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Abstract

We introduce a conceptually simple and effec-
tive method to quantify the similarity between
relations in knowledge bases. Specifically, our
approach is based on the divergence between
the conditional probability distributions over
entity pairs. In this paper, these distributions are
parameterized by a very simple neural network.
Although computing the exact similarity is in-
tractable, we provide a sampling-based method
to get a good approximation.

We empirically show the outputs of our ap-
proach significantly correlate with human judg-
ments. By applying our method to various tasks,
we also find that (1) our approach could ef-
fectively detect redundant relations extracted
by open information extraction (Open IE)
models, that (2) even the most competitive
models for relational classification still make
mistakes among very similar relations, and
that (3) our approach could be incorporated
into negative sampling and softmax classifi-
cation to alleviate these mistakes. The source
code and experiment details of this paper can
be obtained from https://github.com/
thunlp/relation-similarity.

1 Introduction

Relations1, representing various types of connec-
tions between entities or arguments, are the core of
expressing relational facts in most general knowl-
edge bases (KBs) (Suchanek et al., 2007; Bollacker
et al., 2008). Hence, identifying relations is a crucial
problem for several information extraction tasks.
Although considerable effort has been devoted to
these tasks, some nuances between similar relations
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Weize Chen prepared the data, and organized data annotation;
Hao Zhu and Xu Han designed the experiments; Weize Chen
performed the experiments; Hao Zhu, Weize Chen and Xu Han
wrote the paper; Zhiyuan Liu and Maosong Sun proofread the
paper. Zhiyuan Liu is the corresponding author.

1Sometimes relations are also named properties.

Sentence The crisis didn’t influence his two
daughters OBJ and SUBJ.

Correct per:siblings

Predicted per:parents

Similarity Rank 2

Table 1: An illustration of the errors made by relation ex-
traction models. The sentence contains obvious patterns
indicating the two persons are siblings, but the model
predicts it as parents. We introduce an approach to mea-
sure the similarity between relations. Our result shows
“siblings” is the second most similar one to “parents”.
By applying this approach, we could analyze the errors
made by models, and help reduce errors.

are still overlooked, (Table 1 shows an example);
on the other hand, some distinct surface forms car-
rying the same relational semantics are mistaken as
different relations. These severe problems motivate
us to quantify the similarity between relations in a
more effective and robust method.

In this paper, we introduce an adaptive and gen-
eral framework for measuring similarity of the pairs
of relations. Suppose for each relation r, we have
obtained a conditional distribution, P (h, t | r)
(h, t ∈ E are head and tail entities, and r ∈ R
is a relation), over all head-tail entity pairs given
r. We could quantify similarity between a pair of
relations by the divergence between the conditional
probability distributions given these relations. In
this paper, this conditional probability is given by
a simple feed-forward neural network, which can
capture the dependencies between entities condi-
tioned on specific relations. Despite its simplicity,
the proposed network is expected to cover various
facts, even if the facts are not used for training, ow-
ing to the good generalizability of neural networks.
For example, our network will assign a fact a higher
probability if it is “logical”: e.g., the network might
prefer an athlete has the same nationality as same
as his/her national team rather than other nations.

https://github.com/thunlp/relation-similarity
https://github.com/thunlp/relation-similarity
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Intuitively, two similar relations should have sim-
ilar conditional distributions over head-tail entity
pairs P (h, t | r ), e.g., the entity pairs associated
with be trade to and play for are most likely to be
athletes and their clubs, whereas those associated
with live in are often people and locations. In this
paper, we evaluate the similarity between relations
based on their conditional distributions over en-
tity pairs. Specifically, we adopt Kullback–Leibler
(KL) divergence of both directions as the metric.
However, computing exact KL requires iterating
over the whole entity pair space E × E , which is
quite intractable. Therefore, we further provide a
sampling-based method to approximate the similar-
ity score over the entity pair space for computational
efficiency.

Besides developing a framework for assessing
the similarity between relations, our second contri-
bution is that we have done a survey of applications.
We present experiments and analysis aimed at an-
swering five questions:

(1) How well does the computed similarity score
correlate with human judgment about the similarity
between relations? How does our approach compare
to other possible approaches based on other kinds
of relation embeddings to define a similarity? (§3.4
and §5)

(2) Open IE models inevitably extract many re-
dundant relations. How can our approach help re-
duce such redundancy? (§6)

(3) To which extent, quantitatively, does best
relational classification models make errors among
similar relations? (§7)

(4) Could similarity be used in a heuristic method
to enhance negative sampling for relation predic-
tion? (§8)

(5) Could similarity be used as an adaptive mar-
gin in softmax-margin training method for relation
extraction? (§9)

Finally, we conclude with a discussion of valid
extensions to our method and other possible appli-
cations.

2 Learning Head-Tail Distribution

Just as introduced in §1, we quantify the similarity
between relations by their corresponding head-tail
entity pair distributions. Consider the typical case
that we have got numbers of facts, but they are
still sparse among all facts in the real world. How
could we obtain a well-generalized distribution
over the whole space of possible triples beyond the

training facts? This section proposes a method to
parameterize such a distribution.

2.1 Formal Definition of Fact Distribution
A fact is a triple (h, r, t) ∈ E × R × E , where
h and t are called head and tail entities, r is the
relation connecting them, E and R are the sets
of entities and relations respectively. We consider
a score function Fθ : E × R × E → R maps
all triples to a scalar value. As a special case, the
function can be factorized into the sum of two parts:
Fθ(h, t; r ) , uθ1(h; r) + uθ2(t;h, r). We use Fθ
to define the unnormalized probability.

P̃θ(h, t | r ) , expFθ(h, r; t ) (1)

for every triple (h, r, t ). The real parameter θ can
be adjusted to obtain difference distributions over
facts.

In this paper, we only consider locally normalized
version of Fθ:

uθ1(h; r) = log
exp ũθ1(h; r)∑
h′ exp ũθ1(h

′; r)
,

uθ2(t;h, r) = log
exp ũθ2(t;h, r)∑
t′ exp ũθ2(t

′;h, r)
,

(2)

where ũθ1 and ũθ2 are directly parameterized
by feed-forward neural networks. Through local
normalization, P̃θ(h, t | r ) is naturally a valid
probability distribution, as the partition function∑

h,t expFθ(h, t; r ) = 1. Therefore, Pθ(h, t |
r ) = P̃θ(h, t | r ).

2.2 Neural architecture design
Here we introduce our special design of neural
networks. For the first part and the second part,
we implement the scoring functions introduced in
equation (2) as

ũθ1(h; r) = MLPθ1(r)
>h,

ũθ2(t;h, r) = MLPθ2([h; r])
>t,

(3)

where each MLPθ represents a multi-layer percep-
tron composed of layers like y = relu(Wx+ b),
h, r, t are embeddings of h, r, t, and θ includes
weights and biases in all layers.

2.3 Training
Now we discuss the method to perform training.
In this paper, we consider joint training. By min-
imizing the loss function, we compute the model
parameters θ∗:

θ∗ = argmin
θ
L(G)

= argmin
θ

∑
(h,r,t )∈G

− logPθ(h, t | r ),
(4)
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where G ⊂ E × R × E is a set of triples.2 The
whole set of parameters, θ = {θ1, θ2, {e,∀e ∈
E}, {r,∀r ∈ R}}. We train these parameters by
Adam optimizer (Kingma and Ba, 2014). Training
details are shown in Appendix C.

3 Quantifying Similarity

So far, we have talked about how to use neural
networks to approximate the natural distribution
of facts. The center topic of our paper, quantifying
similarity, will be discussed in detail in this section.

3.1 Relations as Distributions

In this paper, we provide a probability view of re-
lations by representing relation r as a probability
distribution Pθ∗(h, t | r ). After training the neural
network on a given set of triples, the model is ex-
pected to generalize well on the whole E ×R× E
space.

Note that it is very easy to calculate Pθ∗(h, t | r )
in our model thanks to local normalization (equa-
tion (2)). Therefore, we can compute it by

Pθ∗(h, t | r ) = exp(uθ1(h; r) + uθ2(t;h, r)). (5)

3.2 Defining Similarity

As the basis of our definition, we hypothesize that
the similarity between Pθ∗(h, t | r ) reflects the
similarity between relations.3 For example, if the
conditional distributions of two relations put mass
on similar entity pairs, the two relations should be
quite similar. If they emphasize different ones, the
two should have some differences in meaning.

Formally, we define the similarity between two
relations as a function of the divergence between
the distributions of corresponding head-tail entity
pairs:

S(r1, r2) = g
(
DKL ( Pθ∗(h, t | r1 )||Pθ∗(h, t | r2 )) ,

DKL ( Pθ∗(h, t | r2 )||Pθ∗(h, t | r1 ))
)
,

(6)

where DKL ( ·|| ·) denotes Kullback–Leibler diver-
gence,

DKL ( Pθ∗(h, t | r1 )||Pθ∗(h, t | r2 ))

= Eh,t∼Pθ∗ (h,t|r1 ) log
Pθ∗(h, t | r1 )
Pθ∗(h, t | r2 )

(7)

2In our applications, the set of triples could be a knowledge
base or a set of triples in the training set etc.

3§5 provides empirical results to corroborate this hypothe-
sis.

vice versa, and function g(·, ·) is a symmetrical func-
tion. To keep the coherence between semantic mean-
ing of “similarity” and our definition, g should be a
monotonically decreasing function. Through this
paper, we choose to use an exponential family4 com-
posed with max function, i.e., g(x, y) = e−max(x,y).
Note that by taking both sides of KL divergence
into account, our definition incorporates both the
entity pairs with high probability in r1 and r2. In-
tuitively, if Pθ∗(h, t | r1 ) mainly distributes on a
proportion of entities pairs that Pθ∗(h, t | r2 ) em-
phasizes, r1 is only hyponymy of r2. Considering
both sides of KL divergence could help model yield
more comprehensive consideration. We will talk
about the advantage of this method in detail in §3.4.

3.3 Calculating Similarity
Just as introduced in §1, it is intractable to compute
similarity exactly, as involving O(|E|2) computa-
tion. Hence, we consider the monte-carlo approxi-
mation:

DKL ( Pθ∗(h, t | r1 )||Pθ∗(h, t | r2 ))

=Eh,t∼Pθ∗ (h,t|r1 ) log
Pθ∗(h, t | r1 )
Pθ∗(h, t | r2 )

=
1

|S|
∑
h,t∈S

log
Pθ∗(h, t | r1 )
Pθ∗(h, t | r2 )

,

(8)

where S is a list of entity pairs sampled from
Pθ∗(h, t | r1 ). We use sequential sampling5 to
gain S, which means we first sample h given r
from uθ1(h; r), and then sample t given h and r
from uθ2(t;h, r).6

3.4 Relationship with other metrics
Previous work proposed various methods for rep-
resenting relations as vectors (Bordes et al., 2013;
Yang et al., 2015), as matrices (Nickel et al., 2011),
even as angles (Sun et al., 2019), etc. Based on each
of these representations, one could easily define var-
ious similarity quantification methods.7 We show
in Table 2 the best one of them in each category of
relation presentation.

Here we provide two intuitive reasons for us-
ing our proposed probability-based similarity: (1)

4We view KL divergences as energy functions.
5Sampling h and t at the same time requires O(|E|2) com-

putation, while sequential sampling requires only O(|E|) com-
putation.

6It seems to be a non-symmetrical method, and sampling
from the mixture of both forward and backward should yield a
better result. Surprisingly, in practice, sampling from single
direction works just as well as from both directions.

7Taking the widely used vector representations as an exam-
ple, we can define the similarity between relations based on
cosine distance, dot product distance, L1/L2 distance, etc.
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Relation Representation Method Similarity Quantification

Vectors TransE (Bordes et al., 2013) S(r1, r2) = exp
(
r>1 r2/‖r1‖2‖r2‖2

)
Vectors DistMult (Yang et al., 2015) S(r1, r2) = exp

(
r>1 r2/‖r1‖2‖r2‖2

)
Matrices RESCAL (Nickel et al., 2011) S(r1, r2) = exp(‖Mr1 −Mr2‖F )
Angles RotatE (Sun et al., 2019) S(r1, r2) = exp(−

∑n
i=1|r1,i − r2,i|1)

Probability Distribution Ours equation (6)

Table 2: Methods to define a similarity function with different types of relation representations

Figure 1: Head-tail entity pairs of relation “be an unincor-
porated community in” (in blue) and “be a small city in”
(in red) sampled from our fact distribution model. The
coordinates of the points are computed by t-sne (Maaten
and Hinton, 2008) on the concatenation of head and
tail embeddings8. The two larger blue and red points
indicate the embeddings of these two relations.

the capacity of a single fixed-size representation is
limited — some details about the fact distribution
is lost during embedding; (2) directly comparing
distributions yields a better interpretability — you
can not know about how two relations are different
given two relation embeddings, but our model helps
you study the detailed differences between proba-
bilities on every entity pair. Figure 1 provides an
example. Although the two relations talk about the
same topic, they have different meanings. TransE
embeds them as vectors the closest to each other,
while our model can capture the distinction between
the distributions corresponds to the two relations,
which could be directly noticed from the figure.

4 Dataset Construction

We show the statistics of the dataset we use in
Table 3, and the construction procedures will be
introduced in this section.

4.1 Wikidata
In Wikidata (Vrandečić and Krötzsch, 2014), facts
can be described as (Head item/property, Property,
Tail item/property). To construct a dataset suitable
for our task, we only consider the facts whose head

8Embeddings used in this graph are from a trained TransE
model.
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Figure 2: Spearman correlations between human judg-
ment and models’ outputs. The inter-subject correlation
is also shown as a horizontal line with its standard devi-
ation as an error band. Our model shows the strongest
positive correlation with human judgment, and, in other
words, the smallest margin with human inter-subject
agreement. Significance: ***/**/* := p < .001/.01/.05.

entity and tail entity are both items. We first choose
the most common 202 relations and 120000 entities
from Wikidata as our initial data. Considering that
the facts containing the two most frequently ap-
pearing relations (P2860: cites, and P31: instance
of ) occupy half of the initial data, we drop the
two relations to downsize the dataset and make the
dataset more balanced. Finally, we keep the triples
whose head and tail both come from the selected
120000 entities as well as its relation comes from
the remaining 200 relations.

4.2 ReVerb Extractions

ReVerb (Fader et al., 2011) is a program that auto-
matically identifies and extracts binary relationships
from English sentences. We use the extractions
from running ReVerb on Wikipedia9. We only keep
the relations appear more than 10 times and their
corresponding triples to construct our dataset.

4.3 FB15K and TACRED

FB15K (Bordes et al., 2013) is a subset of freebase.
TACRED (Zhang et al., 2017) is a large supervised
relation extraction dataset obtained via crowdsourc-
ing. We directly use these two dataset, no extra
processing steps were applied.

9http://reverb.cs.washington.edu/
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5 Human Judgments

Following Miller and Charles (1991); Resnik (1999)
and the vast amount of previous work on seman-
tic similarity, we ask nine undergraduate subjects
to assess the similarity of 360 pairs of relations
from a subset of Wikidata (Vrandečić and Krötzsch,
2014)10 that are chosen to cover from high to low
levels of similarity. In our experiment, subjects were
asked to rate an integer similarity score from 0 (no
similarity) to 4 (perfectly the same)11 for each pair.
The inter-subject correlation, estimated by leaving-
one-out method (Weiss and Kulikowski, 1991), is r
= 0.763, standard deviation = 0.060. This important
reference value (marked in Figure 2) could be seen
as the highest expected performance for machines
(Resnik, 1999).

To get baselines for comparison, we consider
other possible methods to define similarity func-
tions, as shown in Table 2. We compute the correla-
tion between these methods and human judgment
scores. As the models we have chosen are the ones
work best in knowledge base completion, we do ex-
pect the similarity quantification approaches based
on them could measure some degree of similarity.
As shown in Figure 2, the three baseline models
could achieve moderate (0.1–0.5) positive correla-
tion. On the other hand, our model shows a stronger
correlation (0.63) with human judgment, indicating
that considering the probability over whole entity
pair space helps to gain a similarity closer to human
judgments. These results provide evidence for our
claim raised in §3.2.

6 Redundant Relation Removal

Open IE extracts concise token patterns from plain
text to represent various relations between entities,
e.g.„ (Mark Twain, was born in, Florida). As Open
IE is significant for constructing KBs, many ef-
fective extractors have been proposed to extract
triples, such as Text-Runner (Yates et al., 2007),
ReVerb (Fader et al., 2011), and Standford Open
IE (Angeli et al., 2015). However, these extrac-
tors only yield relation patterns between entities,
without aggregating and clustering their results.
Accordingly, there are a fair amount of redundant
relation patterns after extracting those relation pat-
terns. Furthermore, the redundant patterns lead to

10Wikidata provides detailed descriptions to properties (re-
lations), which could help subjects understand the relations
better.

11The detailed instruction is attached in the Appendix F.

Triple Set |R| |E| #Fact Section

Wikidata 188 112,946 426,067 §5 and §6.1
ReVerb Extractions 3,736 194,556 266,645 §6.2
FB15K 1,345 14,951 483,142 §7.1 and §8
TACRED 42 29,943 68,124 §7.2 and §9

Table 3: Statistics of the triple sets used in this paper.

some redundant relations in KBs.

Recently, some efforts are devoted to Open Rela-
tion Extraction (Open RE) (Lin and Pantel, 2001;
Yao et al., 2011; Marcheggiani and Titov, 2016;
ElSahar et al., 2017), aiming to cluster relation pat-
terns into several relation types instead of redundant
relation patterns. Whenas, these Open RE methods
adopt distantly supervised labels as golden relation
types, suffering from both false positive and false
negative problems on the one hand. On the other
hand, these methods still rely on the conventional
similarity metrics mentioned above.

In this section, we will show that our defined
similarity quantification could help Open IE by
identifying redundant relations. To be specific, we
set a toy experiment to remove redundant relations
in KBs for a preliminary comparison (§6.1). Then,
we evaluate our model and baselines on the real-
world dataset extracted by Open IE methods (§6.2).
Considering the existing evaluation metric for Open
IE and Open RE rely on either labor-intensive an-
notations or distantly supervised annotations, we
propose a metric approximating recall and precision
evaluation based on operable human annotations
for balancing both efficiency and accuracy.

6.1 Toy Experiment

In this subsection, we propose a toy environment
to verify our similarity-based method. Specifically,
we construct a dataset from Wikidata12 and imple-
ment Chinese restaurant process13 to split every
relation in the dataset into several sub-relations.
Then, we filter out those sub-relations appearing
less than 50 times to eventually get 1165 relations.
All these split relations are regarded as different
ones during training, and then different relation
similarity metrics are adopted to merge those sub-
relations into one relation. As Figure 2 shown that
the matrices-based approach is less effective than
other approaches, we leave this approach out of this
experiment. The results are shown in Table 4.

12The construction procedure is shown in §4.1.
13Chinese restaurant process is shown in Appendix B.
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Method P R F1

Vectors (TransE) 0.28 0.14 0.18
Vectors (DistMult) 0.44 0.41 0.42

Angles 0.48 0.43 0.45
Ours 0.65 0.50 0.57

Table 4: The experiment results on the toy dataset show
that our metric based on probability distribution signifi-
cantly outperforms other relation similarity metrics.

6.2 Real World Experiment
In this subsection, we evaluate various relation sim-
ilarity metrics on the real-world Open IE patterns.
The dataset are constructed by ReVerb. Different
patterns will be regarded as different relations dur-
ing training, and we also adopt various relation
similarity metrics to merge similar relation patterns.
Because it is nearly impossible to annotate all pat-
tern pairs for their merging or not, meanwhile it
is also inappropriate to take distantly supervised
annotations as golden results. Hence, we propose
a novel metric approximating recall and precision
evaluation based on minimal human annotations
for evaluation in this experiment.

Approximating Recall and Precision
Recall Recall is defined as the yielding fraction
of true positive instances over the total amount of
real positive14 instances. However, we do not have
annotations about which pairs of relations are syn-
onymous. Crowdsourcing is a method to obtain
a large number of high-quality annotations. Nev-
ertheless, applying crowdsourcing is not trivial in
our settings, because it is intractable to enumerate
all synonymous pairs in the large space of relation
(pattern) pairs O(|R|2) in Open IE. A promising
method is to use rejection sampling by uniform
sampling from the whole space, and only keep the
synonymous ones judged by crowdworkers. How-
ever, this is not practical either, as the synonymous
pairs are sparse in the whole space, resulting in low
efficiency. Fortunately, we could use normalized
importance sampling as an alternative to get an
unbiased estimation of recall.

Theorem 1. 15 Suppose every sample x ∈ X has a
label f(x) ∈ {0, 1}, and the model to be evaluated
also gives its prediction f̂(x) ∈ {0, 1}. The recall
can be written as

Recall = Ex∼U I[f̂(x) = 1], (9)

where U is the uniform distribution over all sam-
ples with f(x) = 1. If we have a proposal distribu-

14Often called relevant in information retrieval field.
15See proof in Appendix A
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Figure 3: Precision-recall curve on Open IE task com-
paring our similarity function with vector-based and
angle-based similarity. Error bar represents 95% con-
fidential interval. Bootstraping is used to calculate the
confidential interval.

tion q(x) satisfying ∀x, f(x) = 1 ∧ f̂(x) = 1 ⇒
q(x) 6= 0, we get an unbiased estimation of recall:

Recall ≈
n∑
i=1

I[f̂(xi) = 1]ŵi, (10)

where ŵi is a normalized version ofwi =
I[f(xi)=1]
q̃(xi)

,
where q̃ is the unnormalized version of q, and
{xi}ni=1 are i.i.d. drawn from q(x).

Precision Similar to equation (9), we can write
the expectation form of precision:

Precision = Ex∼U′I[f(x) = 1], (11)

where U ′ is the uniform distribution over all sam-
ples with f̂(x) = 1. As these samples could be
found out by performing models on it. We can
simply approximate precision by Monte Carlo Sam-
pling:

Precision ≈ 1

n

n∑
i=1

I[f(xi) = 1], (12)

where {xi}ni=1
i.i.d.∼ U ′.

In our setting, x = (r1, r2) ∈ R×R, f(x) = 1
means r1 and r2 are the same relations, f̂(x) = 1
means S(r1, r2) is larger than a threshold λ.

Results
The results on the ReVerb Extractions dataset that
we constructed are described in Figure 3. To ap-
proximate recall, we use the similarity scores as the
proposal distribution q̃. 500 relation pairs are then
drawn from q̃. To approximate precision, we set
thresholds at equal intervals. At each threshold, we
uniformly sample 50 to 100 relation pairs whose
similarity score given by the model is larger than
the threshold. We ask 15 undergraduates to judge
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(b) TACRED

Figure 4: Similarity rank distributions of distracting relations on
different tasks and datasets. Most of the distracting relations have top
similarity rank. Distracting relations are, as defined previously, the
relations have a higher rank in the relation classification result than
the ground truth.
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Figure 5: Improvement of using similarity
in a heuristic method for negative sampling.
MRR denotes the mean reciprocal rank.

whether two relations in a relation pair have the
same meaning. A relation pair is viewed valid only
if 8 of the annotators annotate it as valid. We use
the annotations to approximate recall and precision
with equation (10) and equation (12). Apart from
the confidential interval of precision shown in the
figure, the largest 95% confidential interval among
thresholds for recall is 0.0416. From the result, we
could see that our model performs much better than
other models’ similarity by a very large margin.

7 Error Analysis for Relational
Classification

In this section, we consider two kinds of relational
classification tasks: (1) relation prediction and (2)
relation extraction. Relation prediction aims at pre-
dicting the relationship between entities with a
given set of triples as training data; while relation
extraction aims at extracting the relationship be-
tween two entities in a sentence.

7.1 Relation Prediction

We hope to design a simple and clear experiment
setup to conduct error analysis for relational pre-
diction. Therefore, we consider a typical method
TransE (Bordes et al., 2013) as the subject as well as
FB15K (Bordes et al., 2013) as the dataset. TransE
embeds entities and relations as vectors, and train
these embeddings by minimizing

L =
∑

(h,r,t)∈D

[d(h+ r, t)− d(h′ + r′, t′) + γ]+, (13)

16The figure is shown in Figure 6

where D is the set of training triples, d(·, ·) is the
distance function, (h′, r′, t′)17 is a negative sample
with one element different from (h, r, t) uniformly
sampled from E ×R× E , and γ is the margin.

During testing, for each entity pair (h, t), TransE
rank relations according to d(h+ r, t). For each
(h, r, t) in the test set, we call the relations with
higher rank scores than r distracting relations. We
then compare the similarity between the golden
relation and distracting relations. Note that some
entity pairs could correspond to more than one
relations, in which case we just do not see them as
distracting relations.

7.2 Relation Extraction
For relation extraction, we consider the supervised
relation extraction setting and TACRED dataset
(Zhang et al., 2017). As for the subject model, we
use the best model on TACRED dataset — position-
aware neural sequence model. This method first
passes the sentence into an LSTM and then cal-
culate an attention sum of the hidden states in the
LSTM by taking positional features into account.
This simple and effective method achieves the best
in TACRED dataset.

7.3 Results
Figure 4 shows the distribution of similarity ranks
of distracting relations of the above mentioned mod-
els’ outputs on both relation prediction and relation
extraction tasks. From Figures 4a and 4b, we could
observe the most distracting relations are the most

17Note that only head and tail entities are changed in the
original TransE when doing link prediction. But changing r′

results in better performance when doing relation prediction.
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Model P R F1

Traditional Patterns 86.9 23.2 36.6
LR 73.5 49.9 59.4

Neural CNN 75.6 47.5 58.3
CNN-PE 70.3 54.2 61.2
SDP-LSTM (Xu et al., 2015) 66.3 52.7 58.7
LSTM 65.7 59.9 62.7
PA-LSTM (Zhang et al., 2017) 65.7 64.5 65.1

Neural+Ours PA-LSTM (Softmax-Margin Loss) 68.5 64.7 66.6

Table 5: Improvement of using similarity in softmax-
margin loss.

similar ones, which corroborate our hypothesis that
even the best models on these tasks still make mis-
takes among the most similar relations. This re-
sult also highlights the importance of a heuristic
method for guiding models to pay more attention
to the boundary between similar relations. We also
try to do the negative sampling with relation type
constraints, but we see no improvement compared
with uniform sampling. The details of negative sam-
pling with relation type constraints are presented in
Appendix E.

8 Similarity and Negative Sampling

Based on the observation presented in §7.3, we find
out that similar relations are often confusing for
relation prediction models. Therefore, corrupted
triples with similar relations can be used as high-
quality negative samples.

For a given valid triple (h, r, t), we corrupt the
triple by substituting r with r′ with the probability,

p =
S(r, r′)1/α∑

r′′∈R\{r} S(r, r
′′)1/α

, (14)

where α is the temperature of the exponential func-
tion, the bigger the α is, the flatter the probability
distribution is. When the temperature approaches
infinite, the sampling process reduces to uniform
sampling.

In training, we set the initial temperature to a
high level and gradually reduce the temperature. In-
tuitively, it enables the model to distinguish among
those obviously different relations in the early stage
and gives more and more confusing negative triples
as the training processes to help the model distin-
guish the similar relations. This can be also viewed
as a process of curriculum learning(Bengio et al.,
2009), the data fed to the model gradually changes
from simple negative triples to hard ones.

We perform relation prediction task on FB15K
with TransE. Following Bordes et al. (2013), we
use the "Filtered" setting protocol, i.e., filtering out

the corrupted triples that appear in the dataset. Our
sampling method is shown to improve the model’s
performance, especially on Hit@1 (Figure 5). Train-
ing details are described in Appendix C.

9 Similarity and Softmax-Margin Loss

Similar to §8, we find out that relation extraction
models often make wrong preditions on similar
relations. In this section, we use similarity as an
adaptive margin in softmax-margin loss to improve
the performance of relation extraction models.

As shown in (Gimpel and Smith, 2010), Softmax-
Margin Loss can be expressed as

L =

n∑
i=1

−θT f(x(i), r(i))+

log
∑

r∈R(x(i))

exp{θT f(x(i), r) + cost(r(i), r)},
(15)

whereR(x) denotes a structured output space for
x, and 〈x(i), r(i)〉 is ith example in training data.

We can easily incorporate similarity into cost
function cost(r(i), r). In this task, we define the
cost function as αS(r(i), r), where α is a hyperpa-
rameter.

Intuitively, we give a larger margin between simi-
lar relations, forcing the model to distinguish among
them, and thus making the model perform better.
We apply our method to Position-aware Attention
LSTM (PA-LSTM)(Zhang et al., 2017), and Table 5
shows our method improves the performance of
PA-LSTM. Training details are described in Ap-
pendix C.

10 Related Works

As many early works devoted to psychology and
linguistics, especially those works exploring seman-
tic similarity (Miller and Charles, 1991; Resnik,
1999), researchers have empirically found there are
various different categorizations of semantic rela-
tions among words and contexts. For promoting
research on these different semantic relations, Bejar
et al. (1991) explicitly defining these relations and
Miller (1995) further systematically organize rich
semantic relations between words via a database.
For identifying correlation and distinction between
different semantic relations so as to support learn-
ing semantic similarity, various methods have at-
tempted to measure relational similarity (Turney,
2005, 2006; Zhila et al., 2013; Pedersen, 2012; Rink
and Harabagiu, 2012; Mikolov et al., 2013b,a).
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With the ongoing development of informa-
tion extraction and effective construction of
KBs (Suchanek et al., 2007; Bollacker et al., 2008;
Bizer et al., 2009), relations are further defined as
various types of latent connections between ob-
jects more than semantic relations. These general
relations play a core role in expressing relational
facts in the real world. Hence, there are accordingly
various methods proposed for discovering more
relations and their facts, including open informa-
tion extraction (Brin, 1998; Agichtein and Gravano,
2000; Ravichandran and Hovy, 2002; Banko et al.,
2007; Zhu et al., 2009; Etzioni et al., 2011; Saha
et al., 2017) and relation extraction (Riedel et al.,
2013; Liu et al., 2013; Zeng et al., 2014; Santos
et al., 2015; Zeng et al., 2015; Lin et al., 2016), and
relation prediction (Bordes et al., 2013; Wang et al.,
2014; Lin et al., 2015b,a; Xie et al., 2016).

For both semantic relations and general relations,
identifying them is a crucial problem, requiring
systems to provide a fine-grained relation similarity
metric. However, the existing methods suffer from
sparse data, which makes it difficult to achieve an
effective and stable similarity metric. Motivated by
this, we propose to measure relation similarity by
leveraging their fact distribution so that we can iden-
tify nuances between similar relations, and merge
those distant surface forms of the same relations,
benefitting the tasks mentioned above.

11 Conclusion and Future Work

In this paper, we introduce an effective method to
quantify the relation similarity and provide analysis
and a survey of applications. We note that there are
a wide range of future directions: (1) human prior
knowledge could be incorporated into the similar-
ity quantification; (2) similarity between relations
could also be considered in multi-modal settings,
e.g., extracting relations from images, videos, or
even from audios; (3) by analyzing the distributions
corresponding to different relations, one can also
find some “meta-relations” between relations, such
as hypernymy and hyponymy.
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A Proofs to theorems in the paper

Proof.

Recall =

∑
x I[f(x) = 1 ∧ f̂(x) = 1]∑

x I[f(x) = 1]

=
∑
x

I[f(x) = 1 ∧ f̂(x) = 1]∑
x′ I[f(x′) = 1]

=
∑
x

I[f(x) = 1]I[f̂(x) = 1]∑
x′ I[f(x′) = 1]

=
∑
x

I[f(x) = 1]∑
x′ I[f(x′) = 1]

I[f̂(x) = 1]

=
∑
x

PU (x)I[f̂(x) = 1]

= Ex∼U I[f̂(x) = 1]

(16)

If we have a proposal distribution q(x) satisfying
∀x, f(x) = 1 ∧ f̂(x) = 1 ⇒ q(x) 6= 0, then
equation (16) can be further written as

Recall = Ex∼qI[f̂(x) = 1]
PU (x)

q(x)
(17)

Sometimes, it’s hard for us to compute normalized
probability q. To tackle this problem, consider self-
normalized importance sampling as an unbiased
estimation (Owen, 2013),

Ex∼qI[f̂(x) = 1]
PU (x)

q(x)

≈
∑n
i=1 I[f̂(xi) = 1]PU (xi)/q(xi)∑n

i=1 PU (xi)/q(xi)

=

∑n
i=1 I[f̂(xi) = 1]wi∑n

i=1 wi
(wi =

I[f(xi) = 1]

q̃(xi)
)

=

n∑
i=1

I[f̂(xi) = 1]ŵi,

(18)

where ŵi is the normalized version of w.

B Chinese Restaurant Process

Specifically, for a relation r with currently m sub-
relations, we turn it to a new sub-relation with
probability

p =
α

α+ n+ 1
(19)

or to the kth existing sub-relation with probability

p =
nk

α+ n+ 1
(20)

where nk is the size of kth existing sub-relation, n
is the sum of the number of all sub-relationships of
r, and α is a hyperparameter, in which case we use
α = 1.
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Figure 6: The recall standard deviation of different mod-
els.

C Training Details

In Wikidata and ReVerb Extractions dataset, we
manually split a validation set, assuring every entity
and relation appears in validation set also appears in
training set. While minimizing loss on the training
set, we observe the loss on the validation set and
stop training as validation loss stops to decrease.
Before training our model on any dataset, we use
the entity embeddings and relation embeddings
produced by TransE on the dataset as the pretrained
embeddings for our model.

C.1 Training Details on Negative Sampling
The sampling is launched with an initial tempera-
ture of 8192. The temperature drops to half every
200 epochs and remains stable once it hits 16. Opti-
mization is performed using SGD, with a learning
rate of 1e-3.

C.2 Training Details on Softmax-Margin
Loss

The sampling is launching with an initial temper-
ature of 64. The temperature drops by 20% per
epoch, and remains stable once it hits 16. The alpha
we use is 9. Optimization is performed using SGD,
with a learning rate of 1.

D Recall Standard Deviation

As is shown in Figure 6, the max recall standard
deviation for our model is 0.4, and 0.11 for TransE.

E Negative Samplilng with Relation Type
Constraints

In FB15K, if two relations have same prefix, we
regard them as belonging to a same type, e.g.,
both /film/film/starring./film/performance/actor and
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/film/actor/film./film/performance/film have prefix
film, they belong to same type. Similar to what
is mentioned in §8, we expect the model first to
learn to distinguish among obviously different re-
lations, and gradually learn to distinguish similar
relations. Therefore, we conduct negative sampling
with relation type constraints in two ways.

E.1 Add Up Two Uniform Distribution
For each triple (h, r, t), we have two uniform distri-
bution Uall and Utype. Uall is the uniform distribu-
tion over all the relations except for those appear
with (h, t) in the knowledge base, and Utype is the
uniform distribution over the relations of the same
type as r. When corrupting the triple, we sample r′

from the distribution:

U = αUall + (1− α)Utype, (21)

where α is a hyperparameter. We set α to 1 at the
beginning of training, and every k epochs, α will be
multiplied by decrease rate γ. We do grid search for
k ∈ {50, 70, 100} and γ ∈ {0.9, 0.95, 0.98}, but
no improvement is observed.

E.2 Add Weight
We speculate that the unsatisfactory result produced
by adding up two uniform distribution is because
that for those types with few relations in it, a small
change of α will result in a significant change in
U . Therefore, when sampling a negative r′, we add
weights to relations that are of the same type as r
instead. Concretely, we substitute r with r′ with
probability p, which can be calculated as:

p =

{
1+ε
N r′ ∈ T (r)
1
N otherwise

(22)

where T (r) denotes all the relations that are the
same type as r, ε is a hyperparameter and N is a
normalizing constant. We set ε to 0 at the beginning
of training, and every k epochs, ε will increase by
γ. We do grid search for k ∈ {50, 70, 100} and
γ ∈ 0.5, 1, still no improvement is observed.

F Wikidata annotation guidance

We show the guidance provided for the annotators
here.

• A pair of relations should be marked as 4
points if the two relations are only two dif-
ferent expressions for a certain meaning.

Example: (study at, be educated at)

• A pair of relations should be marked as 3
points if the two relations are describing a
same topic, and the entities that the two rela-
tions connect are of same type respectively.

Example: (be the director of, be the screen-
writer of), both relations relate to movie, and
the types of the entities they connect are both
(person, movie).

• A pair of relations should be marked as 2
points if the two relations are describing a
same topic, but the entities that the two re-
lations connect are of different type respec-
tively.

Example: (be headquartered in, be founded
in), both relations relate to organization, but
the types of the entities they connect are dif-
ferent, i.e., (company, location) and (company,
time)

• A pair of relations should be marked as 1
points if the two relations do not meet the
conditions above but still have semantic rela-
tion.

Example: (be the developer of, be the em-
ployer of)

• A pair of relations should be marked as 0
points if the two relations do not have any
connection.

Example: (be a railway station locates in, be
published in)


