Exploiting Explicit Paths for Multi-hop Reading Comprehension

Souvik Kundu*and Tushar Khot! and Ashish Sabharwal® and Peter Clark®
TDepartment of Computer Science, National University of Singapore
tAllen Institute for Artificial Intelligence, Seattle, WA, U.S.A.
souvik@comp.nus.edu.sqg, {tushark,ashishs,peterc}@allenai.org

Abstract

We propose a novel, path-based reasoning
approach for the multi-hop reading compre-
hension task where a system needs to com-
bine facts from multiple passages to answer
a question. Although inspired by multi-hop
reasoning over knowledge graphs, our pro-
posed approach operates directly over unstruc-
tured text. It generates potential paths through
passages and scores them without any di-
rect path supervision. The proposed model,
named PathNet, attempts to extract implicit
relations from text through entity pair repre-
sentations, and compose them to encode each
path. To capture additional context, Path-
Net also composes the passage representations
along each path to compute a passage-based
representation. Unlike previous approaches,
our model is then able to explain its reason-
ing via these explicit paths through the pas-
sages. We show that our approach outper-
forms prior models on the multi-hop Wikihop
dataset, and also can be generalized to apply
to the OpenBookQA dataset, matching state-
of-the-art performance.

1 Introduction

Many reading comprehension (RC) datasets (Ra-
jpurkar et al., 2016; Trischler et al., 2017; Joshi
et al., 2017) have been proposed recently to eval-
uate a system’s ability to answer a question from
a given text passage. However, most of the ques-
tions in these datasets can be answered by using
only a single sentence or passage. As a result,
systems designed for these tasks may not be able
to compose knowledge from multiple sentences or
passages, a key aspect of natural language under-
standing. To remedy this, new datasets (Weston
et al., 2015; Welbl et al., 2018; Khashabi et al.,
2018a; Mihaylov et al., 2018) have been proposed,

*Work performed while doing an internship at the Allen
Institute for Artificial Intelligence.

Query: (always breaking my heart, record_label, ?)

Supporting Passages:

(p1) “Always Breaking My Heart” is the second sin-
gle from Belinda Carlisle’s /A Woman and a Man al-
bum , released in 1996 ( see 1996 in music ) . It ...

(p2) /A Woman and a Man is the sixth studio al-
bum by American singer Belinda Carlisle, released
in the United Kingdom on September 23, 1996 by
Chrysalis Records (then part of the EMI Group, ...

Candidates:
records, ...

chrysalis records, emi group, virgin

Answer: chrysalis records

Paths:

(“Always Breaking My Heart” ...
‘Woman and a Man)

(A Woman and a Man ... released ... by ... Chrysalis
Records)

single from ... A

Figure 1: Example illustrating our proposed path ex-
traction and reasoning approach.

requiring a system to combine information from
multiple sentences in order to arrive at the answer,
referred to as multi-hop reasoning.

Multi-hop reasoning has been studied for ques-
tion answering (QA) over structured knowledge
graphs (Lao et al., 2011; Guu et al., 2015; Das
et al., 2017). Many of the successful models ex-
plicitly identify paths in the knowledge graph that
led to the answer. A strength of these models
is high interpretability, arising from explicit path-
based reasoning over the underlying graph struc-
ture. However, they cannot be directly applied to
QA in the absence of such structure.

Consequently, most multi-hop RC models over
unstructured text (Dhingra et al., 2017; Hu et al.,
2018) extend standard attention-based models
from RC by iteratively updating the attention to
indirectly “hop” over different parts of the text.
Recently, graph-based models (Song et al., 2018;
Cao et al., 2018) have been proposed for the Wik-
iHop dataset (Welbl et al., 2018). Nevertheless,
these models still only implicitly combine knowl-
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edge from all passages, and are therefore unable to
provide explicit reasoning paths.

We propose an approach! for multiple choice
RC that explicitly extracts potential paths from
text (without direct path supervision) and encodes
the knowledge captured by each path. Figure 1
shows how to apply this approach to an exam-
ple in the WikiHop dataset. It shows two sam-
ple paths connecting an entity in the question
(Always Breaking My Heart) to a candidate an-
swer (Chrysalis Records) through a singer (Be-
linda Carlisle) and an album (A Woman and a
Man).

To encode the path, our model, named PathNet,
first aims to extract implicit (latent) relations be-
tween entity pairs in a passage based on their con-
textual representations. For example, it aims to ex-
tract the implicit single from relation between the
song and the name of the album in the first pas-
sage. Similarly, it extracts the released by relation
between the album and the record label in the sec-
ond passage. It learns to compose the extracted
implicit relations such that they map to the main
relation in the query, in this case record_label. In
essence, the motivation is to learn to extract im-
plicit relations from text and to identify their valid
compositions, such as: (X, single from, y), (y, re-
leased by, 7) — (X, record_label, 7). Due to the
absence of direct supervision on these relations,
PathNet does not explicitly extract these relations.
However, our qualitative analysis on a sampled set
of instances from WikiHop development set shows
that the top scoring paths in 78% of the correctly
answered questions have implied relations in the
text that could be composed to derive the query
relations.

In addition, PathNet also learns to compose ag-
gregated passage representations in a path to cap-
ture more global information: encoding(pl), en-
coding(p2) — (X, record_label, z). This passage-
based representation is especially useful in do-
mains such as science question answering where
the lack of easily identifiable entities limits the ef-
fectiveness of the entity-based path representation.
While this passage-based representation is less in-
terpretable than the entity-based path representa-
tion, it still identifies the two passages used to se-
lect the answer, compared to a spread out attention
over all documents produced by previous graph-

The source code is available at https://github.
com/allenai/PathNet

based approaches.

We make three main contributions:

(1) A novel path-based reasoning approach for
multi-hop QA over text that produces explanations
in the form of explicit paths; (2) A model, PathNet,
which aims to extract implicit relations from text
and compose them; and (3) Outperforming prior
models on the target WikiHop dataset’> and gen-
eralizing to the open-domain science QA dataset,
OpenBookQA, with performance comparable to
prior models.

2 Related Work

We summarize related work in QA over text, semi-
structured knowledge, and knowledge graphs.
Multi-hop RC. Recent datasets such as
bAbI (Weston et al., 2015), Multi-RC (Khashabi
et al., 2018a), WikiHop (Welbl et al., 2018), and
OpenBookQA (Mihaylov et al., 2018) have en-
couraged research in multi-hop QA over text. The
resulting multi-hop models can be categorized
into state-based and graph-based reasoning mod-
els. State-based reasoning models (Dhingra et al.,
2017; Shen et al., 2017; Hu et al., 2018) are closer
to a standard attention-based RC model with an
additional “state” representation that is iteratively
updated. The changing state representation re-
sults in the model focusing on different parts of
the passage during each iteration, allowing it to
combine information from different parts of the
passage. Graph-based reasoning models (Dhingra
etal., 2018; Cao et al., 2018; Song et al., 2018), on
the other hand, create graphs over entities within
the passages and update entity representations via
recurrent or convolutional networks. In contrast,
our approach explicitly identifies paths connecting
entities in the question to the answer choices.
Semi-structured QA. Our model is closer to
Integer Linear Programming (ILP) based meth-
ods (Khashabi et al., 2016; Khot et al., 2017;
Khashabi et al., 2018b), which define an ILP
program to find optimal support graphs for con-
necting the question to the choices through a
semi-structured knowledge representation. How-
ever, these models require a manually authored
and tuned ILP program, and need to convert text
into a semi-structured representation—a process
that is often noisy (such as using Open IE tu-

2Other systems, such as by Zhong et al. (2019), have
recently appeared on the WikiHop leaderboard (http://
gangaroo.cs.ucl.ac.uk/leaderboard.html).
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ples (Khot et al., 2017), SRL frames (Khashabi
et al.,, 2018b)). Our model, on the other hand,
is trained end-to-end, and discover relevant rela-
tional structure from text. Instead of an ILP pro-
gram, Jansen et al. (2017) train a latent ranking
perceptron using features from aggregated syntac-
tic structures from multiple sentences. However,
their system operates at the detailed (and often
noisy) level of dependency graphs, whereas we
identify entities and let the model learn implicit
relations and their compositions.

Knowledge Graph QA. QA datasets on knowl-
edge graphs such as Freebase (Bollacker et al.,
2008), require systems to map queries to a sin-
gle relation (Bordes et al., 2015), a path (Guu
et al., 2015), or complex structured queries (Be-
rant et al., 2013) over these graphs. While early
models (Lao et al., 2011; Gardner and Mitchell,
2015) focused on creating path-based features, re-
cent neural models (Guu et al., 2015; Das et al.,
2017; Toutanova et al., 2016) encode the entities
and relations along a path and compose them using
recurrent networks. Importantly, the input knowl-
edge graphs have entities and relations that are
shared across all training and test examples, which
the model can exploit during learning (e.g., via
learned entity and relation embeddings). When
reasoning with text, our model must learn these
representations purely based on their local context.

3 Approach Overview

We focus on the multiple-choice RC setting: given
a question and a set of passages, the task is to
find the correct answer among a predefined set of
candidates. The proposed approach can be ap-
plied to m-hop reasoning, as discussed briefly in
the corresponding sections for path extraction, en-
coding, and scoring. Since our target datasets
primarily need 2-hop reasoning’ and the poten-
tial of semantic drift with increased number of
hops (Fried et al., 2015; Khashabi et al., 2019),
we focus on and assess the case of 2-hop paths
(m = 2). As discussed later (see Footnote 4),
our path-extraction step scales exponentially with
m. Using m = 2 keeps this step tractable, while
still covering almost all examples in our target
datasets.

In WikiHop, a question Q is given in the form of
atuple (he,r,?), where h, represents the head en-

3We found that most WikiHop questions can be answered
with 2 hops and OpenBookQA also targets 2-hop questions.

tity and r represents the relation between h. and
the unknown tail entity. The task is to select the
unknown tail entity from a given set of candidates
{c1,ca,...cn}, by reasoning over supporting pas-
sages P = p1,..., py. To perform multi-hop rea-
soning, we extract multiple paths P (cf. Section 4)
connecting he to each ¢ from the supporting pas-
sages P. The j-th 2-hop path for candidate cj, is
denoted py;, where py; = he — e1 — ¢, and e;
is referred to as the intermediate entity.

In OpenBookQA, different from WikiHop, the
questions and candidate answer choices are plain
text sentences. To construct paths, we extract
all head entities from the question and tail enti-
ties from candidate answer choices, considering
all noun phrases and named entities as entities.
This often results in many 2-hop paths connect-
ing a question to a candidate answer choice via
the same intermediate entity. With {h¢,, he,, ...}
representing the list of head entities from a ques-
tion, and {cg, , ck,, . . .} the list of tail entities from
candidate cg, the j-th path connecting cg,, to he,
can be represented as: pgj’fg = he, = €1 = Chg-
For simplicity, we omit the notations « and 3 from
path representation.

Next, the extracted paths are encoded and
scored (cf. Section 5). Following, the normalized
path scores are summed for each candidate to give
a probability distribution over the candidate an-
swer choices.

4 Path Extraction

The first step in our approach is extracting paths
from text passages. Consider the example in Fig-
ure 1. Path extraction proceeds as follows:

(a) We find a passage p; that contains a head
entity h. from the question Q. In our example,
we would identify the first supporting passage that
contains always breaking my heart.

(b) We then find all named entities and noun
phrases that appear in the same sentence as h, or
in the subsequent sentence. Here, we would col-
lect Belinda Carlisle, A Woman and a Man, and
album as potential intermediate entity e;.

(c) Next, we find a passage po that contains the
potential intermediate entity identified above. For
clarity, we refer to the occurrence of e in py as eq/.
By design, (h., e1) and (e1/, c) are located in dif-
ferent passages. For instance, we find the second
passage that contains both Belinda Carlisle and A
Woman and a Man.
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(d) Finally, we check whether p, contains any
of the candidate answer choices. For instance, ps
contains chrysalis records and emi group.

The resulting extracted paths can be summa-
rized as a set of entity sequences. In this case,
for the candidate answer chrysalis records, we ob-
tain a set of two paths: (always breaking my heart
— Belinda Carlisle — chrysalis records), (always
breaking my heart — A Man and a Woman —
chrysalis records). Similarly, we can collect paths
for the other candidate, emi group.

Notably, our path extraction method can be eas-
ily extended for more hops. Specifically, for m-
hop reasoning, steps (b) and (c) are repeated (m —
1) times, where the intermediate entity from step
(c) becomes the head entity for the subsequent step
(b). For larger values of m, maintaining tractabil-
ity of this approach would require optimizing the
complexity of identifying the passages containing
an entity (steps (a) and (c)) and limiting the num-
ber of neighboring entities considered (step (b)).*

For one hop reasoning, i.e., when a single pas-
sage is sufficient to answer a question, we con-
struct the path with ey as null. In this case, both
he and ¢ are found in a single passage. In this
way, for a task requiring more hops, one only need
to guess the maximum number of hops. If some
questions in that task require less hops, our pro-
posed approach can easily handle that by assign-
ing the intermediate entity to null. For instance, in
this work, our approach can handle 1-hop reason-
ing although it is developed for 2-hop.

5 PathNet: Path-based Multi-hop QA
Model

Once we have all potential paths, we score them
using the proposed model, named PathNet, whose
overview is depicted in Figure 2. The key compo-
nent is the path-scorer module that computes the
score for each path py;. We normalize these scores
across all paths, and compute the probability of a
candidate ¢, being the correct answer by summing
the normalized scores of the paths associated with
Cl:

prob(cg) = Zscore(pkj). (D
J

Next, we describe three main model compo-
nents, operating on the following inputs: question

*If the search step takes no more than s steps and iden-
tifies a fixed number k of passages, and we select up to e
neighboring entities, our approach would have a time com-
plexity of O((ke)™"s™) for enumerating m-hop paths.

Q ti Embedding +

uestion Encoding Paths

Supporting Embedding +

Passages Encoding

A4

'R } prob (c4)
. .
Scorer
Scorer

nan } prob (cn)

Figure 2: Architecture of the proposed model.

Candidates

.
prob (cx)

Q, passages p; and po, candidate ci, and the loca-
tions of he, e1, €], ¢ in these passages: (1) Em-
bedding and Encoding (§ 5.1) (2) Path Encoding
(§ 5.2) (3) Path Scoring (§ 5.3). In Figure 3, we
present the model architecture for these three com-
ponents used for scoring the paths.

5.1 Embedding and Encoding

We start by describing how we embed and con-
textually encode all pieces of text: question, sup-
porting passages, and candidate answer choices.
For word embedding, we use pretrained 300 di-
mensional vectors from GloVe (Pennington et al.,
2014), randomly initializing vectors for out of vo-
cabulary (OOV) words. For contextual encoding,
we use bi-directional LSTM (BiLSTM) (Hochre-
iter and Schmidhuber, 1997).

Let T', U, and V represent the number of to-
kens in the p-th supporting passage, question, and
k-th answer candidate, respectively. The final en-
coded representation for the p-th supporting pas-
sage can be obtained by stacking these vectors into
S, € RT*H  where H is the number of hidden
units for the BILSTMs. The sequence level en-
coding for the question, Q € RY>*# and for the
k-th candidate answer, Ci, € RV > are obtained
similarly. We use row vector representation (e.g.,
RH) for all vectors in this paper.

5.2 Path Encoding

After extracting the paths as discussed in Section
4, they are encoded using an end-to-end neural
network. This path encoder consists of two com-
ponents: context-based and passage-based.
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Figure 3: Architecture of the path scoring module, shown here for 2-hop paths.

5.2.1 Context-based Path Encoding

This component aims to implicitly encode the re-
lation between h, and e;, and between e1/ and c.
These implicit relation representations are them
composed together to encode a path representation
for he —> e1...e1! — cp.

First, we extract the contextual representations
for each of h., e, e1/, and c¢;. Based on the lo-
cations of these entities in the corresponding pas-
sages, we extract the boundary vectors from the
passage encoding representation. For instance, if
he appears in the p-th supporting passage from
token 77 to i9 (i1 < 149), then the contextual en-
coding of he, g, € R2H i taken to be: gh.
Sp1.i1 || Spiip» Where || denotes the concatena-
tion operation. If he appears in multiple locations
within the passage, we use the mean vector rep-
resentation across all of these locations. The lo-
cation encoding vectors g, , g¢,s, and g, are ob-
tained similarly.

Next, we extract the implicit relation between
he and e; as vy, ., € R, using a feed forward
layer:

rh, e, = FFL(gh,,8e,) ()
where FFL is defined as:
FFL(a,b) = tanh(aW, + bW,) . (3)

Herea € R” and b € R”" are input vectors, and
W, € RI*H and W}, € R¥"*H are trainable
weight matrices. The bias vectors are not shown
here for simplicity. Similarly, we compute the im-
plicit relation between e/ and ¢y, as re,/ ¢, € RE,
using their location encoding vectors g, and g, .

Finally, we compose all implicit relation vectors
along the path to obtain a context-based path rep-

resentation x.x € R given by:

“

For fixed length paths, we can use a feed for-
ward network as the composition function. E.g.,
for 2-hop paths, we use FFL(r,, ¢, , Ter,c, ) FOr
variable length paths, we can use recurrent compo-
sition networks such as LSTM, GRU. We compare
these composition functions in Section 6.3.

Xetx = Comp(rhe,el ) rel’ack)

5.2.2 Passage-based Path Encoding

In this encoder, we use entire passages to com-
pute the path representation. As before, suppose
(he, €1) and (e1/, ci) appear in supporting passages
p1 and po, respectively. We encode each of p; and
po into a single vector based on passage-question
interaction. As discussed below, we first compute
a question-weighted representation for passage to-
kens and then aggregate it across the passage.

Question-Weighted Passage Representation:
For the p-th passage, we first compute the atten-
tion matrix A € R7*U, capturing the similarity
between the passage and question words. Then,
we calculate a question-aware passage representa-
tion Sj' € RT*H where S}' = AQ. Similarly,
a passage-aware question representation, Q, €
RYXH g computed, where Q,, = ATSp.
Further, we compute another passage represen-
tation S = AQ, € RT*H. Intuitively, S}
captures important passage words based on the
question, whereas S}’ is another passage repre-
sentation which focuses on the interaction with
passage-relevant question words. The idea of en-
coding a passage after interacting with the ques-
tion multiple times is inspired from the Gated At-
tention Reader model (Dhingra et al., 2017).
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Aggregate Passage Representation: To derive
a single passage vector, we first concatenate the
two passage representations for each token, ob-
taining S} = S || S € RT*2H_ We then use
an attentive pooling mechanism for aggregating
the token representations. The aggregated vector
Sp € R2H for the p-th passage is obtained as:

T ~
ay o exp(sy,w ); §p =alS? ®)
where w € R?M is a learned vector. In this
way, we obtain the aggregated vector representa-
tions for both supporting passages p; and po as
Sp, € R2H and Sp, € R2H | respectively.

Composition: We compose the aggregated pas-
sage vectors to obtain the passage-based path rep-
resentation Xps, € R similar to Equation 4:

Xpsg = COmp(éPl ) gpz) (6)

Similar to the composition function in context-
based path encoding, this composition function
can be a feed-forward network for fixed length or
recurrent networks for variable length paths.

5.3 Path Scoring

Encoded paths are scored from two perspectives.

Context-based Path Scoring: We score
context-based paths based on their interaction
with the question encoding. First, we aggregate
the question into a single vector. We take the
first and last hidden state representations from
the question encoding Q to obtain an aggregated
question vector representation.
The aggregated question vector G € R is

q = (@llav) Wy, @)

where W, € R2H*H jq 3 Jearnable weight matrix.
The combined representation y,,, , € R of the
question and a context-based path is computed as:
Yoa,q = FFL(Xex , Q) Finally, we derive scores
for context-based paths:

.
Retx = ya?cl)quctx ’ (8)
where wex € R is a trainable vector.

Passage-based Path Scoring: We also score
paths based on the interaction between the
passage-based path encoding vector and the can-
didate encoding. In this case, only candidate en-
coding is used since passage-based path encoding

already uses the question representation. We ag-
gregate the representation Cy, for candidate ¢y, into
a single vector ¢, € R by applying an atten-
tive pooling operation similar to Equation 5. The
score for passage-based path is then computed as
follows:

LT
Zpsg = Ck Xpsg )

Finally, the unnormalized score for path py; is:

Z = Zetx + Zpsg (10)
and its normalized version, score(py;), is calcu-
lated by applying the softmax operation over all
the paths and candidate answers.

6 Experiments

We start by describing the experimental setup, and
then present results and an analysis of our model.

6.1 Setup

We consider the standard (unmasked) version of
the recently proposed WikiHop dataset (Welbl
et al.,, 2018). WikiHop is a large scale multi-
hop QA dataset consisting of about 51K questions
(5129 Deyv, 2451 Test). Each question is associ-
ated with an average of 13.7 supporting Wikipedia
passages, each with 36.4 tokens on average.

We also evaluate our model on Open-
BookQA (Mihaylov et al., 2018), a very recent
and challenging multi-hop QA dataset with about
6K questions (500 Dev, 500 Test), each with 4
candidate answer choices. Since OpenBookQA
does not have associated passages for the ques-
tions, we retrieve sentences from a text corpus to
create single sentence passages.

We start with a corpus of 1.5M sentences used
by previous systems (Khot et al., 2017) for sci-
ence QA. It is then filtered down to 590K sen-
tences by identifying sentences about generalities
and removing noise. We assume sentences that
start with a plural noun are likely to capture gen-
eral concepts, e.g. “Mammals have fur”, and only
consider such sentences. We also eliminate noisy
and irrelevant sentences by using a few rules such
as root of the parse tree must be a sentence, it must
not contain proper nouns. This corpus is also pro-
vided along with our code.

Next, we need to retrieve sentences that can
lead to paths between the question ¢ and an an-
swer choice c. Doing so naively will only retrieve
sentences that directly connect entities in g to c,
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Accuracy (%)

Model Dev Test
Welbl et al. (2018) - 429
Dhingra et al. (2018) 56.0 59.3
Song et al. (2018) 62.8 65.4
Cao et al. (2018) 64.8 67.6
PathNet 6747 69.67
Table 1:  Accuracy on the WikiHop dataset.

fStatistically significant (Wilson, 1927)

Accuracy (%)
Model Dev Test
KER (OMCS) 54.4 52.2
KER (WordNet) 55.6 514
KER (OB + OMCS) 54.6 50.8
KER (OB + WordNet) 54.2 51.2
KER (OB + Text) 55.4 52.0
PathNet (OB + Text) 55.0 534

Table 2: Accuracy on the OpenBookQA dataset.

i.e., 1-hop paths. To facilitate 2-hop reasoning, we
first retrieve sentences based on words in ¢, and for
each retrieved sentence s, we find sentences that
overlap with both s; and c. Each path is scored
using idf(q, s1) - 1df(s1, s2) - idf(s2, ¢), where s9 is
the second retrieved sentence and idf(w) is the idf
score of token w based on the input corpus:

Zwemﬂy idf(w)
min() e, idf(w), >, ¢, idf(w))

For efficiency, we perform beam search and ig-
nore any chain if the score drops below a threshold
(0.08). Finally we take the top 100 chains and use
these sentences as passages in our model.

We use Spacy” for tokenization. For word em-
bedding, we use the 840B 300-dimensional pre-
trained word vectors from GloVe and we do not
update them during training. For simplicity, we do
not use any character embedding. The number of
hidden units in all LSTMs is 50 (H = 100). We
use dropout (Srivastava et al., 2014) with probabil-
ity 0.25 for every learnable layer. During training,
the minibatch size is fixed at 8. We use the Adam
optimizer (Kingma and Ba, 2015) with learning
rate 0.001 and clipnorm 5. We use cross entropy
loss for training. This being a multiple-choice QA
task, we use accuracy as the evaluation metric.

idf(z, ) —

6.2 Main Results

Table 1 compares our results on the WikiHop
dataset with several recently proposed multi-hop

‘https://spacy.io/api/tokenizer

QA models. We show the best results from each
of the competing entries. Welbl et al. (2018) pre-
sented the results of BiDAF (Seo et al., 2017) on
the WikiHop dataset. Dhingra et al. (2018) in-
corporated coreference connections inside GRU
network to capture coreference links while ob-
taining the contextual representation. Recently,
Cao et al. (2018) and Song et al. (2018) proposed
graph neural network approaches for multi-hop
reading comprehension. While the high level idea
is similar for these work, Cao et al. (2018) used
ELMo (Peters et al., 2018) for a contextual em-
bedding, which has proven to be very useful in the
recent past in many NLP tasks.

As seen in Table 1, our proposed model Path-
Net significantly outperforms prior approaches on
WikiHop. Additionally, we benefit from infer-
pretability: unlike these prior methods, our model
allows identifying specific entity chains that led to
the predicted answer.

Table 2 presents results on the OpenBookQA
dataset. We compare with the Knowledge En-
hanced Reader (KER) model (Mihaylov et al.,
2018). The variants reflect the source from which
the model retrieves relevant knowledge: the open
book (OB), WordNet subset of ConceptNet, and
Open Mind Common Sense (OMCS) subset of
ConceptNet, and the corpus of 590K sentences
(Text). Since KER does not scale to a corpus of
this size, we provided it with the combined set of
sentences retrieved by our model for all the Open-
BookQA questions. The model computes various
cross-attentions between the question, knowledge,
and answer choices, and combines these atten-
tions to select the answer. Overall, our proposed
approach marginally improved over the previous
models on the OpenBookQA dataset®. Note that,
our model was designed for the closed-domain
setting where all the required knowledge is pro-
vided. Yet, our model is able to generalize on the
open-domain setting where the retrieved knowl-
edge may be noisy or insufficient to answer the
question.

6.3 Effectiveness of Model Components

Table 3 shows the impact of context-based and
passage-based path encodings. Performance of
the model degrades when we ablate either of

®Sun et al. (2018) used the large OpenAl fine-tuned lan-
guage model (Radford et al., 2018) pre-trained on an addi-
tional dataset, RACE (Lai et al., 2017) to achieve a score of
55% on this task.
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the two path encoding modules. Intuitively, in
context-based path encodings, limited and more
fine-grained context is considered due to the use
of specific entity locations. On the contrary, the
passage-based path encoder computes the path
representations considering the entire passage
representations (both passages which contain
the head entity and tail entity respectively).
As a result, even if the intermediate entity can
not be used meaningfully, the model poses the
ability to form an implicit path representation.
Passage-based path encoder is more helpful
on OpenBookQA as it is often difficult to find
meaningful explicit context-based paths through
entity linking across passages. Let us consider
the following example taken from OpenBookQA
development set where our model successfully
predicted the correct answer.

Question: What happens when someone on
top of a bicycle starts pushing it ’s peddles in a
circular motion ?

Answer: the bike accelerates

Best Path: (bicycle, pedal, bike)

pl: bicycles require continuous circular motion
on pedals

p2: pushing on the pedals of a bike cause that bike
to move.

In this case, the extracted path through entity
linking is not meaningful as the path composition
would connect bicycles to bike 7. However, when
the entire passages are considered, they contain
sufficient information to help infer the answer.

Table 4 presents the results on WikiHop de-
velopment set when different composition func-
tions are used for Equation (4). Recurrent net-
works, such as LSTM and GRU, enable the path
encoder to model an arbitrary number of hops.
For 2-hop paths, we found that a simple feed for-
ward network (FFL) performs slightly better than
the rest. We also considered sharing the weights
(FFL shared) when obtaining the relation vectors
rp, e, and re, ., . Technically, the FFL model is
performing the same task in both cases: extract-
ing implicit relations and the parameters could
be shared. However, practically, the unshared

"Entities in science questions can be phrases and events
(e.g., “the bike accelerates”). Identifying and matching such
entities are very challenging in case of the OpenBookQA
dataset. We show that our entity-linking approach, designed
for noun phrases and named entities, is still able to perform
comparable to state-of-the-art methods on science question
answering, despite this noisy entity matching.

% Accuracy (A)
Model WikiHop ~ OBQA
PathNet 67.41 55.0°
- context-based path | 64.7 (2.7)  54.8" (0.2)
- passage-based path | 63.2 (4.2) 46.2 (8.8)

Table 3: Ablation results on development sets.
*Improvement over this is not statistically significant.

Model Accuracy (%)
WikiHop A
FFL (PathNet) 67.4 -
FFL Shared 66.7 0.7
LSTM 67.1 0.3
GRU 67.3 0.1

Table 4: Various composition functions to generate
path representation (X ) on WikiHop development set.

weights perform better, possibly because it gives
the model the freedom to handle answer candi-
dates differently, especially allowing the model to
consider the likelihood of a candidate being a valid
answer to any question, akin to a prior.

6.4 Qualitative Analysis

One key aspect of our model is its ability to indi-
cate the paths that contribute most towards predict-
ing an answer choice. Table 5 illustrates the two
highest-scoring paths for two sample WikiHop
questions which lead to correct answer prediction.
In the first question, the top-2 paths are formed by
connecting Zoo Lake to Gauteng through the inter-
mediate entities Johannesburg and South Africa,
respectively. In the second example, the science
fiction novel This Day All Gods Die is connected
to the publisher Bantam Books through the author
Stephen R. Donaldson, and the collection Gap Cy-
cle for first and second paths, respectively.

We also analyzed 50 randomly chosen questions
that are annotated as requiring multi-hop reason-
ing in the WikiHop development set and that our
model answered correctly. In 78% of the ques-
tions, we found at least one meaningful path® in
the top-3 extracted paths, which dropped to 62%
for top-1 path. On average, 66% of the top-3 paths
returned by our model were meaningful. In con-
trast, only 46% of three randomly selected paths
per question made sense, even when limited to the
paths for the correct answers. That is, a random
baseline, even with oracle knowledge of the cor-
rect answer, would only find a good path in 46%

8 A path is considered meaningful if it has valid relations
that can be composed to conclude the predicted answer.
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Answer: |gauteng
Rank-1 Path: (zoo lake, Johannesburg, gauteng)

Eckstein Park and is ...

Rank-2 Path: (zoo lake, South Africa, gauteng)

consists of a ...

Question: (zoo lake, located_in_the_administrative _territorial _entity, ?)

Passagel: ... Zoo Lake is a popular lake and public park in Johannesburg , South Africa . It is part of the Hermann

Passage2: ... Johannesburg ( also known as Jozi , Joburg and eGoli ) is the largest city in South Africa and is one of the
50 largest urban areas in the world . It is the provincial capital of Gauteng , which is ...

Passagel: ... Zoo Lake is a popular lake and public park in Johannesburg , South Africa . It is ...
Passage2: ... aka The Reef , is a 56-kilometre - long north - facing scarp in the Gauteng Province of South Africa . It

Question: (this day all gods die, publisher, ?)
Answer: bantam books

Passagel: ...

Passagel: ...

fiction story ...

Rank-1 Path: (this day all gods die, Stephen R. Donaldson, bantam books)

All Gods Die , officially The Gap into Ruin : This Day All Gods Die , is a science fiction novel by
Stephen R. Donaldson , being the final book of The Gap Cycle ...

Passage2: ... The Gap Cycle ( published 19911996 by Bantam Books and reprinted by Gollancz in 2008 ) is a science
fiction story , told in a series of 5 books , written by Stephen R. Donaldson . Itis an ...

Rank-2 Path: (this day all gods die, Gap Cycle, bantam books)

All Gods Die , officially The Gap into Ruin : This Day All Gods Die , is a science fiction novel by
Stephen R. Donaldson , being the final book of The Gap Cycle ...

Passage2: ... The Gap Cycle ( published 19911996 by Bantam Books and reprinted by Gollancz in 2008 ) is a science

Table 5: Two top-scoring paths for sample WikiHop Dev questions. In the Rank-1 path for the first question, the
model composes the implicit located in relations between (Zoo lake, Johannesburg) and (Johannesburg, Gauteng).

of the cases. We also analyzed 50 questions that
our model gets wrong. The top-scoring paths here
were of lower quality (only 16.7% were meaning-
ful). This provides qualitative evidence that our
model’s performance is correlated with the qual-
ity of the paths it identifies, and it does not simply
guess using auxiliary information such as entity
types, number of paths,”’ etc.

7 Conclusion

We present a novel, path-based, multi-hop reading
comprehension model that outperforms previous
models on WikiHop and OpenBookQA. Impor-
tantly, we illustrate how our model can explain its
reasoning via explicit paths extracted across mul-
tiple passages. While we focused on 2-hop rea-
soning required by our evaluation datasets, the ap-
proach can be generalized to longer chains and to
longer natural language questions.
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