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users answer high-level questions (e.g. deter-

Luke Zettlemoyer
University of Washington
lsz@cs.washington.edu

Rule text

# 4. Tax when you live
abroad

If you’re not a UK resident,

User scenario

| get my money from a
business | have. We get
our funding from a private
bank.

mine if they qualify for particular govern-
ment benefits) when they do not know the ex-
act rules by which the determination is made
(e.g. whether they need certain income levels
or veteran status). The key challenge is that
these rules are only provided in the form of a
procedural text (e.g. guidelines from govern-
ment website) which the system must read to
figure out what to ask the user. We present
a new conversational machine reading model
that jointly extracts a set of decision rules
from the procedural text while reasoning about
which are entailed by the conversational his-
tory and which still need to be edited to create
questions for the user. On the recently intro-
duced ShARC conversational machine read-
ing dataset, our Entailment-driven Extract and
Edit network (E3) achieves a new state-of-the-
art, outperforming existing systems as well as
a new BERT-based baseline. In addition, by
explicitly highlighting which information still
needs to be gathered, E3 provides a more ex-
plainable alternative to prior work. We release
source code for our models and experiments
athttps://github.com/vzhong/e3.

1 Introduction

In conversational machine reading (CMR), a sys-
tem must help users answer high-level questions
by participating in an information gathering dia-
log. For example, in Figure 1 the system asks a
series of questions to help the user decide if they
need to pay tax on their pension. A key chal-
lenge in CMR is that the rules by which the deci-
sion is made are only provided in natural language
(e.g. the rule text in Figure 1). At every step of the
conversation, the system must read the rules text
and reason about what has already been said in to
formulate the best next question.

you don’t usually pay UK
tax on your pension. But
you might have to pay tax
in the country you live in.
There are a few exceptions
- for example, UK civil
service pensions will
always be taxed in the UK.

Previous question

|Are you a UK resident?

Previous user response
No

Model output

Initial user question

Do | need to pay UK tax on
my pension?

Are you receiving UK civil
service pensions?

Figure 1: A conversational machine reading example.
The model is given a rule text document, which con-
tains a recipe of implicit rules (underlined) for answer-
ing the initial user question. At the start of the conver-
sation, the user presents a scenario describing their sit-
vation. During each turn, the model can ask the user
a follow-up question to inquire about missing infor-
mation, or conclude the dialogue by answering yes,
no, or irrelevant. irrelevant means that the
rule text cannot answer the question. We show previ-
ous turns as well as the corresponding inquired rules in
green. The scenario is shown in red and in this case
does not correspond to a rule. The model inquiry for
this turn and its corresponding rule are shown in blue.

We present a new model that jointly reasons
about what rules are present in the text and which
are already entailed by the conversational history
to improve question generation. More specifically,
we propose the Entailment-driven Extract and Edit
network (E?). E3 learns to extract implicit rules in
the document, identify which rules are entailed by
the conversation history, and edit rules that are not
entailed to create follow-up questions to the user.
During each turn, E? parses the rule text to extract
spans in the text that correspond to implicit rules
(underlined in Figure 1). Next, the model scores
the degree to which each extracted rule is entailed
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by the initial user scenario (red in Figure 1) and by
previous interactions with the user (green in Fig-
ure 1). Finally, the model decides on a response by
directly answering the question (yes/no), stating
that the rule text does not contain sufficient infor-
mation to answer the question (irrelevant),
or asking a follow-up question about an extracted
rule that is not entailed but needed to determine the
answer (blue in Figure 1). In the case of inquiry,
the model edits an extracted rule into a follow-up
question. To our knowledge, E3 is the first extract-
and-edit method for conversational dialogue, as
well as the first method that jointly infers implicit
rules in text, estimates entailment, inquires about
missing information, and answers the question.
We compare E? to the previous-best systems
as well as a new, strong, BERT-based extrac-
tive question answering model (BERTQA) on the
recently proposed ShARC CMR dataset (Saeidi
et al., 2018). Our results show that E3 is more
accurate in its decisions and generates more rele-
vant inquiries. In particular, E3 outperforms the
previous-best model by 5.7% in micro-averaged
decision accuracy and 4.3 in inquiry BLEU4.
Similarly, E* outperforms the BERTQA base-
line by 4.0% micro-averaged decision accuracy
and 2.4 in inquiry BLEU4. In addition to out-
performing previous methods, E? is explainable
in the sense that one can visualize what rules the
model extracted and how previous interactions and
inquiries ground to the extracted rules. We re-
lease source code for E? and the BERTQA model
athttps://github.com/vzhong/e3.

2 Related Work

Dialogue tasks. Recently, there has been grow-
ing interest in question answering (QA) in a di-
alogue setting (Choi et al., 2018; Reddy et al.,
2019). CMR (Saeidi et al., 2018) differs from
dialogue QA in the domain covered (regulatory
text vs Wikipedia). A consequence of this is that
CMR requires the interpretation of complex de-
cision rules in order to answer high-level ques-
tions, whereas dialogue QA typically contains
questions whose answers are directly extractable
from the text. In addition, CMR requires the for-
mulation of free-form follow-up questions in or-
der to identify whether the user satisfies decision
rules, whereas dialogue QA does not. There has
also been significant work on task-oriented dia-
logue, where the system must inquire about miss-

ing information in order to help the user achieve a
goal (Williams et al., 2013; Henderson et al., 2014;
Mrksic et al., 2017; Young et al., 2013). However,
these tasks are typically constrained to a fixed on-
tology (e.g. restaurant reservation), instead of a la-
tent ontology specified via natural language docu-
ments.

Dialogue systems. One traditional approach for
designing dialogue systems divides the task into
language understanding/state-tracking (Mrksi¢
et al., 2017; Zhong et al., 2018), reasoning/policy
learning (Su et al., 2016), and response gener-
ation (Wen et al., 2015). The models for each
of these subtasks are then combined to form a
full dialogue system (Young et al., 2013; Wen
et al.,, 2017). The previous best system for
ShARC (Saeidi et al., 2018) similarly breaks
the CMR task into subtasks and combines hand-
designed sub-models for decision classification,
entailment, and follow-up generation. In contrast,
the core reasoning (e.g. non-editor) components
of E3 are jointly trained, and does not require
complex hand-designed features.

Extracting latent rules from text. There is a
long history of work on extracting knowledge
automatically from text (Moulin and Rousseau,
1992). Relation extraction typically assumes that
there is a fixed ontology onto which extracted
knowledge falls (Mintz et al., 2009; Riedel et al.,
2013). Other works forgo the ontology by using,
for example, natural language (Angeli and Man-
ning, 2014; Angeli et al., 2015). These extractions
from text are subsequently used for inference over
a knowledge base (Bordes et al., 2013; Dettmers
et al.,, 2018; Lin et al., 2018) and rationalizing
model predictions (Lei et al., 2016). Our work is
more similar with the latter type in which knowl-
edge extracted are not confined to a fixed ontology
and instead differ on a document basis. In addi-
tion, the rules extracted by our model are used for
inference over natural language documents. Fi-
nally, these rules provide rationalization for the
model’s decision making, in the sense that the user
can visualize what rules the model extracted and
which rules are entailed by previous turns.

3 Entailment-driven Extract and Edit
network

In conversational machine reading, a system reads
a document that contains a set of implicit decision
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Figure 2: The Entailment-driven Extract and Edit network.

rules. The user presents a scenario describing their
situation, and asks the system an underspecified
question. In order to answer the user’s question,
the system must ask the user a series of follow-up
questions to determine whether the user satisfies
the set of decision rules.

The key challenges in CMR are to identify im-
plicit rules present in the document, understand
which rules are necessary to answer the ques-
tion, and inquire about necessary rules that are
not entailed by the conversation history by ask-
ing follow-up questions. The three core mod-
ules of E3, the extraction, entailment, and de-
cision modules, combine to address these chal-
lenges. Figure 2 illustrates the components of E3.

For ease of exposition, we describe E? for a sin-
gle turn in the conversation. To make the refer-
ences concrete in the following sections, we use as
an example the inputs and outputs from Figure 1.
This example describes a turn in a conversation in
which the system helps the user determine whether
they need to pay UK taxes on their pension.

3.1 Extraction module

The extraction module extracts spans from the
document that correspond to latent rules. Let
Tp, TQ, TS, Ty,; denote words in the rule text,
question, scenario, and the inquiry and user re-
sponse during the ith previous turn of the dia-
logue after N turns have passed. We concate-
nate these inputs into a single sequence r =
[xQ;Tp;Ts;xm,1; - - - ¢ N| joined by sentinel to-
kens that mark the boundaries of each input. To
encode the input for the extraction module, we use
BERT, a transformer-based model (Vaswani et al.,
2017) that achieves consistent gains on a variety
of NLP tasks (Devlin et al., 2019). We encode

x using the BERT encoder, which first converts
words into word piece tokens (Wu et al., 2016),
then embeds these tokens along with their posi-
tional embeddings and segmentation embeddings.
These embeddings are subsequently encoded via a
transformer network, which allows for inter-token
attention at each layer. Let n, be the number
of tokens in the concatenated input x and dyy be
the output dimension of the BERT encoder. For
brevity, we denote the output of the BERT encoder
as U = BERT(z) € R"™* and refer readers
to Devlin et al. (2019) for detailed architecture.

In order to extract the implicit decision rules
from the document, we compute a start score «;
and an end score 3; for each ith token as

a = o(WU;+b,) €R €))
B; = o (W@Ui + bﬁ) eR )

where W, Ws € R, by, bg € R, and o is the
sigmoid function.

For each position s; where «; is larger than
some threshold 7, we find the closest proceeding
position e¢; > s; where (3., > 7. Each pair (s;, ;)
then forms an extracted span corresponding to a
rule R; expressed in the rule text. In the example
in Figure 1, the correct extracted spans are “UK
resident” and “UK civil service pensions”.

For the ith rule, we use self-attention to build a
representation A; over the span (s;, ¢;).

V. = WyUk—beyER,SingSei 3)

v = softmax(¥), € R,s; <k <e (4)
4 = > mUpeR™ )
k=s;

where W, € R and b, € R. Here, 7,V
are respectively the unnormalized and normalized
scores for the self-attention layer.
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Let nr denote the number spans in the rule text,
each of which corresponds to a ground truth rule.
The rule extraction loss is computed as the sum of
the binary cross entropy losses for each rule R;.

nR

Lre = Z Lstart,z' + Lend,i (6)
i

Let np denote the number of tokens in the rule
text, s;, e; the ground truth start and end positions
for the ith rule, and 1 the indicator function that
returns 1 if and only if the condition f holds. Re-
call from Eq (1) that «; and 3; denote the proba-
bilities that token j is the start and end of a rule.
The start and end binary cross entropy losses for
the ith rule are computed as

np

Lytart = = 9, Ljms, log (@) + Ly, log (1 — ;)

J
np

Lendi ==Y Tj=e, 108 (B;) + Ljze, log (1 — B3;)

J
3.2 Entailment module

Given the extracted rules R = {Ry,--- Ry, }, the
entailment module estimates whether each rule is
entailed by the conversation history, so that the
model can subsequently inquire about rules that
are not entailed. For the example in Figure 1, the
rule “UK resident” is entailed by the previous in-
quiry “Are you a UK resident”. In contrast, the
rule “UK civil service pensions” is not entailed by
either the scenario or the conversation history, so
the model needs to inquire about it. In this partic-
ular case the scenario does not entail any rule.

For each extracted rule, we compute a score
that indicates the extent to which this particular
rule has already been discussed in the initial sce-
nario S and in previous turns @). In particular, let
N(R;, S) denote the number of tokens shared by
R; and S, N (R;) the number of tokens in R;, and
N(S) the number of tokens in S. We compute the
scenario entailment score g; as

A N(R;,S)

pr(R;, S) N 7
N(R;, S

re(R;,S) = ](V(S)> )

gi = f1(R;, S) 2pr(R;, S)re(R;, S) )

pl"(Ri, S) + re(Ri, S)

where pr, re, and fl respectively denote the pre-
cision, recall, and F1 scores. We compute a simi-
lar score to represent the extent to which the rule

R; has been discussed in previous inquiries. Let
@} denote tokens in the kth previous inquiry. We
compute the history entailment score h; between
the extracted rule I?; and all ng previous inquiries
in the conversation history as

hz‘: max fl(RZ,Qk)

k=1,-ng

(10)

The final representation of the ith rule, A;, is then
the concatenation of the span self-attention and the
entailment scores.

Ai = [Apgih] eRVF2 a1
where [z;y]| denotes the concatenation of x and
y. We also experiment with embedding and en-
coding similarity based approaches to compute en-
tailment, but find that this F1 approach performs
the best. Because the encoder utilizes cross atten-
tion between different components of the input,
the representations U and A; are able to capture
notions of entailment. However, we find that ex-
plicitly scoring entailment via the entailment mod-
ule further discourages the model from making re-
dundant inquiries.

3.3 Decision module

Given the extracted rules R and the entailment-
enriched representations for each rule A;, the de-
cision module decides on a response to the user.
These include answering yes/no to the user’s
original question, determining that the rule text is
irrelevant to the question, or inquiring about
a rule that is not entailed but required to answer
the question. For the example in Figure 1, the rule
“UK civil service pensions” is not entailed, hence
the correct decision is to ask a follow-up question
about whether the user receives this pension.

We start by computing a summary C' of the in-
put using self-attention

o = WuUp+bseR (12)

¢r = softmax (¢), € R (13)

C = ) ¢pUp eRW (14)
k=s;

where W, € R, b, € R, and ¢, ¢ are re-
spectively the unnormalized and normalized self-
attention weights. Next, we score the choices
yes, no, irrelevant, and inquire.

z = W,C+b,eR? (15)
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where z is a vector containing a class score
for each of the yes, no, irrelevant, and
inqguire decisions.

For inquiries, we compute an inquiry score r;
for each extracted rule R;.

ri=W.,A4; +b, eR (16)

where W, € RW*2 and b, € R. Let k indicate
the correct decision, and ¢ indicate the correct in-
quiry, if the model is supposed to make an inquiry.
The decision loss is

Liec = —logsoftmax(2)g (17)

— 1 =inquire 10g softmax(r);

During inference, the model first determines the
decision d = argmax,z;. If the decision d is
inquire, the model asks a follow-up question
about the ith rule such that ¢ = argmax;r;. Oth-
erwise, the model concludes the dialogue with d.

Rephrasing rule into question via editor. In
the event that the model chooses to make an in-
quiry about an extracted rule R;, R; is given to
an subsequent editor to rephrase into a follow-up
question. For the example in 1, the editor edits the
span “UK civil service pensions” into the follow-
up question “Are you receiving UK civil service
pensions?” Figure 3 illustrates the editor.

The editor takes as input xeqt = [R;; xp), the
concatenation of the extracted rule to rephrase R;
and the rule text xp. As before, we encode using
a BERT encoder to obtain Ueg;y = BERT (Zeqit)-
The encoder is followed by two decoders that re-
spective generate the pre-span edit 2; ;e and post-
span edit R; post. For the example in Figure 1,
given the span “UK civil service pensions”, the
pre-span and post span edits that form the question
“Are you receiving UK civil service pensions?”
are respectively “Are you receiving” and “?”

To perform each edit, we employ an attentive
decoder (Bahdanau et al., 2015) with Long Short-
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997). Let h; denote the decoder state at
time ¢. We compute attention a; over the input.

¢ = Uedgithi—1 €R (18)
(x = softmax(¢), € R (19)
ar =

> Uitk € R (20)
k

Let V € R™ >4 denote the embedding ma-
trix corresponding to ny, tokens in the vocabulary.

Uegit Pre-span Pre-span
attentive —> edit
Proposed decoder R; pre
rule B Tedit BERT
»| Transformer
encoder
Rule text Post-span Post—s_pan
TD attentive —»|  edit
decoder R post

Figure 3: The editor of E3.

To generate the tth token w;, we use weight tying
between the output layer and the embedding ma-
trix (Press and Wolf, 2017).

vy = embed(V,wi_1) 20
hi = LSTM ([vg; a¢), hi—1) € R (22)
or = Wolht;a] + b, € RY (23)
p(wy) = softmax(Vo;) € R™ (24)
wy = argmaxyp(wy)g (25)

We use a separate attentive decoder to gener-
ate the pre-span edit I?; ;,; and the post-span edit
R; post- The decoders share the embedding matrix
and BERT encoder but do not share other parame-
ters. The output of the editor is the concatenation
of tokens [R; pre; Ri; Ri post)-

The editing loss consists of the sequential cross
entropy losses from generating the pre-span edit
and the post-span edit. Let np; denote the number
of tokens and w; pre the tth tokens in the ground
truth pre-span edit. The pre-span loss is

Npre

Lyre = — Y 10g p(tiy pre) (26)
t

The editing loss is then the sum of the pre-span
and post-span losses, the latter of which is ob-
tained in a manner similar to Eq (26).

Ledit = Lpre + Lpost (27)

4 Experiment

We train and evaluate the Entailment-driven Ex-
tract and Edit network on the ShARC CMR
dataset. In particular, we compare our method
to three other models. Two of these models
are proposed by Saeidi et al. (2018). They are
an attentive sequence-to-sequence model that at-
tends to the concatenated input and generates
the response token-by-token (Seq2Seq), and a
strong hand-engineered pipeline model with sub-
models for entailment, classification, and genera-
tion (Pipeline). For the latter, Saeidi et al. (2018)
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Model Micro Acc. Macro Acc. BLEU1 BLEU4 Comb.
Seq2Seq 44.8 42.8 34.0 7.8 3.3
Pipeline 61.9 68.9 544 34.4 23.7
BERTQA 63.6 70.8 46.2 36.3 25.7
E3 (ours) 67.6 73.3 54.1 38.7 28.4

Table 1: Model performance on the blind, held-out test set of ShARC. The evaluation metrics are micro and macro-
averaged accuracy in classifying bewteen the decisions yes, no, irrelevant, and inquire. In the event of
an inquiry, the generated follow-up question is further evaluated using the BLEU score. In addition to official
evaluation metrics, we also show a combined metric (“Comb.”), which is the product between the macro-averaged

accuracy and the BLEU4 score.

show that these sub-models outperform neural
models such as the entailment model by Parikh
et al. (2016), and that the combined pipeline
outperforms the attentive sequence-to-sequence
model. In addition, we propose an extractive
QA baseline based on BERT (BERTQA). Simi-
lar models achieved state-of-the-art on a variety
of QA tasks (Rajpurkar et al., 2016; Reddy et al.,
2019). We refer readers to Section A.1 of the ap-
pendices for implementation details BERTQA.

4.1 Experimental setup

We tokenize using revtok! and part-of-speech tag
(for the editor) using Stanford CoreNLP (Manning
et al., 2014). We fine-tune the smaller, uncased
pretrained BERT model by Devlin et al. (2019)
(e.g. bert-base-uncased).”? We optimize us-
ing ADAM (Kingma and Ba, 2015) with an initial
learning rate of Se-5 and a warm-up rate of 0.1.
We regularize using Dropout (Srivastava et al.,
2014) after the BERT encoder with a rate of 0.4.
To supervise rule extraction, we reconstruct full
dialogue trees from the ShARC training set and
extract all follow-up questions as well as bullet
points from each rule text and its corresponding di-
alogue tree. We then match these extracted clauses
to spans in the rule text, and consider these noisy
matched spans as supervision for rule extraction.
During inference, we use heuristic bullet point ex-
traction® in conjunction with spans extracted by
the rule extraction module. This results in minor
performance improvements ( ~ 1% micro/macro
acc.) over only relying on the rule extraction mod-
ule. In cases where one rule fully covers another,

'nttps://github.com/jekbradbury/revtok

We use the BERT implementation from
https://github.com/huggingface/
pytorch-pretrained-BERT

3We extract spans from the text that starts with the “*”
character and ends with another “*” character or a new line.

we discard the covered shorter rule. Section A.2
details how clause matching is used to obtain noisy
supervision for rule extraction.

We train the editor separately, as jointly training
with a shared encoder worsens performance. The
editor is trained by optimizing Leq;; while the rest
of the model is trained by optimizing Lgec + ALre.
We use a rule extraction threshold of 7 = 0.5 and
a rule extraction loss weight of A = 400. We
perform early stopping using the product of the
macro-averaged accuracy and the BLEU4 score.

For the editor, we use fixed, pretrained embed-
dings from GloVe (Pennington et al., 2014), and
use dropout after input attention with a rate of 0.4.
Before editing retrieved rules, we remove prefix
and suffix adpositions, auxiliary verbs, conjunc-
tions, determiners, or punctuation. We find that
doing so allows the editor to convert some ex-
tracted rules (e.g. or sustain damage) into sensible
questions (e.g. did you sustain damage?).

4.2 Results

Our performance on the development and the
blind, held-out test set of ShARC is shown in Ta-
ble 1. Compared to previous results, E3 achieves
a new state-of-the-art, obtaining best performance
on micro and macro-averaged decision classifica-
tion accuracy and BLEU4 scores while maintain-
ing similar BLEU1 scores. These results show
that E3 both answers the user’s original question
more accurately, and generates more coherent and
relevant follow-up questions. In addition, Fig-
ure 4 shows that because E? explicitly extracts im-
plicit rules from the document, the model’s pre-
dictions are explainable in the sense that the user
can verify the correctness of the extracted rules
and observe how the scenario and previous inter-
actions ground to the extracted rules.
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Rule text

Rule text

# 1. Overview
[0.28]0.67]0.00]

You get the Additional State Pension
automatically if you’re eligible for it, unless

you’ve contracted out of it.

0.6610.00(0.00

If you are a female Vietnam Veteran with a child
who has a birth defect or you are a child of a

female Vietnam with a birth defect, the child ma
be eligible for VA-financed care. [0.34]0.00]0.00]

Scenario

At no time were my contributions lower than any
else’s in the SERP or ever paid into a private
pension.

Scenario

I make $14,000 and would like to keep making that

until I return to Zimbabwe.

Question

Question

|Do I get additional state pension automatically? | |IS my child eligible for VA-financed health care?

Previous interactions

Are you eligible for it?

Yes

Have you contracted out of the state?
Yes

Decision

|Yes: 0.01 No: 0.99 Irrelevant: 0.00 Inquire: 0.0

Model response

Ground truth answer

(@

Previous interactions

]

Decision

|Yes: 0.04 No: 0.04 Irrelevant: 0.00 Inquire: 0.92

Model response

Are you female Vietnam Veteran with a child who
has a birth defect?

Ground truth answer

|Are you a female Vietnam Veteran?

(b)

Figure 4: Predictions by E3. Extracted spans are underlined in the text. The three scores are the inquiry score r;
(blue), history entailment score h; (red), and scenario entailment score g; (green) of the nearest extracted span.

Model Micro Acc. Macro Acc. BLEUI BLEU4 Comb.
E3 68.0 73.4 66.9 53.7 394
-edit 68.0 73.4 53.1 46.2 31.4
-edit, entail 68.0 73.1 50.2 40.3 29.5
-edit, entail, extract (BERTQA) 63.4 70.6 47.4 374 23.7

Table 2: Ablation study of E? on the development set of ShARC. The ablated variants of E3 include versions:
without the editor; without the editor and entailment module; without the editor, entailment module, and extraction
module, which reduces to the BERT for question answering model by Devlin et al. (2019).

4.3 Ablation study

Table 2 shows an ablation study of E? on the de-
velopment set of ShARC.

Retrieval outperforms word generation.
BERTQA (“-edit, entail, extract”), which E? re-
duces to after removing the editor, entailment,
and extraction modules, presents a strong baseline
that exceeds previous results on all metrics except
for BLEU1. This variant inquires about spans ex-
tracted from the text, which, while more relevant
as indicated by the higher BLEU4 score, does not
have the natural qualities of a question, hence it
has a lower BLEU1. Nonetheless, the large gains
of BERTQA over the attentive Seq2Seq model
shows that retrieval is a more promising technique
for asking follow-up questions than word-by-word

generation. Similar findings were reported for
question answering by Yatskar (2019).

Extraction of document structure facilitates
generalization. Adding explicit extraction of
rules in the document (“-edit, entail””) forces the
model to interpret all rules in the document ver-
sus only focusing on extracting the next inquiry.
This results in better performance in both decision
classification and inquiry relevance compared to
the variant that is not forced to interpret all rules.

Modeling entailment improves rule retrieval.
The “-edit” model explicitly models whether an
extracted rule is entailed by the user scenario and
previous turns. Modeling entailment allows the
model to better predict whether a rule is entailed,
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Figure 5: Confusion matrix of decision predictions on
the development set of ShARC.

and thus more often inquire about rules that are
not entailed. Figure 4a illustrates one such exam-
ple in which both extracted rules have high entail-
ment score, and the model chooses to conclude the
dialogue by answering no instead of making fur-
ther inquiries. Adding entailment especially im-
proves in BLEU4 score, as the inquiries made by
the model are more relevant and appropriate.

Editing retrieved rules results in more fluid
questions. While E? without the editor is able to
retrieve rules that are relevant, these spans are not
fluent questions that can be presented to the user.
The editor is able to edit the extracted rules into
more fluid and coherent questions, which results
further gains particularly in BLEUT.

4.4 Error analysis

In addition to ablation studies, we analyze er-
rors E3 makes on the development set of ShARC.

Decision errors. Figure 5 shows the confusion
matrix of decisions. We specifically examine ex-
amples in which E? produces an incorrect deci-
sion. On the ShARC development set there are
726 such cases, which correspond to a 32.0% er-
ror rate. We manually analyze 100 such exam-
ples to identify commons types of errors. Within
these, in 23% of examples, the model attempts to
answer the user’s initial question without resolv-
ing a necessary rule despite successfully extract-
ing the rule. In 19% of examples, the model iden-
tifies and inquires about all necessary rules but
comes to the wrong conclusion. In 18% of exam-
ples, the model makes a redundant inquiry about a
rule that is entailed. In 17% of examples, the rule

text contains ambiguous rules. Figure 4b contains
one such example in which the annotator identi-
fied the rule “a female Vietnam Veteran”, while
the model extracted an alternative longer rule “a
female Vietnam Veteran with a child who has a
birth defect”. Finally, in 13% of examples, the
model fails to extract some rule from the docu-
ment. Other less common forms of errors include
failures by the entailment module to perform nu-
merical comparison, complex rule procedures that
are difficult to deduce, and implications that re-
quire world knowledge. These results suggests
that improving the decision process after rule ex-
traction is an important area for future work.

Inquiry quality. On 340 examples (15%) in the
ShARC development set, E* generates an inquiry
when it is supposed to. We manually analyze 100
such examples to gauge the quality of generated
inquiries. On 63% of examples, the model gener-
ates an inquiry that matches the ground-truth. On
14% of examples, the model makes inquires in a
different order than the annotator. On 12% of ex-
amples, the inquiry refers to an incorrect subject
(e.g. “are you born early” vs. “is your baby born
early”. This usually results from editing an entity-
less bullet point (“* born early”). On 6% of exam-
ples, the inquiry is lexically similar to the ground
truth but has incorrect semantics (e.g. “do you
need savings” vs. “is this information about your
savings”). Again, this tends to result from editing
short bullet points (e.g. “* savings”). These results
indicate that when the model correctly chooses to
inquire, it largely inquires about the correct rule.
They also highlight a difficulty in evaluating CMR
— there can be several correct orderings of in-
quiries for a document.

5 Conclusion

We proposed the Entailment-driven Extract and
Edit network (E?), a conversational machine read-
ing model that extracts implicit decision rules
from text, computes whether each rule is entailed
by the conversation history, inquires about rules
that are not entailed, and answers the user’s ques-
tion. E? achieved a new state-of-the-art result on
the ShARC CMR dataset, outperforming existing
systems as well as a new extractive QA baseline
based on BERT. In addition to achieving strong
performance, we showed that E? provides a more
explainable alternative to prior work which do not
model document structure.
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A Appendices

A.1 BertQA Baseline

Our BertQA baseline follows that proposed by De-
vlin et al. (2019) for the Stanford Question
Answering Dataset (SQuAD) (Rajpurkar et al.,
2016). Due to the differences in context between
ShARC and SQuAD, we augment the input to
the BERTQA model in a manner similar to Sec-
tion 3.1. The distinction here is that we addition-
ally add the decision types “yes”, “no”, and “ir-
relevant” as parts of the input such that the prob-
lem is fully solvable via span extraction. Similar
to Section 3.1, let U denote the BERT encoding of
the length-n input sequence. The BERTQA model
predicts a start score s and an end score e.

s = softmax(UWs + bs) € R (28)
e = softmax(UW, + b.) € R" (29)

We take the answer as the span (4, j) that gives
the highest score s;e; such that j >= 4. Be-
cause we augment the input with decision labels,
the model can be fully supervised via extraction
endpoints.

A.2 Creating noisy supervision for span
extraction via span matching

The ShARC dataset is constructed from full dia-
logue trees in which annotators exhaustively anno-
tate yes/no branches of follow-up questions. Con-
sequently, each rule required to answer the ini-
tial user question forms a follow-up question in
the full dialogue tree. In order to identify rule
spans in the document, we first reconstruct the di-
alogue trees for all training examples in ShARC.
For each document, we trim each follow-up ques-
tion in its corresponding dialogue tree by remov-
ing punctuation and stop words. For each trimmed
question, we find the shortest best-match span in
the document that has the least edit distance from
the trimmed question, which we take as the corre-
sponding rule span. In addition, we extract sim-
ilarly trimmed bullet points from the document
as rule spans. Finally, we deduplicate the rule
spans by removing those that are fully covered by
a longer rule span. Our resulting set of rule spans
are used as noisy supervision for the rule extrac-
tion module. This preprocessing code is included
with our code release.
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