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Abstract

We investigate the impact of using author con-

text on textual sarcasm detection. We define

author context as the embedded representa-

tion of their historical posts on Twitter and

suggest neural models that extract these rep-

resentations. We experiment with two tweet

datasets, one labelled manually for sarcasm,

and the other via tag-based distant supervision.

We achieve state-of-the-art performance on the

second dataset, but not on the one labelled

manually, indicating a difference between in-

tended sarcasm, captured by distant supervi-

sion, and perceived sarcasm, captured by man-

ual labelling.

1 Introduction

Sarcasm is a form of irony that occurs when there

is a discrepancy between the literal meaning of an

utterance and its intended meaning. This discrep-

ancy is used to express a form of dissociative at-

titude towards a previous proposition, often in the

form of contempt or derogation (Wilson, 2006).

Sarcasm is omnipresent on the social web and

can be highly disruptive of systems that harness

this data (Maynard and Greenwood, 2014). It is

therefore imperative to devise model for textual

sarcasm detection. The effectiveness of such mod-

els depends on the quality of labelled data used for

training. Two methods are commonly used to label

texts for sarcasm: manual labelling by human an-

notators; and tag-based distant supervision. In the

latter, texts are considered sarcastic if they contain

specific tags, such as #sarcasm and #sarcastic.

Most work on computational sarcasm detection

extracts lexical and pragmatic cues available in the

text being classified (Campbell and Katz, 2012;

Riloff et al., 2013; Joshi et al., 2016; Tay et al.,

2018). However, sarcasm is a contextual phe-

nomenon and detecting it often requires prior in-

formation about the author, audience and previous

interactions between them, that originates beyond

the text itself (Rockwell and Theriot, 2001a).

In this work we investigate the impact of au-

thor context on the current sarcastic behaviour of

the author. We identify author context with the

embedded representation of their historical tweets.

We use the term user to refer to the author of a

tweet and the phrase user embedding to refer to

such a representation. Given a tweet t posted by

user ut with user embedding et, we address two

questions: (1) Is et predictive of the sarcastic na-

ture of t? (2) Is the predictive power of et on the

sarcastic nature of t the same if t is labelled via

manual labelling vs distant supervision?

To our knowledge, previous research that con-

siders author context (Rajadesingan, Zafarani, and

Liu, 2015; Bamman and Smith, 2015; Amir et al.,

2016; Hazarika et al., 2018) only experiments on

distant supervision datasets. We experiment on

datasets representative of both labelling methods,

namely Riloff (Riloff et al., 2013), labelled man-

ually, and Ptacek (Ptáček, Habernal, and Hong,

2014), labelled via distant supervision.

We suggest neural models to build user em-

beddings and achieve state-of-the-art results on

Ptacek, but not on Riloff. Comparing and ana-

lyzing the discrepancy, our findings indicate a dif-

ference between the sarcasm that is intended by

the author, captured by distant supervision, repre-

sented in Ptacek, and sarcasm that is perceived by

the audience, captured by manual labelling, rep-

resented in Riloff. This difference has been high-

lighted by linguistic and psycholinguistic studies

in the past (Rockwell and Theriot, 2001b; Pexman,

2005), being attributed to socio-cultural differ-

ences between the author and the audience. How-

ever, up to our knowledge, it has not been consid-

ered in the context of sarcasm detection so far. Our

work suggests a future research direction in sar-

casm detection where the two types of sarcasm are

treated as separate phenomena and socio-cultural
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differences are taken into account.

2 Background

2.1 Sarcasm Detection

Based on the information considered when classi-

fying a text as sarcastic or non-sarcastic, we iden-

tify two classes of models across literature: local

models and contextual models.

Local Models Local models only consider in-

formation available within the text being classi-

fied. Most work in this direction considers linguis-

tic incongruity (Campbell and Katz, 2012) to be a

marker of sarcasm. Riloff et al. (2013) consider

a positive verb used in a negative sentiment con-

text to indicate sarcasm. Joshi et al. (2016) use

the cosine similarity between embedded represen-

tations of words. Recent work attempts to capture

incongruity using a neural network with an intra-

attention mechanism (Tay et al., 2018).

Contextual Models Contextual models utilize

both local and contextual information. There is

a limited amount of work in this direction. Wal-

lace, Choe, and Charniak (2015), working with

Reddit data, include information about the forum

type where the post to be classified was posted.

For Twitter data, Rajadesingan, Zafarani, and Liu

(2015) and Bamman and Smith (2015) represent

user context by a set of manually-curated features

extracted from their historical tweets. Amir et al.

(2016) merge all historical tweets of a user into

one historical document and use the Paragraph

Vector model (Le and Mikolov, 2014) to build a

representation of that document. Building on their

work, Hazarika et al. (2018) extract in addition

personality features from the historical document.

Despite reporting encouraging results, these mod-

els are only tested on datasets labelled via distant

supervision. In our work, we compare the perfor-

mance of our models when tested on datasets rep-

resentative of both manual annotation and distant

supervision.

2.2 Intended vs Perceived Sarcasm

Dress et al. (2008) notice a lack of consistence

in how sarcasm is defined by people of differ-

ent socio-cultural backgrounds. As a result, an

utterance that is intended as sarcastic by its au-

thor might not be perceived as such by audiences

of different backgrounds (Rockwell and Theriot,

2001a). When a tweet is sarcastic from the per-

spective of its author, we call the resulting phe-

nomenon intended sarcasm. When it is sarcastic

from the perspective of an audience member, we

call the phenomenon perceived sarcasm.

3 Sarcasm Datasets

We test our models on two popular tweet datasets,

one labelled manually and the other via distant su-

pervision.

3.1 Riloff dataset

The Riloff dataset consists of 3,200 tweet IDs.

These tweets were manually labeled by third party

annotators. The labels capture the subjective

perception of the annotators (perceived sarcasm).

Three separate labels were collected for each tweet

and the dominant one was chosen as the final label.

We attempted to collect the corresponding

tweets using the Twitter API1, as well as the his-

torical timeline tweets for each user, to be used

later for building user embeddings. For a user

with tweet t in Riloff, we collected those histor-

ical tweets posted before t. Only 701 original

tweets, along with the corresponding user time-

lines, could be retrieved. Others have either been

removed from Twitter, the corresponding user ac-

counts have been disabled, or the API did not re-

trieve any historical tweets.

Table 1 shows the label distribution across this

dataset. We divided the dataset into ten buckets,

using eight for training, one for validation and one

for testing. The division into buckets is stratified

by users, i.e. all tweets from a user end up in the

same bucket. Stratification makes sure any spe-

cific embedding is only used during training, dur-

ing validation, or during testing. We further en-

sured the overall class balance is represented in all

of the three sets. Table 1 shows the size of each

set.

3.2 Ptacek dataset

The Ptacek dataset consists of 50,000 tweet IDs la-

belled via distant supervision. Tags used as mark-

ers of sarcasm are #sarcasm, #sarcastic, #satire

and #irony. This dataset reflects intended sarcasm,

since the original poster tagged their own tweet as

sarcastic through the hashtag.

In a similar setting as with Riloff we could only

collect 27,177 tweets and corresponding time-

1https://developer.twitter.com
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dataset size sarcastic non-sarcastic train valid test

Riloff 701 192 509 551 88 62
Ptacek 27,177 15,164 12,013 21,670 2,711 2,797

Table 1: Label distribution across our datasets; and distribution into train, validation and test sets.

lines. We divided them into ten buckets and strati-

fied by users. During preprocessing we removed

all sarcasm-marking tags from both the training

tweets and the historical tweets. Table 1 shows

statistics on both datasets.

4 Contextual Sarcasm Detection Models

Let T be a set of tweets. For any t ∈ T , let ut

be the user who posted tweet t. Let ht be a set of

historical tweets of user ut, posted before t, with

ht ∩ T = ∅ and let et be the embedding of user

ut, i.e. a vector representation of ht. Let Y =
{sarcastic, non-sarcastic} be the output space. Our

goal is to find a model m : {(t, et)|t ∈ T} → Y .

As a baseline, we implement the SIARN

(Single-Dimension Intra-Attention Network)

model proposed by (Tay et al., 2018), since it

achieves the best published results on both our

datasets. SIARN only looks at the tweet being

classified, that is SIARN(t, et) = m′(t).
Further, we introduce two classes of models:

exclusive and inclusive models. In exclusive mod-

els, the decision whether t ∈ T is sarcastic or not

is independent of t, i.e. m(t, et) = m′(et). The

content of the tweet being classified is not consid-

ered, prediction being based solely on user histor-

ical tweets. The architecture of such a model is

shown in Figure 1. We feed the user embedding

et to a layer with softmax activations to output a

probability distribution over Y . We name these

models EX-[emb], where [emb] is the name of the

user embedding model.

Inclusive models account for both t and et, as

shown in Figure 1. We start with the feature vec-

tor f t extracted by SIARN from t. We then con-

catenate f t with et and use an output layer with

softmax activations. We name these models IN-

[emb], where [emb] is the user embedding model.

We now look at several user embedding models

that build et for a user ut as a representation of ht.
Recall that ∀u ∈ usr(T ) : hist(u)∩T = ∅, where

usr(T ) is the image of T under usr.

CASCADE Embeddings Up to our knowledge,

the user embedding model that has proven most

informative in a sarcasm detection pipeline so far

is CASCADE (Hazarika et al., 2018). However, it

has only been tested on a dataset of Reddit2 posts

labelled via distant supervision. We test it on our

datasets. Following original authors, we merge all

tweets from ht in a single document dt, giving cor-

pus C = {dt|t ∈ T}. Using the Paragraph Vector

model (Le and Mikolov, 2014) we generate a rep-

resentation vt of dt. Next, we feed dt to a neural

network pre-trained on the personality detection

corpus released by Matthews and Gilliland (1999),

which contains labels for the Big-Five personality

traits (Goldberg, 1993). We merge the resulting

hidden state pt of the network with vt using Gen-

eralized Canonical Correlation Analysis (GCCA)

as described by Hazarika et al. (2018) to get et.

W-CASCADE Embeddings CASCADE treats

all historical tweets in the same manner. However,

as studies in cognitive psychology argue (Kellogg,

2001), long-term working memory plays an im-

portant role in verbal reasoning and textual com-

prehension. We therefore expect recent histori-

cal tweets to have a greater influence on the cur-

rent behaviour of a user, compared to older ones.

To account for this, we suggest the following

model that accounts for the temporal arrangement

of historical tweets. We first use CASCADE to

build vtr and ptr, and to merge them into etr using

GCCA, ∀r ∈ ht. We then divide the sequence

〈etr1 , etr2 , . . . , etr|ht|〉 into ten contiguous partitions

and multiply each vector with the index of the par-

tition it belongs to. That is, we multiply etri by

i % |ht| + 1, where % is the modulus operator.

By convention, the tweet with the highest index is

the most recent one. Finally, we sum the resulting

vectors and normalize the result to get et.

ED Embeddings One of the main advantages

of the encoder-decoder model (Sutskever, Vinyals,

and Le, 2014), commonly used for sequence pre-

diction tasks, is its ability to handle inputs and

outputs of variable length. The encoder, a recur-

rent network, transforms an input sequence into

an internal representation of fixed dimension. The

decoder, another recurrent network, generates an

2https://www.reddit.com
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e
(embedding of user u

representing h )

Exclusive

user embedding model
CASCADE W-CASCADE

Figure 1: The architecture of the models used. Exclusive models do not use the current tweet being classified,

prediction being based solely on user history. Inclusive models use both user history and the current tweet.

output sequence using this representation. We use

bi-directional LSTM cells (Schuster and Paliwal,

1997) and identify etri , 1 ≤ i ≤ |ht|, with the in-

ternal state of the encoder after feeding in ri. The

training objective is to reconstruct the input ri. We

employ the same weighting technique as we did

for W-CASCADE to construct et.

SUMMARY Embeddings We use an encoder-

decoder model as in the previous paragraph, but

change the objective from reconstructing the input

to summarizing it. We pre-train the model on the

Gigaword standard summarization corpus3.

5 Effect of Context on Sarcasm Detection

5.1 Experimental Setup

We filter out all tweets shorter than three words

and replace all words that only appear once in

the entire corpus with an UNK token. Then, we

encode each tweet as a sequence of word vec-

tors initialized using GloVe embeddings (Penning-

ton, Socher, and Manning, 2014). Following the

authors SIARN, our baseline, we set the word

embedding dimension to 100. We tune the di-

mension of all CASCADE embeddings to 100

on the validation set. For comparability, we set

W-CASCADE embeddings to the same dimen-

sion. For CASCADE embeddings we make use

of the implementation available at https://
github.com/SenticNet/cascade. When

training ED and SUMMARY, our decoder imple-

ments attention over the input vectors. We use

the general global attention mechanism suggested

by Luong, Pham, and Manning (2015). We imple-

3https://github.com/harvardnlp/
sent-summary

Model Riloff Ptacek

SIARN (baseline) 0.711 0.863

exclusive
EX-CASCADE 0.457 0.802
EX-W-CASCADE 0.478 0.922
EX-ED 0.546 0.873
EX-SUMMARY 0.492 0.845

inclusive
IN-CASCADE 0.723 0.873
IN-W-CASCADE 0.714 0.934
IN-ED 0.739 0.887
IN-SUMMARY 0.679 0.892

Table 2: F1 score achieved on the Riloff and Ptacek

datasets for both exclusive and inclusive models. Best

results for each model class are highlighted in bold.

Model Riloff #Riloff

EX-CASCADE 0.457 0.818
EX-W-CASCADE 0.478 0.797
EX-ED 0.545 0.827
EX-SUMMARY 0.492 0.772

Table 3: F1 score achieved by the exclusive models on

the #Riloff dataset, compared to Riloff dataset. Best

results are highlighted in bold.

ment both ED and SUMMARY using the Open-

NMT toolkit (Klein et al., 2017).

For comparability with SIARN, our baseline,

we follow its authors in setting a batch size of 16

for the Riloff dataset, and of 512 for the Ptacek

dataset, and in training for 30 epochs using the

RMSProp optimizer (Tieleman and Hinton, 2012)

with a learning rate of 0.001. Our code and data

can be obtained by contacting us.

5.2 Results

All results are reported in Table 2. User embed-

dings show remarkable predictive power on the

Ptacek dataset. In particular, using the EX-W-
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with tag without any tag
labelled sarcastic 190 2
labelled non-sarcastic 217 292

Table 4: Disagreement between manual labels and the

presence of sarcasm tags in the Riloff dataset, as dis-

cussed in Section 5.3.

CASCADE model, we get better results (f1-score

0.922) than the baseline (f1-score 0.863) without

even looking at the tweet being predicted. On the

Riloff dataset, however, user embeddings seem to

be far less informative, with EX-W-CASCADE

yielding an f1-score of only 0.478. Out of the

exclusive models, we get the highest f1-score of

0.546 using EX-ED on Riloff. By contrast we get

0.873 on Ptacek using EX-ED.

The state-of-the-art performance of exclusive

models on Ptacek indicate that users seem to have

a prior disposition to being either sarcastic or non-

sarcastic, which can be deduced from historical

behaviour. However, this behaviour can change

over time, as we achieve better performance when

accounting for the temporal arrangement of histor-

ical tweets, as we do in W-CASCADE.

On the Riloff dataset the performance of exclu-

sive models is considerably lower. In the follow-

ing, we investigate the possible reasons for this

large difference in performance between the two

datasets.

5.3 Performance Analysis

Riloff dataset is annotated manually, which might

not reflect the intention of the users, but rather the

subjective perception of the annotators. In this

light, we could expect user embeddings to have

poor predictive power. Perhaps annotator embed-

dings would shed more light.

We noticed that many of the tweets in Riloff

contain one or more of the tags that were used

to mark sarcasm in Ptacek. For all tweets in

Riloff, we checked the agreement between con-

taining such a tag, and being manually annotated

as sarcastic. The results are shown in Table 4.

Note that the statistics shown are not for the en-

tire dataset as published by Riloff et al. (2013), but

for the subset of tweets coming from users without

blocked profiles and from which we could gather

historical tweets, as discussed in Section 3. We

notice a large disagreement. In particular, 217 out

of the 509 tweets that were annotated manually as

non-sarcastic contained such a tag. The lack of

coherence between the presence of sarcasm tags

and manual annotations in the Riloff dataset sug-

gests that the two labelling methods capture dis-

tinct phenomena, considering the subjective nature

of sarcasm. Previous research in linguistics and

psycholinguistics (Rockwell and Theriot, 2001b;

Pexman, 2005) attributes this difference to socio-

cultural differences between the author and the au-

dience and shows that the difference persists even

when contextual information is provided.

To investigate further, we re-labelled the Riloff

dataset via distant supervision considering these

tags as markers of sarcasm, to create the #Riloff

dataset. We applied the exclusive models on

#Riloff and noticed a considerably higher predic-

tive power than on Riloff. Results are reported in

Table 3. Author history seems therefore predictive

of authorial sarcastic intention, but not of external

perception. This could indicate that future work

should differentiate between the two types of sar-

casm: intended and perceived. Both are important

to detect, for applications such as opinion mining

for the former and hate speech detection for the

latter.

6 Conclusion

We studied the predictive power of user embed-

dings in textual sarcasm detection across datasets

labelled via both manual labelling and distant su-

pervision. We suggested several neural models to

build user embeddings, achieving state-of-the-art

results for distant supervision, but not for man-

ual labelling. We account for discrepancy by ref-

erence to the different type of sarcasm captured

by the two labelling methods, attributed by pre-

vious research in linguistics and psycholinguis-

tics (Rockwell and Theriot, 2001b; Pexman, 2005)

to socio-cultural differences between the author

and the audience. We suggest a future research di-

rection in sarcasm detection where the two types

of sarcasm are treated as separate phenomena and

socio-cultural differences are taken into account.
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