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Abstract

Multi-hop reading comprehension requires the
model to explore and connect relevant infor-
mation from multiple sentences/documents in
order to answer the question about the con-
text. To achieve this, we propose an in-
terpretable 3-module system called Explore-
Propose-Assemble reader (EPAr). First, the
Document Explorer iteratively selects relevant
documents and represents divergent reasoning
chains in a tree structure so as to allow assim-
ilating information from all chains. The An-
swer Proposer then proposes an answer from
every root-to-leaf path in the reasoning tree.
Finally, the Evidence Assembler extracts a
key sentence containing the proposed answer
from every path and combines them to pre-
dict the final answer. Intuitively, EPAr ap-
proximates the coarse-to-fine-grained compre-
hension behavior of human readers when fac-
ing multiple long documents. We jointly op-
timize our 3 modules by minimizing the sum
of losses from each stage conditioned on the
previous stage’s output. On two multi-hop
reading comprehension datasets WikiHop and
MedHop, our EPAr model achieves significant
improvements over the baseline and compet-
itive results compared to the state-of-the-art
model. We also present multiple reasoning-
chain-recovery tests and ablation studies to
demonstrate our system’s ability to perform in-
terpretable and accurate reasoning.!

1 Introduction

The task of machine reading comprehension
and question answering (MRC-QA) requires the
model to answer a natural language question by
finding relevant information and knowledge in
a given natural language context. Most MRC
*equal contribution; part of this work was done during
the second author’s internship at UNC (from IIT Bombay).

'Our code is publicly available at:
https://github.com/jiangycTarheel /EPAr

datasets require single-hop reasoning only, which
means that the evidence necessary to answer the
question is concentrated in a single sentence or lo-
cated closely in a single paragraph. Such datasets
emphasize the role of locating, matching, and
aligning information between the question and the
context. However, some recent multi-document,
multi-hop reading comprehension datasets, such
as WikiHop and MedHop (Welbl et al., 2017),
have been proposed to further assess MRC sys-
tems’ ability to perform multi-hop reasoning,
where the required evidence is scattered in a set
of supporting documents.

These multi-hop tasks are much more chal-
lenging than previous single-hop MRC tasks (Ra-
jpurkar et al., 2016, 2018; Hermann et al., 2015;
Nguyen et al., 2016; Yang et al., 2015) for three
primary reasons. First, the given context contains
a large number of documents (e.g., 14 on aver-
age, 64 maximum for WikiHop). Most existing
QA models cannot scale to the context of such
length, and it is challenging to retrieve a reason-
ing chain of documents with complete informa-
tion required to connect the question to the an-
swer in a logical way. Second, given a reason-
ing chain of documents, it is still necessary for the
model to consider evidence loosely distributed in
all these documents in order to predict the final an-
swer. Third, there could be more than one logical
way to connect the scattered evidence (i.e., more
than one possible reasoning chain) and hence this
requires models to assemble and weigh informa-
tion collected from every reasoning chain before
making a unified prediction.

To overcome the three difficulties elaborated
above, we develop our interpretable 3-module sys-
tem based on examining how a human reader
would approach a question, as shown in Fig. la
and Fig. 1b. For the 1st example, instead of read-
ing the entire set of supporting documents sequen-
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The Haunted Castle ( Dutch : Spookslot ) is a haunted attraction in the
amusement park Efteling in the Netherlands . It was designed by
Ton van de Ven and ...

The Polsterberg Pumphouse ( German : Polsterberger Hubhaus ) is a
pumping station above the Dyke Ditch in the Upper Harz in central
Germany ...

Efteling is a fantasy-themed amusement park in Kaatsheuvel in the
Netherlands. The attractions are based on elements from ancient myths
and legends, fairy tales, fables, and folklore.

Kaatsheuvel is a village in the Dutch province of North Brabant,
situated ... it is the largest village in and the capital of the municipality
of Loon op Zand, which also consists ...

The Dyke Ditch is the longest artificial ditch in the Upper Harz in
central Germany.

The Upper Harz refers to ... the term Upper Harz covers the area of the
seven historical mining towns (\"Bergst\uOOe4dte\") - Clausthal,
Zellerfeld, Andreasberg, Altenau, Lautenthal, Wildemann and Grund -
in the present-day German federal state of Lower Saxony.

Query subject: The Haunted Castle
Query body: located_in the administrative territorial entity
Answer: Loon op Zand

(@)

Query subject: Polsterberg Pumphouse
Query body: located_in_the administrative_territorial_entity
swer: Lower Saxony

(b)

Figure 1: Two examples from the QAngaroo WikiHop dataset where it is necessary to combine information spread
across multiple documents to infer the correct answer. (a): The hidden reasoning chain of 3 out of a total of 37
documents for a single query. (b): Two possible reasoning chains that lead to different answers: “Upper Harz” and
“Lower Saxony”, while the latter (green solid arrow) fits better with query body “administrative territorial entity”.

tially, she would start from the document that is
directly related to the query subject (e.g., “The
Haunted Castle”). She could then read the second
and third document by following the connecting
entities “park Efteling” and “Kaatsheuvel”, and
uncover the answer “Loon op Zand” by comparing
phrases in the final document to the query. In this
way, the reader accumulates knowledge about the
query subject by exploring inter-connected docu-
ments, and eventually uncovers the entire reason-
ing chain that leads to the answer. Drawing inspi-
ration from this coarse (document-level) plus fine-
grained (word-level) comprehension behavior, we
first construct a T-hop Document Explorer model,
a hierarchical memory network, which at each re-
current hop, selects one document to read, updates
the memory cell, and iteratively selects the next
related document, overall constructing a reason-
ing chain of the most relevant documents. We
next introduce an Answer Proposer that performs
query-context reasoning at the word-level on the
retrieved chain and predicts an answer. Specifi-
cally, it encodes the leaf document of the reason-
ing chain while attending to its ancestral docu-
ments, and outputs ancestor-aware word represen-
tations for this leaf document, which are compared
to the query to propose a candidate answer.

However, these two components above cannot
handle questions that allow multiple possible rea-
soning chains that lead to different answers, as
shown in Fig. 1b. After the Document Explorer
selects the 1st document, it finds that both the 2nd
and 3rd documents are connected to the 1st doc-
ument via entities “the Dyke Ditch” and “Upper
Harz” respectively. This is a situation where a sin-
gle reasoning chain diverges into multiple paths,
and it is impossible to tell which path will lead
to the correct answer before finishing exploring

all possible reasoning chains/paths. Hence, to be
able to weigh and combine information from mul-
tiple reasoning branches, the Document Explorer
is rolled out multiple times to represent all the
divergent reasoning chains in a ‘reasoning tree’
structure, so as to allow our third component, the
Evidence Assembler, to assimilate important ev-
idence identified in every reasoning chain of the
tree to make one final, unified prediction. To do
so, the Assembler selects key sentences from each
root-to-leaf document path in the ‘reasoning tree’
and forms a new condensed, salient context which
is then bidirectionally-matched with the query rep-
resentation to output the final prediction. Via this
procedure, evidence that was originally scattered
widely across several documents is now collected
concentratedly, hence transforming the task to a
scenario where previous standard phrase-matching
style QA models (Seo et al., 2017; Xiong et al.,
2017; Dhingra et al., 2017) can be effective.

Overall, our 3-module, multi-hop, reasoning-
tree based EPAr (Explore-Propose-Assemble
reader) closely mimics the coarse-to-fine-grained
reading and reasoning behavior of human readers.
We jointly optimize this 3-module system by
having the following component working on
the outputs from the previous component and
minimizing the sum of the losses from all 3
modules. The Answer Proposer and Evidence
Assembler are trained with maximum likelihood
using ground-truth answers as labels, while the
Document Explorer is weakly supervised by
heuristic reasoning chains constructed via TF-IDF
and documents with the ground-truth answer.

On WikiHop, our system achieves the highest-
reported dev set result of 67.2%, outperforming
all published models® on this task, and 69.1%

2 At the time of submission: March 3rd, 2019.
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Figure 2: The full architecture of our 3-module system EPAr, with the Document Explorer (DE, left), Answer
Proposer (AP, middle), and Evidence Assembler (EA, right).

accuracy on the hidden test set, which is com-
petitive with the current leaderboard state-of-the-
art. On MedHop, our system outperforms all pre-
vious models, achieving the new state-of-the-art
test leaderboard accuracy. It also obtains statis-
tically significant (p < 0.01) improvement over
our strong baseline on the two datasets. Further,
we show that our Document Explorer combined
with 2-hop TF-IDF retrieval is substantially better
than two TF-IDF-based retrieval baselines in mul-
tiple reasoning-chain recovery tests including on
human-annotated golden reasoning chains. Next,
we conduct ablations to prove the effectiveness
of the Answer Proposer and Evidence Assembler
in comparison with several baseline counterparts,
and illustrate output examples of our 3-module
system’s reasoning tree.

2 Model

In this section, we describe our 3-module sys-
tem that constructs the ‘reasoning tree’ of docu-
ments and predicts the answer for the query. For-
mally, given a query ¢ and a corresponding set
of supporting documents D = {d;},, our sys-
tem tries to find a reasoning chain of documents
"y dp,d; € D3 The information from these
selected documents is then combined to predict the
answer among the given answer candidates. In the
WikiHop and MedHop datasets, a query consists
of a subject qgyp (e.g., “The Haunted Castle” in
Fig. 1a) and a body gpoq (e.g., “located in the ad-
ministrative territorial entity’”). There is one single
correct answer a (e.g., “Loon op Zand”) in the set
of candidate answers A = {¢;}~ | such that the
relation gp,4 holds true between ¢y, and a.

3In WikiHop dataset, T’ < 3.

2.1 Retrieval and Encoding

In this section, we describe the pre-processing
document retrieval and encoding steps before in-
troducing our three modules of EPAr. We adopt a
2-hop document retrieval procedure to reduce the
number of supporting documents that are fed to
our system. We first select one document with the
shortest TF-IDF distance to the query. We then
rank the remaining documents according to their
TF-IDF distances to the first selected document
and add the top N’ — 1 documents to form the con-
text with a total of N’ documents for this query.
Adding this preprocessing step is not only helpful
in reducing GPU memory consumption but also
helps bootstrap the training by reducing the search
space of the Document Explorer (Sec. 2.2).

We then use a Highway Network (Srivastava
et al., 2015) of dimension d, which merges the
character embedding and GloVe word embed-
ding (Pennington et al., 2014), to get the word
representations for the supporting documents and
query®. This gives three matrices: X € RV *Kxd,
qub € RJSXd and Qbod € RJbXd, K, J, Jb
are the lengths of supporting documents, query
body, and query subject respectively. We then ap-
ply a bi-directional LSTM-RNN (Hochreiter and
Schmidhuber, 1997) of v hidden units to get the
contextual word representations for the documents
H = {hy,-- ,hy/} sit. h; € REX2V and the
query Ugyp € RJSX%, Upoa € R72%2v - Other
than the word-level encoding, we also collect com-
pact representations of all the supporting docu-

“Unlike previous works (Welbl et al., 2017; Dhingra et al.,
2018; De Cao et al., 2018; Song et al., 2018a) that concate-
nate supporting documents together to form a large context,
we instead maintain the document-level hierarchy and encode
each document separately.
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ments, denoted as P = {p1,--- ,pn-}, by apply-
ing the self-attention mechanism in Zhong et al.
(2019) (see details in appendix). We obtain em-
beddings for each candidate ¢; € {ci,c2,..,cr}
using the average-over-word embeddings of the
first mention® of the candidate in H.

2.2 Document Explorer

Our Document Explorer (DE, shown in the left
part of Fig. 2) is a hierarchical memory net-
work (Chandar et al., 2016). It utilizes the reduced
document representations P = {p1,p2, -+ ,pn'}
and their corresponding word-level representa-
tions H = {hy, ha, -+ ,hys} as the key-value
knowledge base and maintains a memory m using
a Gated Recurrent Unit (GRU) (Cho et al., 2014).
At every step, the DE selects a document which
is related to the current memory state and updates
the internal memory. This iterative procedure thus
constructs a reasoning chain of documents.

Read Unit At each hop ¢, the model computes a
document-selection distribution P over every doc-
ument based on the bilinear-similarity between the
memory state m and document representations P
using the following equations®:

Tn = pLWyem! X = softmax(z) P(d;) = xi

The read unit looks at all document (representa-
tion) P and selects (samples) a document d; ~
P. The write operation updates the internal state
(memory) using this sampled document.

Write Unit After the model selects d; € D,
the model then computes a distribution over ev-
ery word in document d; based on the similarity
between the memory state m and its word repre-
sentations h; € H. This distribution is then used
to compute the weighted average of all word rep-
resentations in document d;. We then feed this
weighted average h as the input to the GRU cell
and update its memory state m (subscript ¢ is
omitted for simplicity):

- K
wy = hf Wym h = Zkzl hwr 0
w = softmax(w) ,,t+1 _ GRU(h, m")

Combining the ‘read’ and ‘write’ operations de-
scribed above, we define a recurrent function:

>We tried different approaches to make use of all mentions
of every candidate, but observe no gain in final performance.

SWe initialize the memory state with the last state of the
query subject Ugyub to make first selected document directly
conditioned on the query subject.

(ilt_t,_l, th) = fDE(mt> such that iLt+1 c H
and hy % ilt+1- Therefore, unrolling the Docu-
ment Explorer for T' hops results in a sequence
of non-repeating documents H = {hy,--- , hp}
such that each document fzi is selected iteratively
based on the current memory state building up one
reasoning chain of documents. In practice, we roll
out DE multiple times to obtain a document-search
‘reasoning tree’, where each root-to-leaf path cor-
responds to a query-to-answer reasoning chain.

2.3 Answer Proposer

The Answer Proposer (AP, shown in the middle
part of Fig. 2) takes as input a single chain of doc-
uments {hy,--- , hy} from one of the chains in
the ‘reasoning tree‘ created by the DE, and tries
to predict a candidate answer from the last doc-
ument Ay in that reasoning chain. Specifically,
we adopt an LSTM-RNN with an attention mech-
anism (Bahdanau et al., 2015) to encode the hy to
ancestor-aware representations y by attending to
[ﬁl,...,T—I]- The model then computes a distribu-
tion over words ﬁ%‘p € hr based on the similarity
between y and the query representation. This dis-
tribution is then used to compute the weighted av-
erage of word representations {h}., h2. - hi}.
Finally, AP proposes an answer among all candi-
dates {c1,- - ,cr} that has the largest similarity
score with this weighted average hr.

ef = vltanh(Wyphi,, + Wgs* 4 b)

a* = softmax(e¥); & = Z afhl
7

cct
Yk = LSTM(iAll%_l, PN

wh = oy, us) + a(y*, w); € = softmax(w)
K .
a= E 1 h?ek; Score; = B(c, a) 2)

where heet = [}ALL_“,T_l] is the concatenation of
documents in the word dimension; us and u are
the final states of Ugyp and Upeq respectively,
and s* is the LSTM’s hidden states at the kth step.
The Answer Proposer proposes the candidate with
the highest score among {c1, - ,cr}. All com-
putations in Eqn. 2 that involve trainable parame-
ters are marked in bold.” This procedure produces
ancestor-aware word representations that encode
the interactions between the leaf document and
ancestral document, and hence models the multi-
hop, cross-document reasoning behavior.

’See appendix for the definition of the similarity functions
« and (3.
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2.4 Evidence Assembler

As shown in Fig. 1b, it is possible that a reasoning
path could diverge into multiple branches, where
each branch represents a unique, logical way of re-
trieving inter-connected documents. Intuitively, it
is very difficult for the model to predict which path
to take without looking ahead. To solve this, our
system first explores multiple reasoning chains by
rolling out the Document Explorer multiple times
to construct a ‘reasoning tree’ of documents, and
then aggregates information from multiple rea-
soning chains using a Evidence Assembler (EA,
shown in the right part of Fig. 2), to predict the
final answer. For each reasoning chain, the As-
sembler first selects one sentence that contains the
candidate answer proposed by the Answer Pro-
poser and concatenates all these sentences into a
new document h'. This constructs a highly infor-
mative and condensed context, at which point pre-
vious phrase-matching style QA models can work
effectively. Our EA uses a bidirectional attention
flow model (Seo et al., 2017) to get a distribution
over every word in 4’ and compute the weighted
average of word representations {h'1, .-  h'K} as
. Finally, the EA selects the candidate answer of
the highest similarity score w.r.t. .

2.5 Joint Optimization

Finally, we jointly optimize the entire model us-
ing the cross-entropy losses from our Document
Explorer, Answer Proposer, and Evidence Assem-
bler. Since the Document Explorer samples doc-
uments from a distribution, we use weak supervi-
sion at the first and the final hops to account for
the otherwise non-differentiabilty in the case of
end-to-end training. Specifically, we use the doc-
ument having the shortest TF-IDF distance w.r.t.
the query subject to supervise the first hop and the
documents which contain at least one mention of
the answer to supervise the last hop. This allows
the Document Explorer to learn the chain of docu-
ments leading to the document containing the an-
swer from the document most relevant to the query
subject. Since there can be multiple documents
containing the answer, we randomly sample a doc-
ument as the label at the last hop. For the Answer
Proposer and Evidence Assembler, we use cross-
entropy loss from the answer selection process.

3 Experiments and Results

3.1 Datasets and Metrics

We evaluate our 3-module system on the WikiHop
and the smaller MedHop multi-hop datasets from
QAngaroo (Welbl et al., 2017). For the WikiHop
dev set, each instance is also annotated as “fol-
lows” or “not follows”, i.e., whether the answer
can be inferred from the given set of supporting
documents, and ““single” or “multiple”, indicating
whether the complete reasoning chain comprises
of single or multiple documents. This allows us to
evaluate our system on less noisy data and to in-
vestigate its strength in queries requiring different
levels of multi-hop reasoning. Please see appendix
for dataset and metric details.

3.2 Implementation Details

For WikiHop experiments, we use 300-d GloVe
word embeddings (Pennington et al., 2014) for
our main full-size ‘EPAr’ model and 100-d GloVE
word embeddings for our smaller ‘EPAr’ model
which we use throughout the Analysis section for
time and memory feasibility. We also use the
last hidden state of the encoding LSTM-RNN to
get the compact representation for all supporting
documents in case of smaller model, in contrast
to self-attention (Sec. B in Appendix) as in the
full-size ‘EPAr’ model. The encoding LSTM-
RNN (Hochreiter and Schmidhuber, 1997) has
100-d hidden size for our ‘EPAr’ model whereas
the smaller version has 20-d hidden size. The em-
bedded GRU (Cho et al., 2014) and the LSTM in
our Evidence Assembler have the hidden dimen-
sion of 80. In practice, we only apply TF-IDF
based retrieval procedure to our Document Ex-
plorer and Answer Proposer during inference, and
during training time we use the full set of support-
ing documents as the input. This is because we ob-
served that the Document Explorer overfits faster
in the reduced document-search space. For the Ev-
idence Assembler, we employ both the TF-IDF re-
trieval and Document Explorer to get the ‘reason-
ing tree’ of documents, at both training and testing
time. We refer to the Sec. E in the appendix for the
implementation details of our MedHop models.

3.3 Results

We first evaluate our system on the Wiki-
Hop dataset. For a fair comparison to recent
works (De Cao et al., 2018; Song et al., 2018a;
Raison et al., 2018), we report our “EPAr” with
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Dev  Test

BiDAF (Welbl et al., 2017)* - 42.9
Coref-GRU (Dhingra et al., 2018)  56.0 59.3
WEAVER (Raison et al., 2018) 64.1 653
MHQA-GRN (Song et al., 2018a) 62.8 65.4
Entity-GCN (De Cao et al., 2018) 64.8 67.6

BAG (Cao et al., 2019) 66.5 69.0
CFC (Zhong et al., 2019) 66.4 70.6
EPAr (Ours) 67.2 69.1

Table 1: Dev set and Test set accuracy on WIKIHOP
dataset. The model marked with x does not use can-
didates and directly predict the answer span. EPAr is
our system with TF-IDF retrieval, Document Explorer,
Answer Proposer and Evidence Assembler.

follow follow
. . full

+ multiple  + single
BiDAF Baseline 62.8 63.1 58.4
DE+AP+EA* 65.2 66.9 61.1
AP+EA 68.7 67.0 62.8
DE+AP+EA 69.4 70.6 64.7
DE+AP+EAT 71.8 738 669
DE+AP+EAT+SelfAttn 73.5 72.9 67.2

Table 2: Ablation accuracy on WIKIHOP dev set. The
model marked with * does not use the TFIDF-based
document retrieval procedure. The models marked
with T are our full EPAr systems with 300-d word em-
beddings and 100-d LSTM-RNN hidden size (same as
the last row of Table 1), while the 4th row represents
the smaller EPAr system.

300-d embeddings and 100-d hidden size of the
encoding LSTM-RNN. As shown in Table 1, EPAr
achieves 67.2% accuracy on the dev set, outper-
forming all published models, and achieves 69.1%
accuracy on the hidden test set, which is competi-
tive with the current state-of-the-art result.®

Next, in Table 2, we further evaluate our EPAr
system (and its smaller-sized and ablated versions)
on the “follows + multiple”, “follows + single”,
and the full development set. First, note that
on the full development set, our smaller system
(“DE+AP+EA”) achieves statistically significant
(p-value < 0.01)° improvements over the BiDAF
baseline and is also comparable to De Cao et al.
(2018) on the development set (64.7 vs. 64.8).10

8Note that there also exists a recent anonymous unpub-
lished entry on the leaderboard with 70.9% accuracy, which
is concurrent to our work. Also note that our system achieves
these strong accuracies even without using pretrained lan-
guage model representations like ELMo (Peters et al., 2018)
or BERT (Devlin et al., 2018), which have been known
to give significant improvements in machine comprehension
and QA tasks. We leave these gains for future work.

°All stat. signif. is based on bootstrapped randomization
test with 100K samples (Efron and Tibshirani, 1994).

%For time and memory feasibility, we use this smaller

| Query subject: Sulphur Spring, |
| Query body: located in the administrative territorial entity 1

o e e e e e e e e 1

| Sulphur Spring (also known as Crater Hills Geyser), is a 1
© | geyser in the Hayden Valley region of !
I Yellowstone National Park in the United States . ... 1

@ Hayden Valley is a large, sub-alpine valley in Yellowstone
National Park straddling the Yellowstone River ...

) ‘ The Yellowstone River is a tributary of the Missouri River ...

©) Yellowstone Falls consist of two major waterfalls on the
Yellowstone River, within Wyoming, United States. ...

0 Yellowstone National Park is a national park located in the
U.S. states of Wyoming, Montana and Idahe. ...

©)
® @ ©) @

I l

Yellowstone  Missouri Wyoming Wyoming? Montana? Idaho?

Figure 3: A ‘reasoning tree’ with 4 leaves that lead to
different answers (marked in bold). The ground-truth
answer is marked in red additionally.

Moreover, we see that EPAr is able to achieve
high accuracy in both the examples that require
multi-hop reasoning (“follows + multiple”), and
other cases where a single document suffices for
correctly answering the question (“follows + sin-
gle”), suggesting that our system is able to ad-
just to examples of different reasoning require-
ments. The evaluation results further demonstrate
that our Document Explorer combined with TF-
IDF-based retrieval (row ‘DE+AP+EA’) consis-
tently outperforms TF-IDF alone (row ‘AP+EA’)
or the Document Explorer without TF-IDF (row
‘DE+AP+EA™*’ in Table 2), showing that our 2-
hop TF-IDF document retrieval procedure is able
to broadly identify relevant documents and further
aid our Document Explorer by reducing its search
space. Finally, comparing the last two rows in Ta-
ble 2 shows that using self-attention (Zhong et al.,
2019) to compute the document representation can
further improve the full-sized system. We show an
example of the ‘reasoning tree’ constructed by the
Document Explorer and the correct answer pre-
dicted by the Evidence Assembler in Fig. 3.

We report our system’s accuracy on the Med-
Hop dataset in Table 3. Our best system achieves
60.3 on the hidden test set'!, outperforming all
current models on the leaderboard. However, as
reported by Welbl et al. (2017), the original Med-
Hop dataset suffers from a candidate frequency
imbalance issue that can be exploited by certain

strong model with 100-d word embeddings and 20-d LSTM-
RNN hidden size (similar to baselines in Welbl et al. (2017))
in all our analysis/ablation results (including Sec. 4).

"'The masked MedHop test set results use the smaller size
model, because this performed better on the masked dev set.
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Test R@l R@2 R@3 R@4 R@5
(Masked) Test
Random 399 514 602 678 735
FastQA* (Weissenborn et al., 2017) 23.1 31.3 1-hop TFIDF 384 485 58,6 674  73.7
BiDAF* (Seo et al., 2017) 33.7 47.8 2-hop TFIDF 384 587 702 772 81.6
CoAttention - 58.1 DE 52.5 70.2 80.3 858 89.0
Most Frequent Candidate* 10.4 58.4 TFIDF+DE 522 690 778 822 852
EPAr (Ours) 41.6 60.3

Table 3: Test set accuracy on MEDHOP dataset. The re-
sults marked with * are reported in (Welbl et al., 2017).

R@l R@2 R@3 R@4 R@5

Random 112 173 276 408 500
I-hop TFIDF 327 48.0 56.1 633 704
2-hop TFIDF 429 56.1 704 78.6  82.7
DE 38.8 500 653 735 837
TFIDF+DE 449 643 776 827 908

Table 4: Recall-k score is the % of examples where one
of the human-annotated reasoning chains is recovered
in the top-k root-to-leaf paths in the ‘reasoning tree’.
‘TFIDF+DE’ is the combination of the 2-hop TF-IDF
retrieval procedure and our Document Explorer.

heuristics like the ‘Most Frequent Candidate’ in
Table 3. To eliminate this bias and to test our sys-
tem’s ability to conduct multi-hop reasoning us-
ing the context, we additionally evaluate our sys-
tem on the masked version of MedHop, where ev-
ery candidate expression is replaced randomly us-
ing 100 unique placeholder tokens so that models
can only rely on the context to comprehend every
candidate. Our model achieves 41.6% accuracy
in this “masked” setting, outperforming all previ-
ously published works by a large margin.

4 Analysis

In this section, we present a series of new analyses
and comparisons in order to understand the contri-
bution from each of our three modules and demon-
strate their advantages over other corresponding
baselines and heuristics.

4.1 Reasoning Chain Recovery Tests

We compare our Document Explorer with two TF-
IDF-based document selectors for their ability to
recover the reasoning chain of documents. The
1-hop TF-IDF selector selects the top k + 1 doc-
uments with the highest TF-IDF score w.r.t. the
query subject. The 2-hop TF-IDF selector, as in
Sec. 2.1, first selects the top-1 TF-IDF document
w.r.t. the query subject and then selects the top &
remaining documents based on the TF-IDF score
with respect to the first selected document. Fi-
nally, we also compare to our final combination

Table 5: Recall-k score is the percentage of examples
where the ground-truth answer is present in the top-k
root-to-leaf path in the ‘reasoning tree’. ‘TFIDF+DE’
is the combination of the 2-hop TFIDF retrieval proce-
dure and our Document Explorer.

of 2-hop TF-IDF and Document Explorer.

Human Evaluation: We collect human-
annotated reasoning chains for 100 documents
from the “follows + multiple” dev set, and com-
pare these to the ‘reasoning tree’ constructed by
our Document Explorer to assess its ability to dis-
cover the hidden reasoning chain from the entire
pool of supporting documents. For each example,
human annotators (external, English-speaking)
select two of the smallest set of documents, from
which they can reason to find the correct answer
from the question. As shown in Table 4, our
Document Explorer combined with 2-hop TF-IDF
(row ‘TFIDF+DE’) obtains higher golden-chain
recall scores compared to the two TFIDF-based
document retrieval heuristics (row ‘1-hop TFIDF’
and ‘2-hop TFIDF’) alone or the Document
Explorer without TF-IDF (row ‘DE’).

Answer Span Test: We also test our Document
Explorer’s ability to find the document with men-
tions of the ground-truth answer. Logically, the
fact that the answer appears in one of the docu-
ments in the ‘reasoning tree’ signals higher prob-
ability that our modules at the following stages
could predict the correct answer. As shown in
Table 5, our Document Explorer receives signifi-
cantly higher answer-span recall scores compared
to the two TF-IDF-based document selectors. !>

4.2 Answer Proposer Comparisons

We compare our Answer Proposer with two rule-
based sentence extraction heuristics for the ability
to extract salient information from every reason-
ing chain. For most documents in the WikiHop
dataset, the first sentence is comprised of the most
salient information from that document. Hence,

12In this test, the Document Explorer alone outperforms its
combination with the 2-hop TF-IDF retrieval. In practice, our
system employs both procedures due to the advantage shown
in both empirical results (Table 2) and analysis (Table 4).
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follows follows
full . .
+ multiple  + single
Full-doc 63.1 68.4 69.0
Lead-1 63.6 68.7 70.2
AP w.o. attn  63.3 68.3 69.6
AP 64.7 69.4 70.6

Table 6: Answer Proposer comparison study. “Follows
+ multiple” and “follows + single” are the subsets of
dev set as described in Sec. 3.1.

follows follows
full . .

+ multiple  + single
Single-chain ~ 59.9 64.3 63.8
Avg-vote 54.6 56.3 55.6
Max-vote 51.5 53.9 53.3
w. Reranker 60.6 65.1 65.5
w. Assembler  64.7 69.4 70.6

Table 7: Evidence Assembler comparison study:
Reranker (described in the appendix) rescores the doc-
uments selected by the Document Explorer.

we construct one baseline that concatenates the
first sentence from each selected document as the
input to the Evidence Assembler. We also show
results of combining all the full documents as the
synthesized context instead of selecting one sen-
tence from every document. We further present
a lighter neural-model baseline that directly pro-
poses the answer from the leaf document without
first creating its ancestor-aware representation. As
shown in Table 6, the system using sentences se-
lected by our Answer Proposer outperforms both
rule-based heuristics (row 1 and 2) and the simple
neural baseline (row 3).

4.3 Assembler Ablations

In order to justify our choice of building an As-
sembler, we build a 2-module system without the
Evidence-Assembler stage by applying the An-
swer Proposer to only the top-1 reasoning chain
in the tree. We also present two voting heuristics
that selects the final answer by taking the aver-
age/maximum prediction probability from the An-
swer Proposer on all document chains. Further-
more, we compare our Evidence Assembler with
an alternative model that, instead of assembling
information from all reasoning chains, reranks all
chains and their proposed answers to select the
top-1 answer prediction. As shown in Table 7,
the full system with the Assembler achieves sig-
nificant improvements over the 2-module system.
This demonstrates the importance of the Assem-
bler in enabling information aggregation over mul-

tiple reasoning chains. The results further show
that our Assembler is better than the reranking al-
ternative.

4.4 Multi-hop Reasoning Example

We visualize the 3-stage reasoning procedure of
our EPAr system in Fig. 4. As shown in the left
of Fig. 4, the Document Explorer first locates the
root document (“The Polsterberg Pumphouse ...”)
based on the query subject. It then finds three more
documents that are related to the root document,
constructing three document chains. The An-
swer Proposer proposes a candidate answer from
each of the three chains selected by the Docu-
ment Explorer. Finally, the Evidence Assembler
selects key sentences from all documents in the
constructed document chains and makes the final
prediction (“Lower Saxony”).

5 Related Works

The last few years have witnessed significant
progress on text-based machine reading compre-
hension and question answering (MRC-QA) in-
cluding cloze-style blank-filling tasks (Hermann
etal., 2015), open-domain QA (Yang et al., 2015),
answer span prediction (Rajpurkar et al., 2016,
2018), and generative QA (Nguyen et al., 2016).
However, all of the above datasets are confined
to a single-document context per question setup.
Joshi et al. (2017) extended the task to the multi-
document regime, with some examples requir-
ing cross-sentence inference. Earlier attempts in
multi-hop MRC focused on reasoning about the
relations in a knowledge base (Jain, 2016; Zhou
et al., 2018; Lin et al., 2018) or tables (Yin et al.,
2015). QAngaroo WikiHop and MedHop (Welbl
et al., 2017), on the other hand, are created as nat-
ural language MRC tasks. They are designed in
a way such that the evidence required to answer a
query could be spread across multiple documents.
Thus, finding some evidence requires building a
reasoning chain from the query with intermediate
inference steps, which poses extra difficulty for
MRC-QA systems. HotpotQA (Yang et al., 2018)
is another recent multi-hop dataset which focuses
on four different reasoning paradigms.

The emergence of large-scale MRC datasets
has led to innovative neural models such as co-
attention (Xiong et al., 2017), bi-directional at-
tention flow (Seo et al., 2017), and gated atten-
tion (Dhingra et al., 2017), all of which are metic-
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Query subject: 7 | Query body: located_in_the ive territorial entity | | Query subject: Polsterberg Pumphouse I
! Query body: located_in_the_administrative_territorial_entity |

The Sperberhai Dyke is in fact an aqueduct which

forms part of the Upper Harz Water Regale network of
reservoirs, ditches, dams and tunnels ...

@ (© The Harz is the highest mountain range in Northern Germany a. The Pol. h Istert Hubhaus) is a
The Harz is the highest mountain range in Northern and its rugged terrain extends across parts of Lower Saxony, pumping station above the Dyke anh in the Upper Harz in central
Germany and its rugged terrain extends across parts ——> | Saxony-Anhalt, and Thuringia. The name "Harz" derives from the Germany which is used today as a forest restaurant.
of Lower Saxony, Saxony-Anhalt, and Thuringia. ... Middle Hish German word "Hardt" or "Hari" (mountain forest), b. The Harz is the highest mountain range in Northern Germany and

------ ittt vinbet il Latinized as "Hercynia". its rugged terrain extends across parts of Lower Saxony,

IThe P £ (German : 1 Saxony-Anhalt, and Thuringia. The Upper Harz refers to the
lHubhaus) is a pumping station above the Dyke Ditch | northwestern and higher part of the Harz mountain range in Germany.
lin the Upper Harz in central Germany which is used | c. In its traditional sense, the term Upper Harz covers the area of the
ttoday as a forest restaurant. .. 1 seven historical mining towns - Clausthal, Zellerfeld, Andreasberg,

Altenau, Lantenthal, Wildemann and Grund - in the present-day

s a 1} y republic in central

(@) \ienmmy officially the Federal Republic of Gmmny
i

The Upper Harz refers to the and igher

The Upper Harz refers to the northwestern and higher pa:t of the
Europe. Harz mountain range in Germany. ... the term Up&ir arz covers
the area of the seven historical mmmg towns - Clausthal, Zellerfeld,
au, Lautenthal, Wildemann and Grund - in the

German federal state of Lower Saxony.

d. The Dyke Ditch is the longest artificial ditch in the Uj Harz in
central Germany. Its se was to collect surface runoff for the
operation of the Upper Harz mining industry from precipitation-heavy

part of the Harz mountain range in Germany. present-day Gem]m federal state of Lower Saxony. ;?gg:;gg&ww ﬂ;')ay (particularty from the Bruchberg and parts
@ Sewage is a water-carried waste, in solution or

suspension, that is intended to beremoved fom00 |

community. @The Dyke Ditch is the longest artificial ditch in the Upper Harz

‘Wildemann is a town and a former municipality in the
district of Goslar, in Lower Saxony, Germany.

The Dyke Ditch is the longestamﬁcml ditch in the
Upper Harzin central German

in central Germany. Its purpose was to collect surface runoff for the
operation of Lllc Upper Harz mining industry from

'y regions a long way away (pamcnlar]y from the
— | Bruchberg a.ndpam of the Brocken massif). ...

Document Explorer

Answer Proposer

Evidence Assembler

Figure 4: An example of our 3-stage EPAr system exploring relevant documents, proposing candidate answers,
and then assembling extracted evidence to make the final prediction.

ulously designed to solve single-document MRC
tasks. Clark and Gardner (2018) and Chen et al.
(2017) used a simple TF-IDF based document-
selection procedure to find the context that is
most relevant to the query for multi-document
QA. However, this 1-hop, similarity-based se-
lection process would fail on multi-hop reading-
comprehension datasets like WikiHop because the
query subject and the answer could appear in dif-
ferent documents. On the other hand, our Doc-
ument Explorer can discover the document with
the answer “Loon op Zand” (in Fig. 1a) by itera-
tively selecting relevant documents and encoding
the hinge words “Efteling” and “Kaatsheuvel” in
its memory.

Recently, Dhingra et al. (2018) leveraged coref-
erence annotations from an external system to con-
nect the entities. Song et al. (2018a) and De Cao
et al. (2018) utilized Graph Convolutional Net-
works (Kipf and Welling, 2017) and Graph Recur-
rent Networks (Song et al., 2018b; Zhang et al.,
2018) to model the relations between entities. Re-
cently, Cao et al. (2019) extended the Graph Con-
volutional Network in De Cao et al. (2018) by in-
troducing bi-directional attention between the en-
tity graph and query. By connecting the entities,
these models learn the inference paths for multi-
hop reasoning. Our work differs in that our sys-
tem learns the relation implicitly without the need
of any human-annotated relation. Recently, Zhong
et al. (2019) used hierarchies of co-attention and
self-attention to combine evidence from multiple
scattered documents. Our novel 3-module archi-
tecture is inspired by previous 2-module selection
architectures for MRC (Choi et al., 2017). Sim-

ilarly, Wang et al. (2018) first selected relevant
content by ranking documents and then extracted
the answer span. Min et al. (2018) selected rele-
vant sentences from long documents in a single-
document setup and achieved faster speed and ro-
bustness against adversarial corruption. However,
none of these models are built for multi-hop MRC
where our EPAr system shows great effectiveness.

6 Conclusion

We presented an interpretable 3-module, multi-
hop, reading-comprehension system ‘EPAr’ which
constructs a ‘reasoning tree’, proposes an answer
candidate for every root-to-leaf chain, and merges
key information from all reasoning chains to make
the final prediction. On WikiHop, our system out-
performs all published models on the dev set, and
achieves results competitive with the current state-
of-the-art on the test set. On MedHop, our system
outperforms all previously published models on
the leaderboard test set. We also presented multi-
ple reasoning-chain recovery tests for the explain-
ability of our system’s reasoning capabilities.
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Appendix
A Reranker

We explore an alternative to Evidence Assem-
bler (EA), where instead of selecting key sen-
tences from every root-to-leaf path in the rea-
soning tree, we use a reranker to rescore the se-
lected documents. Specifically, given a document
reasoning-tree of t,, reasoning chains, we use bidi-
rectional attention (Seo et al., 2017) between the
last documents in each chain and all the docu-
ments from the previous hops in that chain to ob-
tain {hy,--- ,hy,} which are the refined repre-
sentations of the leaf documents. We then ob-
tain a fixed length document representation as the
weighted average of word representations for each
of the ¢,, documents using similarity with query
subject and query body as the weights using func-
tion cc. We obtain the scores for each of the doc-
uments by computing similarity with the answer
which that reasoning chain proposes using 3. (See
Sec. C below for details of the similarity functions
a and 3.)

B Self-Attention

We use self-attention from Zhong et al. (2019)
to get the compact representation for all support-
ing documents. Given contextual word repre-
sentations for the supporting documents H =
{h1,hs,--- ,hy'} such that h; € RE*?V, we de-
fine Selfattn(h;) — p; € R* as:

air = tanh(Watanh(W,hF 4 b1) + b2)

A~

a;

K

~ k

pbi = Z az’khi
k=1

softmax(a;)

3)

such that p; provides the summary of the ith doc-
ument with a vector representation.
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C Similarity Functions

When constructing our 3-module system, we use
similarity functions « and 3. The function 3 is
defined as:

B(h,c) = W g, relu(W g, [h; u; hou]+bg, )+bg,

4)
where relu(x) = max(0,z), and o represents
element-wise multiplication. And the function
is defined as:

a(h7u) :WazT((Wa1h+ba1) ou) )
where all trainable weights are marked in bold.

D Datasets and Metrics

We evaluate our 3-module system on QAngaroo
(Welbl et al., 2017), which is a set of two multi-
hop reading comprehension datasets: WikiHop
and MedHop. WikiHop contains 51K instances,
including 44K for training, 5K for development
and 2.5K for held out testing. MedHop is a smaller
dataset based on the domain of molecular biology.
It consists of 1.6K instances for training, 342 for
development, and 546 for held out testing. Each
instance consists of a query (which can be sep-
arated as a query subject and a query body), a
set of supporting documents and a list of candi-
date answers. For the WikiHop development set,
each instance is also annotated as “follows” or
“not follows”, which signifies whether the answer
can be inferred from the given set of supporting
documents, and “multiple” or “single”, which tells
whether the complete reasoning chain comprises
of multiple documents or just a single one. We
measure our system’s performance on these sub-
sets of the development set that are annotated as
“follows and multiple” and “follows and single”.
This allows us to evaluate our systems on a less
noisy version of development set and to investigate
their strength in queries requiring different levels
of multi-hop reasoning behavior.

E Implementation Details

For Medhop, considering the small size of the
dataset, we use 20-d hidden size of the encod-
ing LSTM-RNN and the last hidden state of the
encoding LSTM-RNN to get compact representa-
tion of the documents. We also use a hidden size
of 20 for the embedded GRU cell and LSTM in
our Evidence Assembler. In addition to that, since

Welbl et al. (2017) show the poor performance of
TF-IDF model we drop the TF-IDF document re-
trieval procedure and supervision at the first hop of
the Document Explorer (with the document hav-
ing highest TF-IDF score to query subject). We
train all modules of our system jointly using Adam
Optimizer (Kingma and Ba, 2014) with an initial
learning rate of 0.001 and a batch size of 10. We
also use a dropout rate of 0.2 in all our linear pro-
jection layers, encoding LSTM-RNN and charac-
ter CNNGs.
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