languages
When developing techniques for analyzing neu-
ral network models of language, several studies
have used synthetic data from artificial languages.
Using synthetic language has the advantage that
its structure is well-understood and the complex-
ity of the language and the statistical character-
istics of the generated data can be carefully con-



2954

trolled. The tradition goes back to the first gen-
eration of connectionist models of language (El-
man, 1990; Hochreiter and Schmidhuber, 1997).
More recently, Sennhauser and Berwick (2018)
and Skachkova et al. (2018) both use context-
free grammars to generate data, and train RNN-
based models to identify matching numbers of
opening and closing brackets (so called Dyck lan-
guages). The task can be learned, but Sennhauser
and Berwick (2018) report that the models fail to
generalize to longer sentences. Paperno (2018)
also show that with extensive training and the ap-
propriate curriculum, LSTMs trained on synthetic
language can learn compositional interpretation
rules.

Nested arithmetic languages are also appealing
choices since they have an unambiguous hierar-
chical structure and a clear compositional seman-
tic interpretation (i.e. the value of the arithmetic
expression). Hupkes et al. (2018) train RNNs to
calculate the value of such expressions and show
that they perform and generalize well to unseen
strings. They apply diagnostic classifiers to ana-
lyze the strategy employed by the RNN model.

3 Similarity-based analytical methods

RSA finds connections between data from two dif-
ferent representation spaces. Specifically, for each
representation type we compute a matrix of sim-
ilarities between pairs of stimuli. Pairs of these
matrices are then subject to second-order analysis
by extracting their upper triangulars and comput-
ing a correlation coefficient between them.

Thus for a set of objects X , given a similar-
ity function sk for a representation k, the function
Sk which computes the representational similarity
matrix is defined as:

Sk(X) = U

Ui,j = sk(Xi, Xj),
(1)

and the RSA score between representations k and
l for data X is the correlation (such as Pearson’s
correlation coefficient r) between the upper trian-
gulars Sk(X) and Sl(X), excluding the diagonals.

Structured RSA We apply RSA to neural repre-
sentations of strings from a language on one side,
and to structured symbolic representations of these
strings on the other side. The structural proper-
ties are captured by defining appropriate similarity

functions for these symbolic representations; we
use tree kernels for this purpose.

A tree kernel measures the similarity between
a pair of tree structures by computing the number
of tree fragments they share. Collins and Duffy
(2002) introduce an algorithm for efficiently com-
puting this quantity; a tree fragment in their for-
mulation is a set of connected nodes subject to the
constraint that only complete production rules are
included.

Following Collins and Duffy (2002), we calcu-
late the tree kernel between two trees T1 and T2
as:

K(T1, T2) =
∑

n1∈T1

∑
n2∈T2

C(n1, n2, λ), (2)

where n1 and n2 are the complete sets of tree frag-
ments in T1 and T2, respectively, and the function
C(n1, n2, λ) is calculated as shown in figure 2.
The parameter λ is used to scale the relative im-
portance of tree fragments with their size. Lower
values of this parameter discount larger tree frag-
ments in the computation of the kernel; the value 1
does not do any discounting. See Figure 1 for the
illustration of the effect of the value of λ on the
kernel.

Figure 1: Distribution of values of the tree kernel for
two settings of discounting parameter λ, for syntax
trees of a sample of English sentences.

We work with normalized kernels: given a func-
tion K which computes the raw count of tree frag-
ments in common between trees t1 and t2, the nor-
malized tree kernel is defined as:

K ′(t1, t2) =
K(t1, t2)√

K(t1, t1)K(t2, t2)
. (3)

Figure 3 shows the complete set of tree frag-
ments which the tree kernel implicitly computes
for an example syntax tree.



2955

C(n1, n2, λ) =


0, if prod(n1) 6= prod(n2)

λ, if preterm(n1) ∧ preterm(n2)

λ
∏nc(n1)

i=1 (1 + C(ch(n1, i), ch(n2, i), λ)) otherwise.

Figure 2: Dynamic programming formula for computing a convolution kernel, after Collins and Duffy (2002).
Here nc(n) is the number of children of a given (sub)tree, and ch(n, i) is its ith child; prod(n) is the production
of node n, and preterm(n) is true if n is a preterminal node.

NP

N

apple

D

the

NP

ND

the

NP

N

apple

D

NP

ND

D

the

N

apple

Figure 3: The complete set of tree fragments as defined
by the tree kernel for the syntax tree corresponding to
the apple, after Collins and Duffy (2002).

RSAREGRESS Basic RSA measures correlation
between similarities in two different representa-
tions globally, i.e. how close they are in their total-
ity. In contrast, diagnostic models answer a more
specific question: to what extent a particular type
of information can be extracted from a given rep-
resentation. For example, while for a particular
neural encoding of sentences it may be possible to
predict the length of the sentence with high accu-
racy, the RSA between this representation and the
strings represented only by their length may be rel-
atively small in magnitude, since the neural repre-
sentation may be encoding many other aspects of
the input in addition to its length.

We introduce RSAREGRESS, a method which
shares features of both classic RSA as well as the
diagnostic model approach. Like RSA it is based
on two similarity functions sk and sl specific to
two different representations k and l. But rather
than computing the square matrices Sk(X) and
Sl(X) for a set of objects X , we sample a refer-
ence set of objects R to act as anchor points, and
then embed the objects of interest X in the repre-
sentation space k via the representational similar-

ity function σk defined as:1

σk(X,R) = V

Vi,j = sk(Xi, Rj),
(4)

Likewise for representation l, we calculate σl for
the same set of objects X . The rows of the two re-
sulting matrices contain two different views of the
objects of interest, where the dimensions of each
view indicate the degree of similarity for a partic-
ular reference anchor point. We can now fit a mul-
tivariate linear regression model to map between
the two views:

B̂,a = argmin
B,a

MSE(Bσk(X,R)+ a, σl(X,R))

(5)
where k is the source and l is the target view, and
MSE is the mean squared error. The success of
this model can be seen as an indication of how
predictable representation l is from representation
k. Specifically, we use a cross-validated Pearson’s
correlation between predicted and true targets for
an L2-penalized model.

4 Synthetic language

Evaluation of analysis methods for neural network
models is an open problem. One frequently re-
sorts to largely qualitative evaluation: checking
whether the conclusions reached via a particular
approach have face validity and match pre-existing
intuitions. However pre-existing intuitions are of-
ten not reliable when it comes to complex neural
models applied to also very complex natural lan-
guage data. It is helpful to simplify one part of the
overall system and apply the analytic technique of
interest on a neural model which processes a sim-
ple and well-understood synthetic language. As
our first case study, we use a simple language of

1Note that σk is simply a generalization of Sk to the non-
square case, namely Sk(X) = σk(X,X).



2956

Syntax Meaning

E → L E1 O E2 R [E] = [O]([E1], [E2])
E → D [E] = [D]
O → + [O] = λx, y.x+ y mod 10
O → − [O] = λx, y.x− y mod 10
L→ (
R→ )
D → 0 [D] = 0
...

...
D → 9 [D] = 9

Table 1: Grammar G(L) of a language L expressing
addition and subtraction modulo 10 in infix notation.
The notation [·] stands for the semantic evaluation func-
tion. Subscripts on symbols serve to distinguish their
multiple occurrence.

arithmetic expressions. Here we first describe the
language and its syntax and semantics, and then
introduce neural recurrent models which process
these expressions.

4.1 Arithmetic expressions

Our language consists of expressions which en-
code addition and subtraction modulo 10. Con-
sider the example expression ((6+2)-(3+7)).
In order to evaluate the whole expression, each
parenthesized sub-expression is evaluated modulo
10: in this case the left sub-expression evaluates
to 8, the right one to 0 and the whole expression to
8. Table 1 gives the context-free grammar which
generates this language, and the rules for seman-
tic evaluation. Figure 4 shows the syntax tree for
the example expression according to this grammar.
This language lacks ambiguity, has a small vocab-
ulary (14 symbols) and simple semantics, while at
the same time requiring the processing of hierar-
chical structure to evaluate its expressions.2

Generating expressions In order to generate
expressions in L we use the recursive function
GENERATE defined in Algorithm 1. The func-
tion receives two input parameters: the branching
probability p and the decay factor d. In the recur-
sive call to GENERATE in lines 4 and 5 the prob-
ability p is divided by the decay factor. Larger
values of d lead to the generation of smaller ex-
pressions. Within the branching path in line 6 the
operator is selected uniformly at random, and like-
wise in the non-branching path in line 9 the digit
is sampled uniformly.

2The grammar is more complex than strictly needed in or-
der to facilitate the computation of the Tree Kernel, which
assumes each vocabulary symbol is expanded from a pre-

E

R

)

E

R

)

E

D

7

O

+

E

D

3

L

(

O

-

E

R

)

E

D

2

O

+

E

D

6

L

(

L

(

Figure 4: Syntax tree of the expression
((6+2)-(3+7)).

Algorithm 1 Recursive function for generating an
expression of language L.
1: function GENERATE(p, d)
2: branch ∼ BERNOULLI(p)
3: if branch then
4: e1← GENERATE(p/d, d)
5: e2← GENERATE(p/d, d)
6: op ∼ UNIFORM([+,−])
7: return [E [L ( ] e1 [O op ] e2 [R ) ] ]
8: else
9: digit ∼ UNIFORM([0, . . . , 9])

10: return [E [D digit ] ]
11: end if
12: end function

4.2 Neural models of arithmetic expressions

We define three recurrent models which process
the arithmetic expressions from language L. Each
of them is trained to predict a different target, re-
lated either to the syntax of the language or to
its semantics. We use these models as a testbed
for validating our analytical approaches. All these
models share the same recurrent encoder architec-
ture, based on LSTM (Hochreiter and Schmidhu-
ber, 1997).

Encoder The encoder consists of a trainable em-
bedding lookup table for the input symbols, and a
single-layer LSTM. The state of the hidden layer
of the LSTM at the last step in the sequence is used
as a representation of the input expression.

SEMANTIC EVALUATION This model consists
of the encoder as described above, which passes
its representation of the input to a multi-layer per-
ceptron component with a single output neuron. It
is trained to predict the value of the input expres-
sion, with mean squared error as the loss function.
In order to perform this task we would expect that
the model needs to encode the hierarchical struc-

terminal node.



2957

ture of the expression to some extent while also
encoding the result of actually carrying out the op-
erations of semantic evaluation.

TREE DEPTH This model is similar to SEMAN-
TIC EVALUATION but is trained to predict the
depth of the syntax tree corresponding to the ex-
pression instead of its value. We expect this model
to need to encode a fair amount of hierarchical in-
formation, but it can completely ignore the seman-
tics of the language, including the identity of the
digit symbols.

INFIX-TO-PREFIX This model uses the encoder
to create a representation of the input expression,
which it then decodes in its prefix form. For ex-
ample, the expression ((6+2)-(3+7)) is con-
verted to (-(+62)(+37)). The decoder is an
LSTM trained as a conditional language model,
i.e. its initial hidden state is the output of the en-
coder and its input at each step is the embedding
of previous output symbol. The loss function is
categorical cross-entropy. We would expect this
model to encode the hierarchical structure in some
form as well as the identity of the digit symbols,
but it can ignore the compositional semantics of
the language.

4.3 Reference representations
We use RSA to correlate the neural encoders from
Section 4.2 with reference syntactic and semantic
information about the arithmetic expressions. For
the neural representations we use cosine distance
as the dissimilarity metric. The reference repre-
sentations and their associated dissimilarity met-
rics are described below.

Semantic value This is simply the value to
which each expression evaluates, also used as the
target of the SEMANTIC EVALUATION model. As
a measure of dissimilarity we use the absolute dif-
ference between values, which ranges from 0 to 9.

Tree depth This is the depth of the syntax tree
for each expression, also used as the target of the
TREE DEPTH model. We use the absolute differ-
ence as the dissimilarity measure. The dissimilar-
ity is minimum 0 and has no upper bound, but in
our data the typical maximum value is around 7.

Tree kernel This is an estimate of similarity be-
tween two syntax trees based on the number of tree
fragments they share, as described in Section 3.
The normalized tree kernel metric ranges between

0 and 1, which we convert to dissimilarity by sub-
tracting it from 1.

The semantic value and tree depth correlates are
easy to investigate with a variety of analytic meth-
ods including diagnostic models; we include them
in our experiments as a point of comparison. We
use the tree kernel representation to evaluate struc-
tured RSA for a simple synthetic language.

4.4 Experimental settings
We implement the neural models in PyTorch 1.0.0.
We use the following model architecture: encoder
embedding layer size 64, encoder LSTM size 128,
for the regression models, MLP with 1 hidden
layer of size 256; for the sequence-to-sequence
model the decoder hyper-parameters are the same
as the encoder. The symbols are predicted via
a linear projection layer from hidden state, fol-
lowed by a softmax. Training proceeds following
a curriculum: we first train on 100,000 batches of
size 32 of random expressions sampled with de-
cay d = 2.0, followed by 200,000 batches with
d = 1.8 and finally 400,000 batches with d = 1.5.
We optimize with Adam with learning rate 0.001.
We report results on expressions sampled with
d = 1.5. See Figure 5 for the distribution of ex-
pression sizes for these values of d.

Figure 5: Distribution of expression sizes when vary-
ing the value of the decay parameter d. The size of an
expression is measured as the number of its digit nodes.

We report all results for two conditions: ran-
domly initialized, and trained, in order to quantify
the effect of learning on the activation patterns.
The trained model is chosen by saving model
weights during training every 10,000 batches and
selecting the weights with the smallest loss on
1,000 held-out validation expressions. Results



2958

are reported on separate test data consisting of
2,000 expressions and 200 reference expressions
for RSAREGRESS embedding.

4.5 Results

Table 2 shows the results of our experiments,
where each row shows a different encoder type and
each column a different target task.

Semantic value and tree depth As a first san-
ity check, we would like to see whether the RSA
techniques show the same pattern captured by the
diagnostic models. As expected, both diagnostic
and RSA scores are the highest when the objec-
tive function used to train the encoder and the ana-
lytical reference representations match: for exam-
ple, the SEMANTIC EVALUATION encoder scores
high on the semantic value reference, both for the
diagnostic model and the RSA. Furthermore, the
scores for the value and depth reference repre-
sentation according to the diagnostic model and
according to RSAREGRESS are in agreement. The
scores according to RSA in some cases show a dif-
ferent picture. This is expected, as RSA answers a
substantially different question than the other two
approaches: it looks at how the whole representa-
tions match in their similarity structure, whereas
both the diagnostic model and RSAREGRESS focus
on the part of the representation that encodes the
target information the strongest.

Tree Kernel We can use both RSA and
RSAREGRESS for exploring whether the hidden ac-
tivations encode any structural representation of
syntax: this is evident in the scores yielded by
the TK reference representations. As expected,
the highest scores for both methods are gained
when using INFIX-TO-PREFIX encodings, the task
that relies the most on the hierarchical structure
of an input string. RSAREGRESS yields the second-
highest score for TREE DEPTH encodings, which
also depend on aspects of tree structure. The over-
all pattern for the TK with different values of the
discounting parameter λ is similar, even though
the absolute values of the scores vary. What is
unexpected is the results for the random encoder,
which we turn to next.

Random encoders The non-random nature of
the activation patterns of randomly initialized
models (e.g., Zhang and Bowman, 2018) is also
strongly in evidence in our results. For exam-
ple the random encoder has quite a high score for

Figure 6: Scatterplot of dissimilarity values according
to random encoder or trained INFIX-TO-PREFIX en-
coder and the Tree Kernel (λ = 0.5)

diagnostic regression on tree depth. Even more
striking is the fact that the random encoder has
substantial negative RSA score for the Tree Ker-
nel: thus, expression pairs more similar according
to the Tree Kernel are less similar according to the
random encoder, and vice-versa.

When applying RSA we can inspect the full cor-
relation pattern via a scatter-plot of the dissimilar-
ities in the reference and encoder representations.
Figure 6 shows the data for the random encoder
and the Tree Kernel representations. As can be
seen, the negative correlation for the random en-
coder is due to the fact that according to the Tree
Kernel, expression pairs tend to have high dissim-
ilarities, while according to the random encoder’s
activations they tend to have overall low dissimi-
larities. For the trained INFIX-TO-PREFIX encoder
the dissimilarities are clearly positively correlated
with the TK dissimilarities.

Thus the raw correlation value for the trained
encoder is a biased estimate of the effect of learn-
ing, as learning has to overcome the initially sub-
stantial negative correlation: a better estimate is
the difference between scores for the learned and
random model. It is worth noting that the same
approach would be less informative for the diag-
nostic model approach or for RSAREGRESS. For
a regression model the correlation scores will be
positive, and when taking the difference between
learned and random scores, they may cancel out,
even though a particular information may be pre-
dictable from the random activations in a com-
pletely different way than from the learned acti-
vations. This is what we see for the RSAREGRESS

scores for random vs. INFIX-TO-PREFIX encoder:



2959

Diagnostic RSA RSAREGRESS

Encoder Loss Value Depth Value Depth TK(1) TK(0.5) Value Depth TK(1) TK(0.5)

RANDOM 0.01 0.80 0.01 0.23 -0.24 -0.33 -0.01 0.57 0.41 0.63
SEMANTIC EVAL. 0.07 0.97 0.70 0.62 0.05 0.02 0.01 0.97 0.55 0.38 0.61
TREE DEPTH 0.00 -0.03 1.00 0.01 0.72 0.10 -0.06 -0.03 0.97 0.49 0.87
INFIX-TO-PREFIX 0.00 0.02 0.97 -0.00 0.64 0.35 0.53 0.02 0.88 0.58 0.96

Table 2: Scores for diagnostic regression, RSA, and RSAREGRESS with respect to expression value, expression tree
depth and the Tree Kernel (TK) with λ = 1 and λ = 0.5. All scores are Pearson’s correlation coefficients. For the
diagnostic model and RSAREGRESS they are cross-validated correlations between target and predicted values. The
randomly initialized encoder is the same for all encoder types, and thus there is only a single row for the RANDOM
encoder. The loss column shows the loss of the full model on the test data: mean squared error for SEMANTIC
EVALUATION and TREE DEPTH, and cross-entropy for INFIX-TO-PREFIX.

the scores partially cancel out, and given the pat-
tern in Figure 6 it is clear that subtracting them is
misleading. It is thus a good idea to complement
the RSAREGRESS score with the plain RSA correla-
tion score in order to obtain a full picture of how
learning affects the neural representations.

Overall, these results show that RSAREGRESS can
be used to answer the same sort of questions as
the diagnostic model. It has the added advantage
of being also easily applicable to structured sym-
bolic representations, while the RSA scores and
the full RSA correlation pattern provides a com-
plementary source of insight into neural represen-
tations. Encouraged by these findings, we next ap-
ply both RSA and RSAREGRESS to representations
of natural language sentences.

5 Natural language

Here we use our proposed RSA-based techniques
to compare tree-structure representations of natu-
ral language sentences with their neural represen-
tations captured by sentence embeddings. Such
embeddings are often provided by NLP systems
trained on unlabeled text, using variants of a lan-
guage modeling objective (e.g. Peters et al., 2018),
next and previous sentence prediction (Kiros et al.,
2015; Logeswaran and Lee, 2018), or discourse
based objectives (Nie et al., 2017; Jernite et al.,
2017). Alternatively they can be either fully
trained or fine-tuned on annotated data using a task
such as natural language inference (Conneau et al.,
2017). In our experiments we use one of each type
of encoders.

5.1 Encoders

Bag of words As a baseline we use a classic bag
of words model where a sentence is represented
by a vector of word counts. We do not exclude

any words and use raw, unweighted word counts.

Infersent This is the supervised model de-
scribed in Conneau et al. (2017) based on a bidi-
rectional LSTM trained on natural language infer-
ence. We use the infersent2 model with pre-
trained fastText (Bojanowski et al., 2017) word
embeddings.3 We also test a randomly initialized
version of this model, including random word em-
beddings.

BERT This is an unsupervised model based
on the Transformer architecture (Vaswani et al.,
2017) trained on a cloze-task and next-sentence
prediction (Devlin et al., 2018). We use the
Pytorch version of the large 24-layer model
(bert-large-uncased).4 We also test a ran-
domly initialized version of this model.

5.2 Experimental settings

Data We use a sample of data from the English
Web Treebank (EWT) (Bies et al., 2012) which
contains a mix of English weblogs, newsgroups,
email, reviews and question-answers manually an-
notated for syntactic constituency structure. We
use the 2,002 sentences corresponding to the de-
velopment section of the EWT Universal Depen-
dencies (Silveira et al., 2014), plus 200 sentences
from the training section as reference sentences
when fitting RSAREGRESS.

Tree Kernel Prior to computing the Tree Ker-
nel scores we delexicalize the constituency trees
by replacing all terminals (i.e. words) with a single
placeholder value X. This ensures that only syntac-
tic structure, and not lexical overlap, contributes to
kernel scores. We compute kernels for the values
of λ ∈ {1, 12}.

3Available at https://github.com/facebookresearch/InferSent.
4Available at https://github.com/huggingface/pytorch-

pretrained-BERT.

https://github.com/facebookresearch/InferSent
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT


2960

Encoder Train λ RSA RSAREGRESS

BoW 0.5 0.18 0.50
Infersent − 0.5 0.24 0.51
BERT last − 0.5 0.12 0.49
BERT best − 0.5 0.14 0.53
Infersent + 0.5 0.30 0.71
BERT last + 0.5 0.16 0.59
BERT best + 0.5 0.32 0.70

BoW 1.0 -0.01 0.40
Infersent − 1.0 0.00 0.48
BERT last − 1.0 -0.08 0.50
BERT best − 1.0 -0.07 0.52
Infersent + 1.0 0.10 0.59
BERT last + 1.0 0.03 0.53
BERT best + 1.0 0.18 0.60

Table 3: Correlation scores for encoders against Tree
Kernel with varying λ. Scores for both RSA and
RSAREGRESS are Pearson’s r. The column Train indi-
cates whether the encoder (including the word embed-
dings) is randomly initialized (−), or trained (+). For
BERT, we report scores for the topmost (last) layer and
for the layer which maximizes the given score (best).

Embeddings For the BERT embeddings we use
the vector associated with the first token (CLS) for
a given layer. For Infersent, we use the default
max-pooled representation.

Fitting When fitting RSAREGRESS we use L2-
penalized multivariate linear regression. We re-
port the results for the value of the penalty = 10n,
for n ∈ {−3,−2,−1, 0, 1, 2}, with the highest
10-fold cross-validated Pearson’s r between target
and predicted similarity-embedded vectors.

5.3 Results

Table 3 shows the results of applying RSA and
RSAREGRESS on five different sentence encoders,
using the Tree Kernel reference. Results are re-
ported using two different values for the Tree Ker-
nel parameter λ.

As can be seen, with λ = 1
2 , all the en-

coders show a substantial RSA correlation with
the parse trees. The highest scores are achieved
by the trained Infersent and BERT, but even Bag
of Words and untrained versions of Infersent and
BERT show a sizeable correlation with syntactic
trees according to both RSA and RSAREGRESS.

When structure matching is strict (λ = 1),
only trained BERT and Infersent capture syn-
tactic information according to RSA; however,
RSAREGRESS still shows moderate correlation for
BoW and the untrained versions of BERT and In-
fersent. Thus RSAREGRESS is less sensitive to the
value of λ than RSA since changing it from 1

2 to 1

Figure 7: RSA and RSAREGRESS scores for embeddings
from all the layers of BERT vs Tree Kernel for two
values of λ. Both randomly initialized and trained ver-
sions of BERT are shown. The embeddings are vectors
at the first token (CLS) at each layer.

does not alter results in a qualitative sense.
Figure 7 shows how RSA and RSAREGRESS

scores change when correlating Tree Kernel esti-
mates with embeddings from different layers of
BERT. For trained models, scores peak between
layers 15–22 (depending on metric and λ) and de-
cline thereafter, which indicates that the final lay-
ers are increasingly dedicated to encoding aspects
of sentences other than pure syntax.

6 Conclusion

We present two RSA-based methods for correlat-
ing neural and syntactic representations of lan-
guage, using tree kernels as a measure of sim-
ilarity between syntactic trees. Our results on
arithmetic expressions confirm that both versions
of structured RSA capture correlations between
different representation spaces, while providing
complementary insights. We apply the same
techniques to English sentence embeddings, and
show where and to what extent each represen-
tation encodes syntactic information. The pro-
posed methods are general and applicable not just
to constituency trees, but given a similarity met-
ric, to any symbolic representation of linguis-
tic structures including dependency trees or Ab-
stract Meaning Representations. We plan to ex-
plore these options in future work. A toolkit with
the implementation of our methods is available at
https://github.com/gchrupala/ursa.

https://github.com/gchrupala/ursa


2961

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer

Lavi, and Yoav Goldberg. 2017. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. International Conference on Learning
Representations (ICLR).

Afra Alishahi, Marie Barking, and Grzegorz Chrupała.
2017. Encoding of phonology in a recurrent neu-
ral model of grounded speech. In Proceedings of
the 21st Conference on Computational Natural Lan-
guage Learning (CoNLL 2017), pages 368–378.

Sebastian Bach, Alexander Binder, Grégoire Mon-
tavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. 2015. On pixel-wise explana-
tions for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7):e0130140.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick.
2012. English Web Treebank LDC2012T13. Web
Download.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Diane Bouchacourt and Marco Baroni. 2018. How
agents see things: On visual representations in an
emergent language game. In Proceedings of the
2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 981–985, Brussels,
Belgium. Association for Computational Linguis-
tics.

Grzegorz Chrupała. 2019. Symbolic inductive bias for
visually grounded learning of spoken language. In
Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers).

Michael Collins and Nigel Duffy. 2002. Convolution
kernels for natural language. In Advances in neural
information processing systems, pages 625–632.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Alexis Conneau, Germán Kruszewski, Guillaume
Lample, Loı̈c Barrault, and Marco Baroni. 2018.
What you can cram into a single vector: Probing
sentence embeddings for linguistic properties. In

Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136. Association for
Computational Linguistics.

Danilo Croce, Simone Filice, Giuseppe Castellucci,
and Roberto Basili. 2017. Deep learning in seman-
tic kernel spaces. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1, pages
345–354.

Danilo Croce, Daniele Rossini, and Roberto Basili.
2018. Explaining non-linear classifier decisions
within kernel-based deep architectures. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 16–24. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Jeffrey L. Elman. 1990. Finding structure in time.
Cognitive Science, 14(2):179–211.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Dieuwke Hupkes, Sara Veldhoen, and Willem
Zuidema. 2018. Visualisation and ‘diagnostic clas-
sifiers’ reveal how recurrent and recursive neural
networks process hierarchical structure. Journal of
Artificial Intelligence Research, 61:907–926.

Yacine Jernite, Samuel R Bowman, and David Son-
tag. 2017. Discourse-based objectives for fast un-
supervised sentence representation learning. arXiv
preprint arXiv:1705.00557.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Nikolaus Kriegeskorte, Marieke Mur, and Peter A Ban-
dettini. 2008. Representational similarity analysis-
connecting the branches of systems neuroscience.
Frontiers in systems neuroscience, 2:4.

Lajanugen Logeswaran and Honglak Lee. 2018. An
efficient framework for learning sentence represen-
tations. In International Conference on Learning
Representations.

Alessandro Moschitti. 2006. Making tree kernels prac-
tical for natural language learning. In 11th confer-
ence of the European Chapter of the Association for
Computational Linguistics.

https://www.aclweb.org/anthology/D18-1119
https://www.aclweb.org/anthology/D18-1119
https://www.aclweb.org/anthology/D18-1119
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
http://aclweb.org/anthology/P18-1198
http://aclweb.org/anthology/P18-1198
http://aclweb.org/anthology/W18-5403
http://aclweb.org/anthology/W18-5403
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805


2962

Allen Nie, Erin D Bennett, and Noah D Goodman.
2017. Dissent: Sentence representation learning
from explicit discourse relations. arXiv preprint
arXiv:1710.04334.

Denis Paperno. 2018. Limitations in learning an inter-
preted language with recurrent models. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 384–386. Association for Computa-
tional Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), volume 1,
pages 2227–2237.

Naomi Saphra and Adam Lopez. 2019. Understand-
ing learning dynamics of language models with
SVCCA. In Proceedings of the 2019 Annual Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics (NAACL-
HLT). Association for Computational Linguistics.

Luzi Sennhauser and Robert Berwick. 2018. Evalu-
ating the ability of lstms to learn context-free gram-
mars. In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 115–124. Association for
Computational Linguistics.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor,
John Bauer, and Christopher D. Manning. 2014. A
gold standard dependency corpus for English. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC-
2014).

Natalia Skachkova, Thomas Trost, and Dietrich
Klakow. 2018. Closing brackets with recurrent neu-
ral networks. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpret-
ing Neural Networks for NLP, pages 232–239. As-
sociation for Computational Linguistics.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Sam Bowman, Dipanjan Das,
et al. 2019. What do you learn from context? prob-
ing for sentence structure in contextualized word
representations. In ICLR 2019.

Lorraine Komisarjevsky Tyler, Teresa PL Cheung,
Barry J Devereux, and Alex Clarke. 2013. Syntac-
tic computations in the language network: charac-
terizing dynamic network properties using represen-
tational similarity analysis. Frontiers in psychology,
4:271.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Daniel LK Yamins and James J DiCarlo. 2016. Using
goal-driven deep learning models to understand sen-
sory cortex. Nature neuroscience, 19(3):356.

Kelly Zhang and Samuel Bowman. 2018. Language
modeling teaches you more syntax than translation
does: Lessons learned through auxiliary task analy-
sis. arXiv preprint arXiv:1809.10040.

http://aclweb.org/anthology/W18-5456
http://aclweb.org/anthology/W18-5456
http://aclweb.org/anthology/W18-5414
http://aclweb.org/anthology/W18-5414
http://aclweb.org/anthology/W18-5414
http://aclweb.org/anthology/W18-5425
http://aclweb.org/anthology/W18-5425

