
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2285–2295
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

2285

Retrieve, Read, Rerank: Towards End-to-End

Multi-Document Reading Comprehension

Minghao Hu, Yuxing Peng, Zhen Huang, Dongsheng Li

National University of Defense Technology, Changsha, China
{huminghao09,pengyuxing,huangzhen,dsli}@nudt.edu.cn

Abstract

This paper considers the reading comprehen-
sion task in which multiple documents are
given as input. Prior work has shown that
a pipeline of retriever, reader, and reranker
can improve the overall performance. How-
ever, the pipeline system is inefficient since
the input is re-encoded within each module,
and is unable to leverage upstream compo-
nents to help downstream training. In this
work, we present RE3QA, a unified question
answering model that combines context re-
trieving, reading comprehension, and answer
reranking to predict the final answer. Unlike
previous pipelined approaches, RE3QA shares
contextualized text representation across dif-
ferent components, and is carefully designed
to use high-quality upstream outputs (e.g., re-
trieved context or candidate answers) for di-
rectly supervising downstream modules (e.g.,
the reader or the reranker). As a result, the
whole network can be trained end-to-end to
avoid the context inconsistency problem. Ex-
periments show that our model outperforms
the pipelined baseline and achieves state-of-
the-art results on two versions of TriviaQA and
two variants of SQuAD.

1 Introduction

Teaching machines to read and comprehend text
is a long-term goal of natural language process-
ing. Despite recent success in leveraging reading
comprehension (RC) models to answer questions
given a related paragraph (Wang et al., 2017; Hu
et al., 2018; Yu et al., 2018), extracting answers
from documents or even a large corpus of text
(e.g., Wikipedia or the whole web) remains to be
an open challenge. This paper considers the multi-
document RC task (Joshi et al., 2017), where the
system needs to, given a question, identify the an-
swer from multiple evidence documents. Unlike
single-pargraph settings (Rajpurkar et al., 2016),

this task typically involves a retriever for select-
ing few relevant document content (Chen et al.,
2017), a reader for extracting answers from the
retrieved context (Clark and Gardner, 2018), and
even a reranker for rescoring multiple candidate
answers (Bogdanova and Foster, 2016).

Previous approaches such as DS-QA (Lin et al.,
2018) and R3 (Wang et al., 2018a) consist of sep-
arate retriever and reader models that are jointly
trained. Wang et al. (2018d) further propose to
rerank multiple candidates for verifying the fi-
nal answer. Wang et al. (2018b) investigate the
full retrieve-read-rerank process by constructing a
pipeline system that combines an information re-
trieval (IR) engine, a neural reader, and two kinds
of answer rerankers. Nevertheless, the pipeline
system requires re-encoding inputs for each sub-
task, which is inefficient for large RC tasks. More-
over, as each model is trained independently, high-
quality upstream outputs can not benefit down-
stream modules. For example, as the training pro-
ceeds, a neural retriever is able to provide more
relevant context than an IR engine (Htut et al.,
2018). However, the reader is still trained on the
initial context retrieved using IR techniques. As
a result, the reader could face a context inconsis-
tency problem once the neural retriever is used.
Similar observation has been made by Wang et al.
(2018c), where integrating both the reader and the
reranker into a unified network is more benefical
than a pipeline (see Table 1 for more details).

In this paper, we propose RE3QA, a neural
question answering model that conducts the full
retrieve-read-rerank process for multi-document
RC tasks. Unlike previous pipelined approaches
that contain separate models, we integrate an
early-stopped retriever, a distantly-supervised
reader, and a span-level answer reranker into a uni-
fied network. Specifically, we encode segments of
text with pre-trained Transformer blocks (Devlin

2286

Model Retrieve Read Rerank Architecture

DS-QA (Lin et al., 2018) 3 3 7 Pipeline
R3 (Wang et al., 2018a) 3 3 7 Pipeline*
Extract-Select (Wang et al., 2018d) 7 3 3 Pipeline*
V-Net (Wang et al., 2018c) 7 3 3 Unified
Re-Ranker (Wang et al., 2018b) 3 3 3 Pipeline
RE

3
QA 3 3 3 Unified

Table 1: Comparison of RE3QA with existing approaches. Our approach performs the full retrieve-read-rerank
process with a unified network instead of a pipeline of separate models. *: R3 and Extract-Select jointly train two
models with reinforcement learning.

et al., 2018), where earlier blocks are used to pre-
dict retrieving scores and later blocks are fed with
few top-ranked segments to produce multiple can-
didate answers. Redundant candidates are pruned
and the rest are reranked using their span represen-
tations extracted from the shared contextualized
representation. The final answer is chosen accord-
ing to three factors: the retrieving, reading, and
reranking scores. The whole network is trained
end-to-end so that the context inconsistency prob-
lem can be alleviated. Besides, we can avoid re-
encoding input segments by sharing contextual-
ized representations across different components,
thus achieving better efficiency.

We evaluate our approach on four datasets.
On TriviaQA-Wikipedia and TriviaQA-unfiltered
datasets (Joshi et al., 2017), we achieve 75.2 F1
and 71.2 F1 respectively, outperforming previ-
ous best approaches. On SQuAD-document and
SQuAD-open datasets, both of which are modified
versions of SQuAD (Rajpurkar et al., 2016), we
obtain 14.8 and 4.1 absolute gains on F1 score over
prior state-of-the-art results. Moreover, our ap-
proach surpasses the pipelined baseline with faster
inference speed on both TriviaQA-Wikipedia and
SQuAD-document. Source code is released for fu-
ture research exploration1.

2 Related Work

Recently, several large datasets have been pro-
posed to facilitate the research in document-level
reading comprehension (RC) (Clark and Gard-
ner, 2018) or even open-domain question an-
swering (Chen et al., 2017). TriviaQA (Joshi
et al., 2017) is a challenging dataset containing
over 650K question-answer-document triples, in
which the document are either Wikipedia articles

1https://github.com/huminghao16/RE3QA

or web pages. Quasar-T (Dhingra et al., 2017) and
SearchQA (Dunn et al., 2017), however, pair each
question-answer pair with a set of web page snip-
pets that are more analogous to paragraphs. Since
this paper considers the multi-document RC task,
we therefore choose to work on TriviaQA and two
variants of SQuAD (Rajpurkar et al., 2016).

To tackle this task, previous approaches typi-
cally first retrieve relevant document content and
then extract answers from the retrieved context.
Choi et al. (2017) construct a coarse-to-fine frame-
work that answers the question from a retrieved
document summary. Wang et al. (2018a) jointly
train a ranker and a reader with reinforcement
learning (Sutton and Barto, 2011). Lin et al.
(2018) propose a pipeline system consisting of a
paragraph selector and a paragraph reader. Yang
et al. (2019) combine BERT with an IR toolkit for
open-domain question answering.

However, Jia and Liang (2017) show that the
RC models are easily fooled by adversarial exam-
ples. By only extracting an answer without veri-
fying it, the models may predict a wrong answer
and are unable to recover from such mistakes (Hu
et al., 2019). In response, Wang et al. (2018d)
present an extract-then-select framework that in-
volves candidate extraction and answer selection.
Wang et al. (2018c) introduce a unified network
for cross-passage answer verification. Wang et al.
(2018b) explore two kinds of answer rerankers in
an existing retrieve-read pipeline system. There
are some other works that handle this task in
different perspectives, such as using hierarchical
answer span representations (Pang et al., 2019),
modeling the interaction between the retriever and
the reader (Das et al., 2019), and so on.

Our model differs from these approaches in sev-
eral ways: (a) we integrate the retriever, reader,

2287

...

Retrieve Read Rerank

Pruning
document

Answer

q T-Block

x J

T-Block

x (I-J)

scores

scoree

Pruning
answer

scorea

cnq T-Block

x J

T-Block

x (I-J)

An Bn
scores

scoree
scorea

T-Block1c

x J

Xq Early
stopped

scorer

2c

2A
2B

d

1d

scorer

scorer

Pruning
answer

Sliding
window

Figure 1: RE3QA architecture. The input documents are pruned and splitted into multiple segments of text, which
are then fed into the model2. Few top-ranked segments are retrieved and the rest are early stopped. Multiple
candidate answers are proposed for each segment, which are later pruned and reranked. RE3QA has three outputs
per candidate answer: the retrieving, reading, and reranking scores. The network is trained end-to-end with a
multi-task objective. “T-Block” refers to pre-trained Transformer block (Devlin et al., 2018).

and reranker components into a unified network
instead of a pipeline of separate models, (b) we
share contextualized representation across differ-
ent components while pipelined approaches re-
encode inputs for each model, and (c) we propose
an end-to-end training strategy so that the context
inconsistency problem can be alleviated.

A cascaded approach is recently proposed by
Yan et al. (2019), which also combines several
components such as the retriever and the reader
while sharing several sets of parameters. Our ap-
proach is different in that we ignore the document
retrieval step since a minimal context phenomenon
has been observed by Min et al. (2018), and we ad-
ditionally consider answer reranking.

3 RE
3
QA

Figure 1 gives an overview of our multi-document
reading comprehension approach. Formally, given
a question and a set of documents, we first fil-
ter out irrelevant document content to narrow the
search space (§3.1). We then split the remain-
ing context into multiple overlapping, fixed-length
text segments. Next, we encode these segments
along with the question using pre-trained Trans-
former blocks (Devlin et al., 2018) (§3.2). To
maintain efficiency, the model computes a retriev-
ing score based on shallow contextual representa-
tions with early summarization, and only returns

a few top-ranked segments (§3.3). It then contin-
ues encoding these retrieved segments and outputs
multiple candidate answers under the distant su-
pervision setting (§3.4). Finally, redundant can-
didates are pruned and the rest are reranked us-
ing their span representations (§3.5). The final an-
swer is chosen according to the retrieving, reading,
and reranking scores. Our model is trained end-to-
end3 by back-propagation (§3.6).

3.1 Document Pruning

The input to our model is a question q and a set
of documents D = {d1, ...,dND}. Since the
documents could be retrieved by a search engine
(e.g., up to 50 webpages in the unfiltered version
of TriviaQA (Joshi et al., 2017)) or Wikipedia ar-
ticles could contain hundreds of paragraphs, we
therefore first discard irrelevant document content
at paragraph level. Following Clark and Gardner
(2018), we select the top-K paragraphs that have
smallest TF-IDF cosine distances with each ques-
tion. These paragraphs are then sorted according
to their positions in the documents and concate-
nated to form a new pruned document d. As a
result, a large amount of unrelated text can be fil-
tered out while a high recall is guaranteed. For ex-
ample, nearly 95% of context are discarded while

3Note that “end-to-end training” only involves retrieving,
reading, and reranking, but not the very first pruning step.

2288

the chance of selected paragraphs containing cor-
rect answers is 84.3% in TriviaQA-unfiltered.

3.2 Segment Encoding

Typically, existing approaches either read the re-
trieved document at the paragraph level (Clark and
Gardner, 2018) or at the sentence level (Min et al.,
2018). Instead, following Hewlett et al. (2017), we
slide a window of length l with a stride r over the
pruned document d and produce a set of text seg-
ments C = {c1, ..., cn}, where n =

l
Ld�l
r

m
+ 1,

and Ld is the document length. Next, we encode
these segments along with the question using pre-
trained Transformer blocks (Devlin et al., 2018),
which is a highly parallel encoding scheme instead
of recurrent approaches such as LSTMs.

The input to the network is a sequence of tokens
x = (x1, ..., xLx) with length Lx. It is obtained
by concatenating the question, segment, and sev-
eral delimiters as [[CLS];q;[SEP]; c;[SEP]],
where [CLS] is a classification token and [SEP]
is another token for differentiating sentences. We
refer to this sequence as “segment” in the rest of
this paper. For each token xi in x, its input rep-
resentation is the element-wise addition of word,
type, and position embeddings. Then, we can ob-
tain the input embeddings h0 2 RLx⇥Dh , where
Dh is hidden size.

Next, a series of I pre-trained Transformer
blocks are used to project the input embeddings
into a sequence of contextualized vectors as:

hi = TransformerBlock(hi�1), 8i 2 [1, I]

Here, we omit a detailed introduction on the block
architecture and refer readers to Vaswani et al.
(2017) for more details.

3.3 Early-Stopped Retriever

While we find the above parallel encoding scheme
very appealing, there is a crucial computational in-
efficiency if all segments are fully encoded. For
example, the average number of segments per
instance in TriviaQA-unfiltered is 20 even after
pruning, while the total number of Transformer
blocks is 12 or 24. Therefore, we propose to rank
all segments using early-summarized hidden rep-
resentations as a mechanism for efficiently retriev-
ing few top-ranked segments.

Specifically, let hJ denote the hidden states in
the J-th block, where J < I . We compute a
scorer 2 R2 by summarizing hJ into a fix-sized

vector with a weighted self aligning layer followed
by multi-layer perceptrons as:

µ = softmax(wµh
J)

scorer = wrtanh(Wr

XLx

i=1
µih

J
i)

where wµ, wr, Wr are parameters to be learned.
After obtaining the scores of all segments, we

pass the top-N ranked segments per instance to
the subsequent blocks, and discard the rest. Here,
N is relatively small so that the model can focus
on reading the most revelant context.

To train the retrieving component, we normalize
scorer and define the objective function as:

LI = �
X2

i=1
yr
i log(softmax(scorer)i) (1)

where yr is an one-hot label indicating whether
current segment contains at least one exactly-
matched ground truth answer text or not.

3.4 Distantly-Supervised Reader

Given the retrieved segments, the reading compo-
nent aims to propose multiple candidate answers
per segment. This is achieved by first element-
wisely projecting the final hidden states hI into
two sets of scores as follows:

scores = wsh
I , scoree = weh

I

where scores 2 RLx and scoree 2 RLx are the
scores for the start and end positions of answer
spans, and ws, we are trainable parameter vectors.

Next, let ↵i and �i denote the start and end in-
dices of candidate answer ai. We compute a read-
ing score, si = scores↵i

+ scoree�i
, and then pro-

pose top-M candidates according to the descend-
ing order of the scores, yielding a set of prelimi-
nary candidate answers A = {a1, ...,aM} along
with their scores S = {s1, ..., sM}.

Following previous work (Clark and Gardner,
2018), we label all text spans within a segment that
match the gold answer as being correct, thus yield-
ing two label vectors ys 2 RLx and ye 2 RLx .
Since there is a chance that the segment does not
contain any answer string, we then label the first
element in both ys and ye as 1, and set the rest as
0. Finally, we define the objective function as:

LII =�
XLx

i=1
ys
i log(softmax(scores)i)

�
XLx

j=1
ye
j log(softmax(scoree)j) (2)

2289

3.5 Answer Reranker

The answer reranker aims to rerank the candidate
answers proposed by the previous reader. We first
introduce a span-level non-maximum suppression
algorithm to prune redundant candidate spans, and
then predict the reranking scores for remaining
candidates using their span representations.

Span-level non-maximum suppression So far,
the reader has proposed multiple candidate spans.
However, since there is no constraint to predict an
unique span for an answer string, multiple candi-
dates may refer to the same text. As a result, other
than the first correct span, all other spans on the
same text would be false positives. Figure 2 shows
a qualitative example of this phenomenon.

Question: In the late 60s Owen Finlay MacLaren pio-
neered what useful item for parents of small chldren?
Answer: baby buggy
Candidates: baby buggy, collapsible baby buggy, buggy,
folding buggy, folding chair ...

Figure 2: An example from TriviaQA shows that mul-
tiple candidate answers refer to the same text.

Inspired by the non-maximum suppression
(NMS) algorithm (Rosenfeld and Thurston, 1971)
that is used to prune redundant bounding boxes
in object detection (Ren et al., 2015), we present
a span-level NMS (Algorithm 1) to alleviate the
problem. Specifically, span-level NMS starts with
a set of candidate answers A with scores S. After
selecting the answer ai that possesses the maxi-
mum score, we remove it from the set A and add
it to B. We also delete any answer aj in A that is
overlapped with ai. We define that two candidates
overlap with each other if they share at least one
boundary position4. This process is repeated for
remaining answers in A, until A is empty or the
size of B reaches a maximum threshold.

Candidate answer reranking Given the can-
didate answer ai in B, we compute a reranking
score based on its span representation, where the
representation is a weighted self-aligned vector
bounded by the span boundary of the answer, sim-
ilar to Lee et al. (2017); He et al. (2018):

⌘ = softmax(w⌘h
I
↵i:�i

)

scoreai = watanh(Wa

X�i

j=↵i
⌘j�↵i+1h

I
j)

4We also experimented with the span-level F1 function,
but found no performance improment.

Algorithm 1 Span-level NMS
Input: A = {ai}Mi=1; S = {si}Mi=1; M⇤

A is the set of preliminary candidate answers
S is the corresponding confidence scores
M⇤ denotes the maximum size threshold

1: Initialize B = {}
2: while A 6= {} and size(B) < M⇤

do

3: i = argmaxS
4: B = B [{ai}; A = A� {ai}; S = S� {si}
5: for aj in A do

6: if overlap(ai,aj) then

7: A = A� {aj}; S = S� {sj}
8: return B

Here, scorea 2 RM⇤ , and hI
↵i:�i

is a shorthand
for stacking a list of vectors hI

j (↵i  j  �i).
To train the reranker, we construct two kinds

of labels for each candidate ai. First, we define
a hard label yhard

i as the maximum exact match
score between ai and ground truth answers. Sec-
ond, we also utilize a soft label ysoft

i , which is
computed as the maximum F1 score between ai
and gold answers, so that the partially correct pre-
diction can still have a supervised signal. The
above labels are annotated for each candidate in
B, yielding yhard 2 RM⇤ and ysoft 2 RM⇤ . If
there is no correct prediction in B (all elements of
yhard are 0), then we replace the least confident
candidate with a gold answer. Finally, we define
the following reranking objective:

LIII = �
XM⇤

i=1
yhard
i log(softmax(scorea)i)

+
XM⇤

i=1
||ysoft

i � scoreaiPM⇤

j=1 score
a
j

||2 (3)

3.6 Training and Inference

Rather than separately training each component,
we propose an end-to-end training strategy so
that downstream components (e.g., the reader) can
benefit from the high-quality upstream outputs
(e.g., the retrieved segments) during training.

Specifically, we take a multi-task learning ap-
proach (Caruna, 1993; Ruder, 2017), sharing the
parameters of earlier blocks with a joint objective
function defined as:

J = LI + LII + LIII

Algorithm 2 details the training process. Before
each epoch, we compute scorer for all segments
in the training set X . Then, we retrieve top-N seg-
ments per instance and construct a new training set
X̃ , which only contains retrieved segments. For

2290

Dataset #Ins #Doc #Seg #Tok #Tok* K N Recall

TriviaQA-Wikipedia 7,993 1.8 17 10,256 2,103 14 8 94.8%
TriviaQA-unfiltered 11,313 11.7 20 52,635 2,542 14 8 84.3%
SQuAD-document 10,570 1 35 5,287 3,666 30 8 99.0%
SQuAD-open 10,570 5 42 38,159 5,103 30 8 64.9%

Table 2: Dataset statistics. ‘#Ins’ denotes the number of instances, while ‘#Doc’, ‘#Seg’, ‘#Tok’, and ‘#Tok*’
refer to the average number of documents, segments, and tokens before/after pruning, respectively. K and N are
the number of retrieved paragraphs and segments. All statistics are calculated on the development set.

each instance, if all of its top-ranked segments are
negative examples, then we replace the least confi-
dent one with a gold segment. During each epoch,
we sample two sets of mini-batch from both the X
and the X̃ , where the first batch is used to calcu-
late LI and the other one for computing LII and
LIII . Note that the contextualized vectors hI are
shared across the reader and the reranker to avoid
repeated computations. The batch size of X is dy-
namically decided so that both of X and X̃ can be
traversed with the same number of steps.

During inference, we take the retrieving, read-
ing, and reranking scores into account. We com-
pare the scores across all segments from the same
instance, and choose the final answer according to
the weighted addition of these three scores.

Algorithm 2 End-to-end training of RE3QA
Input: X = {Xi}ti=1, where Xi = {xj

i}
n
j=1; M⇥; k

X is the dataset containing t instances
Xi is i-th instance containing n segments
M⇥ denotes the model with parameters ⇥
k is the maximum number of epoch

1: Initialize ⇥ from pre-trained parameters
2: for epoch in 1, ..., k do

3: Compute scorer for all x in X
4: Retrieve top-N segments per instance
5: Construct a new X̃ that includes retrieved x
6: for batchX , batchX̃ in X , X̃ do

7: Compute LI using batchX by Eq. 1
8: Compute LII using batchX̃ by Eq. 2
9: Reuse hI to compute LIII by Eq. 3

10: Update M⇥ with graident r(J)

4 Experimental Setup

Datasets We experiment on four datasets: (a)
TriviaQA-Wikipedia (Joshi et al., 2017), a dataset
of 77K trivia questions where each question is
paired with one or multiple Wikipedia articles. (b)
TriviaQA-unfiltered is a open-domain dataset that
contains 99K question-answer tuples. The evi-
dence documents are constructed by completing

a web search given the question. (c) SQuAD-
document, a variant of SQuAD dataset (Rajpurkar
et al., 2016) that pairs each question with a full
Wikipedia article instead of a specific paragraph.
(d) SQuAD-open (Chen et al., 2017) is the open
domain version of SQuAD where the evidence
corpus is the entire Wikipedia domain. For fair
comparision to other methods, we retrieve top-
5 articles as our input documents. The detailed
statistics of these datasets are shown in Table 2.

Data preprocessing Following Clark and Gard-
ner (2018), we merge small paragraphs into a sin-
gle paragraph of up to a threshold length in Triv-
iaQA and SQuAD-open. The threshold is set as
200 by default. We manually tune the number of
retrieved paragraphs K for each dataset, and set
the number of retrieved segments N as 8. Follow-
ing Devlin et al. (2018), we set the window length
l as 384�Lq�3 so that Lx is 384 and set the stride
r as 128, where Lq is the question length. We also
calculate the answer recall after document prun-
ing, which indicates the performance upper bound.

Model settings We initialize our model us-
ing two publicly available uncased versions of
BERT5: BERTBASE and BERTLARGE, and refer
readers to Devlin et al. (2018) for details on model
sizes. We use Adam optimizer with a learning
rate of 3e-5 and warmup over the first 10% steps
to fine-tune the network for 2 epochs. The batch
size is 32 and a dropout probability of 0.1 is used.
The number of blocks J used for early-stopped re-
triever is 3 for base model and 6 for large model
by default. The number of proposed answers M
is 20, while the threshold of NMS M⇤ is 5. Dur-
ing inference, we tune the weights for retrieving,
reading, and reranking, and set them as 1.4, 1, 1.4.

Evaluation metrics We use mean average pre-
cision (MAP) and top-N to evaluate the retriev-

5https://github.com/google-research/bert

2291

Model Full Verified
EM F1 EM F1

Baseline1 40.3 45.9 44.9 50.7
M-Reader2 46.9 52.9 54.5 59.5
Re-Ranker3 50.2 55.5 58.7 63.2
DrQA4 52.6 58.2 57.4 62.6
S-Norm5 64.0 68.9 68.0 72.9
MemoReader6 64.4 69.6 70.2 75.5
Reading Twice7 64.6 69.9 72.8 77.4
SLQA8 66.6 71.4 74.8 78.7
CAPE† 67.3 72.4 75.7 79.3

RE3QABASE 68.4 72.6 76.7 79.9
RE3QALARGE 71.0 75.2 80.3 83.0

Table 3: Results on the TriviaQA-Wikipedia test
set: Joshi et al. (2017)1, Hu et al. (2018)2, Wang
et al. (2018b)3, Chen et al. (2017)4, Clark and Gard-
ner (2018)5, Back et al. (2018)6, Weissenborn et al.
(2017)7, and Yan et al. (2019)8. † indicates unpub-
lished works.

Model EM F1

S-Norm (Clark and Gardner, 2018) 64.08 72.37

RE3QABASE 77.90 84.81
RE3QALARGE 80.71 87.20

Table 4: Results on the SQuAD-document dev set.

ing component. As for evaluating the performance
of reading and reranking, we measure the exact
match (EM) accuracy and F1 score calculated be-
tween the final prediction and gold answers.

Baselines We construct two pipelined baselines
(denoted as BERTPIPE and BERTPIPE*) to investi-
gate the context inconsistency problem. Both sys-
tems contain exactly the same components (e.g.,
retriever, reader, and reranker) as ours, except that
they are trained separately. For BERTPIPE, the
reader is trained on the context retrieved by an IR
engine. As for BERTPIPE*, the reading context is
obtained using the trained neural retriever.

5 Evaluation

5.1 Main Results

Table 3 summarizes the results on the test set of
TriviaQA-Wikipedia dataset. As we can see, our
best model achieves 71.0 EM and 75.2 F1, firmly
outperforming previous methods. Besides, Joshi
et al. (2017) show that the evidence documents
contain answers for only 79.7% of questions in
the Wikipedia domain, suggesting that we are ap-
proaching the ceiling performance of this task.

Model TriviaQA-unfiltered SQuAD-open
EM F1 EM F1

DrQA1 32.3 38.3 27.1 -
R32 47.3 53.7 29.1 37.5
DS-QA3 48.7 56.3 28.7 36.6
Re-Ranker4 50.6 57.3 - -
MINIMAL5 - - 34.7 42.5
Multi-Step6 51.9 61.7 31.9 39.2
S-Norm7 61.3 67.2 - -
HAS-QA8 63.6 68.9 - -
BERTserini9 - - 38.6 46.1

RE3QABASE 64.1 69.8 40.1 48.4
RE3QALARGE 65.5 71.2 41.9 50.2

Table 5: Results on TriviaQA-unfiltered test set and
SQuAD-open dev set: Chen et al. (2017)1, Wang et al.
(2018a)2, Lin et al. (2018)3, Wang et al. (2018b)4, Min
et al. (2018)5, Das et al. (2019)6, Clark and Gardner
(2018)7, Pang et al. (2019)8 and Yang et al. (2019)9.

Model TriviaQA-Wikipedia SQuAD-document
F1 Speed F1 Speed

RE3QA 72.68 4.62 84.81 3.76
BERTPIPE 71.13 2.05 83.65 1.78
BERTPIPE* 71.59 2.08 84.04 1.82

Table 6: Comparison between our approach and the
pipelined method. “Speed” denotes the number of in-
stances processed per second during inference.

However, the score of 80.3 EM on the verified set
implies that there is still room for improvement.

We also report the performance on document-
level SQuAD in Table 4 to assess our approach
in single-document setting. We find our approach
adapts well: the best model achieves 87.2 F1. Note
that the BERTLARGE model has obtained 90.9 F1
on the original SQuAD dataset (single-paragraph
setting), which is only 3.7% ahead of us.

Finally, to validate our approach in open-
domain scenarios, we run experiments on the
TriviaQA-unfiltered and SQuAD-open datasets, as
shown in Table 5. Again, RE3QA surpasses prior
works by an evident margin: our best model
achieves 71.2 F1 on TriviaQA-unfiltered, and out-
performs a BERT baseline by 4 F1 on SQuAD-
open, indicating that our approach is effective for
the challenging multi-document RC task.

5.2 Model Analysis

In this section, we analyze our approach by an-
swering the following questions6: (a) Is end-to-

6The BERTBASE model is used by default in this section.

2292

Figure 3: F1 score on TriviaQA-Wikipedia and SQuAD-document w.r.t different number of retrieved segments.

J
TriviaQA-Wikipedia SQuAD-document

MAP Top-3 Top-5 F1 Speed MAP Top-3 Top-5 F1 Speed

1 67.4 81.5 87.3 69.2 5.9 39.2 47.5 66.8 54.4 5.6
2 75.3 87.4 91.1 71.7 5.1 80.3 89.4 94.0 83.4 4.7
3 77.8 88.8 91.8 72.7 4.6 88.7 94.5 96.8 84.8 3.8
4 80.0 89.2 92.1 71.6 4.2 90.2 95.0 97.2 84.3 3.0
5 80.6 89.6 92.3 71.7 3.5 91.0 95.6 97.6 84.3 2.3

Table 7: Retrieving performance with different number of blocks J used for the early-stopped retriever.

end network superior to the pipeline system? (b)
How does each component contribute to the per-
formance? (c) Is early-stopped retriever sufficient
for returning high-quality segments? (d) How
does the reranking loss affect the answer reranker?

Comparison with pipelined method First, we
compare our approach with the pipelined baselines
on TriviaQA-Wikipedia and SQuAD-document
development sets in Table 6. Our approach out-
performs BERTPIPE by 1.6/1.2 F1 on two datasets
respectively, and is also 2.3/2.1 times faster dur-
ing inference. Moreover, RE3QA also beats the
BERTPIPE* baseline by 1.1/0.8 F1, even as the pa-
rameters of retriever and reader are trained sequen-
tially in BERTPIPE*. The above results confirm
that the end-to-end training can indeed mitigate
the context inconsistency problem, perhaps due to
multi-task learning and parameter sharing. Our
approach can also obtain inference speedups be-
cause of the fact that it avoids re-encoding inputs
by sharing contextualized representations.

Ablation study To show the effect of each indi-
vidual component, we plot the F1 curve with re-
spect to different number of retrieved segments in
Figure 3. We notice that all curves become sta-
ble as more text are used, implying that our ap-

proach is robust across different amounts of con-
text. Next, to evaluate the reranker, we only
consider the retrieving and reading scores, and
the performance decreases by 2.8/0.8 F1 on two
datasets after the reranker is removed. To ablate
the retriever, we select segments based on the TF-
IDF distance instead. The results show that the
F1 score reduces by about 3.3 and 2.5 points on
two datasets after the ablation. Removing both
the retriever and the reranker performs the worst,
which only achieves 68.1/81.0 F1 on two datasets
at peak. The above results suggest that combining
retriever, reader, and reranker is crucial for achiev-
ing promising performance.

Effect of early-stopped retriever We assess
whether the early-stopped retriever is sufficient for
the segment retrieving task. Table 7 details the
retrieving and reading results with different num-
ber of blocks J being used. As we can see, the
model performs worst but maintains a high speed
when J is 1. As J becomes larger, the retriev-
ing metrices such as MAP, Top-3 and Top-5 sig-
nificantly increase on both datasets. On the other
hand, the speed continues to decline since more
computations have been done during retrieving. A
J of 6 eventually leads to an out-of-memory issue
on both datasets. As for the F1 score, the model

2293

Model TriviaQA-Wikipedia SQuAD-document
EM F1 EM F1

RE3QA 68.51 72.68 77.90 84.81
w/o NMS 68.29 72.33 77.67 84.36
w/o yhard 67.36 71.87 77.26 84.17
w/o ysoft 67.76 72.29 77.04 84.05

Table 8: Reranking performance with different abla-
tions. yhard and ysoft refer to the two labels used to
train the reranker.

achieves the best result when J reaches 3, and
starts to degrade as J continues rising. We exper-
iment with the RE3QALARGE model and observe
similar results, where the best J is 6. A likely rea-
son for this observation may be that sharing high-
level features with the retriever could disturb the
reading prediction. Therefore, the above results
demonstrate that an early-stopped retriever with a
relatively small J is able to reach a good trade-off
between efficiency and effectiveness.

Effect of answer reranker Finally, we run our
model under different reranking ablations and re-
port the results in Table 8. As we can see,
removing the non-maximum suppression (NMS)
algorithm has a negative impact on the perfor-
mance, suggesting it is necessary to prune highly-
overlapped candidate answers before reranking.
Ablating the hard label leads to a drop of 0.81 and
0.64 F1 scores on two datasets respectively, while
the F1 drops by 0.39 and 0.76 points after remov-
ing the soft label. This implies that the hard label
has a larger impact than the soft label on the Triv-
iaQA dataset, but vice versa on SQuAD.

6 Conclusion

We present RE3QA, a unified network that an-
swers questions from multiple documents by con-
ducting the retrieve-read-rerank process. We de-
sign three components for each subtask and show
that an end-to-end training strategy can bring
in additional benefits. RE3QA outperforms the
pipelined baseline with faster inference speed and
achieves state-of-the-art results on four challeng-
ing reading comprehension datasets. Future work
will concentrate on designing a fast neural pruner
to replace the IR-based pruning component, de-
veloping better end-to-end training strategies, and
adapting our approach to other datasets such as
Natural Questions (Kwiatkowski et al., 2019).

Acknowledgments

We would like to thank Mandar Joshi for his help
with TriviaQA submissions. We also thank anony-
mous reviewers for their thoughtful comments and
helpful suggestions. This work was supported by
the National Key Research and Development Pro-
gram of China (2018YFB0204300).

References

Seohyun Back, Seunghak Yu, Sathish Reddy Indurthi,
Jihie Kim, and Jaegul Choo. 2018. Memoreader:
Large-scale reading comprehension through neural
memory controller. In Proceedings of EMNLP.

Dasha Bogdanova and Jennifer Foster. 2016. This is
how we do it: Answer reranking for open-domain
how questions with paragraph vectors and minimal
feature engineering. In Proceedings of NAACL.

Rich Caruna. 1993. Multitask learning: A knowledge-
based source of inductive bias. In Proceedings of
ICML.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. In Proceedings of ACL.

Eunsol Choi, Daniel Hewlett, Jakob Uszkoreit, Illia
Polosukhin, Alexandre Lacoste, and Jonathan Be-
rant. 2017. Coarse-to-fine question answering for
long documents. In Proceedings of ACL.

Christopher Clark and Matt Gardner. 2018. Simple
and effective multi-paragraph reading comprehen-
sion. In Proceedings of ACL.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
and Andrew McCallum. 2019. Multi-step retriever-
reader interaction for scalable open-domain question
answering. In Proceedings of ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Bhuwan Dhingra, Kathryn Mazaitis, and William W
Cohen. 2017. Quasar: Datasets for question an-
swering by search and reading. arXiv preprint
arXiv:1707.03904.

Matthew Dunn, Levent Sagun, Mike Higgins, V Ugur
Guney, Volkan Cirik, and Kyunghyun Cho. 2017.
Searchqa: A new q&a dataset augmented with
context from a search engine. arXiv preprint
arXiv:1704.05179.

Luheng He, Kenton Lee, Omer Levy, and Luke Zettle-
moyer. 2018. Jointly predicting predicates and ar-
guments in neural semantic role labeling. arXiv
preprint arXiv:1805.04787.

2294

Daniel Hewlett, Llion Jones, Alexandre Lacoste, et al.
2017. Accurate supervised and semi-supervised ma-
chine reading for long documents. In Proceedings of
EMNLP.

Phu Mon Htut, Samuel R Bowman, and Kyunghyun
Cho. 2018. Training a ranking function for open-
domain question answering. In Proceedings of
NAACL.

Minghao Hu, Yuxing Peng, Zhen Huang, Xipeng Qiu,
Furu Wei, and Ming Zhou. 2018. Reinforced
mnemonic reader for machine reading comprehen-
sion. In Proceedings of IJCAI.

Minghao Hu, Yuxing Peng, Zhen Huang, Nan Yang,
Ming Zhou, et al. 2019. Read+ verify: Machine
reading comprehension with unanswerable ques-
tions. In Proceedings of AAAI.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of EMNLP.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of ACL.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. TACL.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference resolu-
tion. arXiv preprint arXiv:1707.07045.

Yankai Lin, Haozhe Ji, Zhiyuan Liu, and Maosong Sun.
2018. Denoising distantly supervised open-domain
question answering. In Proceedings of ACL.

Sewon Min, Victor Zhong, Richard Socher, and Caim-
ing Xiong. 2018. Efficient and robust question an-
swering from minimal context over documents. In
Proceedings of ACL.

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Lixin
Su, and Xueqi Cheng. 2019. Has-qa: Hierarchical
answer spans model for open-domain question an-
swering. In Proceedings of AAAI.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
EMNLP.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Pro-
ceedings of NIPS.

Azriel Rosenfeld and Mark Thurston. 1971. Edge and
curve detection for visual scene analysis. IEEE
Transactions on computers, (5):562–569.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Richard S Sutton and Andrew G Barto. 2011. Rein-
forcement learning: An introduction.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of NIPS.

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang,
Tim Klinger, Wei Zhang, Shiyu Chang, Gerald
Tesauro, Bowen Zhou, and Jing Jiang. 2018a. R3:
Reinforced ranker-reader for open-domain question
answering. In Proceedings of AAAI.

Shuohang Wang, Mo Yu, Jing Jiang, Wei Zhang,
Xiaoxiao Guo, Shiyu Chang, Zhiguo Wang, Tim
Klinger, Gerald Tesauro, and Murray Campbell.
2018b. Evidence aggregation for answer re-ranking
in open-domain question answering. In Proceedings
of ICLR.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang,
and Ming Zhou. 2017. Gated self-matching net-
works for reading comprehension and question an-
swering. In Proceedings of ACL.

Yizhong Wang, Kai Liu, Jing Liu, Wei He, Yajuan
Lyu, Hua Wu, Sujian Li, and Haifeng Wang. 2018c.
Multi-passage machine reading comprehension with
cross-passage answer verification. In Proceedings
of ACL.

Zhen Wang, Jiachen Liu, Xinyan Xiao, Yajuan Lyu,
and Tian Wu. 2018d. Joint training of candidate
extraction and answer selection for reading compre-
hension. In Proceedings of ACL.

Dirk Weissenborn, Tomáš Kočiskỳ, and Chris Dyer.
2017. Dynamic integration of background knowl-
edge in neural nlu systems. arXiv preprint
arXiv:1706.02596.

Ming Yan, Jiangnan Xia, Chen Wu, Bin Bi, Zhongzhou
Zhao, Ji Zhang, Luo Si, Rui Wang, Wei Wang, and
Haiqing Chen. 2019. A deep cascade model for
multi-document reading comprehension. In Pro-
ceedings of AAAI.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen
Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019.
End-to-end open-domain question answering with
bertserini. arXiv preprint arXiv:1902.01718.

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui
Zhao, Kai Chen, Mohammad Norouzi, and Quoc V
Le. 2018. Qanet: Combining local convolution with
global self-attention for reading comprehension. In
Proceedings of ICLR.

2295

Question: Which organisation was founded in Ontario,
Canada in 1897 by Adelaide Hoodless? Scores

Candidate Answers: Retrieving Reading Reranking

[1] Women’s Institute 0.517 11.226 2.093
[2] Young Women’s Christian Association 0.231 11.263 2.299
[3] Federated Women’s Institutes of Canada 0.426 11.267 1.742
[4] Victorian Order of Nurses 0.360 11.139 1.837
[5] National Council of Women 0.291 8.966 1.02

.

Table 9: A sampled case (ID: sfq 21220) from the TriviaQA-Wikipedia dev set shows that although candidate
[2] and candidate [3] get higher reranking and reading scores, the candidate [1] is preferred by the retrieving
component and is therefore chosen as the final answer. The ground truth answer is “Women’s Institute”.

Question: Hong Kong is one of two ‘special administrative
regions’ of China; what is the other? Scores

Candidate Answers: Retrieving Reading Reranking

[1] Macau 0.195 11.067 2.502
[2] Kowloon 0.346 11.175 1.795
[3] Kowloon, and the new territories 0.346 7.941 0
[4] Macau, China 0.323 7.812 0
[5] Taiwan 0.224 5.926 0.028

.

Table 10: A sampled case (ID: sfq 10640) from the TriviaQA-Wikipedia dev set shows that although the candidate
[2] gets higher retrieving and reading scores, the candidate [1] is chosen as the final answer since it has the highest
reranking score. The ground truth answer is “Macau”.

A Case Study

To demonstrate how each component takes ef-
fect when predicting the final answer, we conduct
some qualitative case studies sampled from the
RE3QALARGE model on the TriviaQA-Wikipedia
development set. For each question, we list top-
5 candidate answers along with their retrieving,
reading, and reranking scores.

As shown in Table 9, we first notice that the top-
ranked predictions have highly-relevant semantics
and share the same linguistic pattern. As a result,
the top-4 candidates contain very similar reading
scores from 11.1 to 11.3, which matches the ob-
servations of Clark and Gardner (2018). A likely
reason of this phenomenon is that reading com-
prehension models are easily fooled by confusing
distractors (also referred as adversarial examples
mentioned by Jia and Liang (2017)). Under such
circumstance, it is crucial to perform additional
answer verifications to identify the final answer. In
this example, we can see that the retriever becomes

the key factor when the reader and reranker are
distracted by confusing candidates (e.g., the sec-
ond and third predictions). By taking the weighted
sum of the three scores, our model eventually pre-
dicts the correct answer since the first prediction
has the largest retrieving score.

Similar observations can be made in Table 10.
On the one hand, despite the confusing candidate
“Kowloon” has the highest retrieving and reading
scores, the reranker assigns a larger confidence on
the candidate “Macau”. As a result, “Macau” is
chosen as the final answer. On the other hand, we
find that the reranking scores of some candidates
(e.g., the third and fourth predictions) are zero.
This is due to the span-level non-maximum sup-
pression algorithm, where redundant spans such as
“Macau, China” will be pruned before the rerank-
ing step. Therefore, the final weighted-sum scores
of these candidates will be significantly lower than
the top predictions, which is beneficial for filtering
distractors out.

