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Abstract

We present a syntax-infused variational au-
toencoder (SIVAE), that integrates sentences
with their syntactic trees to improve the gram-
mar of generated sentences. Distinct from
existing VAE-based text generative models,
SIVAE contains two separate latent spaces,
for sentences and syntactic trees. The ev-
idence lower bound objective is redesigned
correspondingly, by optimizing a joint distri-
bution that accommodates two encoders and
two decoders. SIVAE works with long short-
term memory architectures to simultaneously
generate sentences and syntactic trees. Two
versions of SIVAE are proposed: one cap-
tures the dependencies between the latent vari-
ables through a conditional prior network, and
the other treats the latent variables indepen-
dently such that syntactically-controlled sen-
tence generation can be performed. Experi-
mental results demonstrate the generative su-
periority of SIVAE on both reconstruction and
targeted syntactic evaluations. Finally, we
show that the proposed models can be used for
unsupervised paraphrasing given different syn-
tactic tree templates.

1 Introduction

Neural language models based on recurrent neural
networks (Mikolov et al., 2010) and sequence-to-
sequence architectures (Sutskever et al., 2014) have
revolutionized the NLP world. Deep latent variable
modes, in particular, the variational autoencoders
(VAE) (Kingma and Welling, 2014; Rezende et al.,
2014) integrating inference models with neural lan-
guage models have been widely adopted on text
generation (Bowman et al., 2016; Yang et al., 2017;
Kim et al., 2018), where the encoder and the de-
coder are modeled by long short-term memory

*Part of this work was done when the first two authors
were at Bloomberg.

Figure 1: An example of a constituency tree structure.

(LSTM) networks (Chung et al., 2014). For a ran-
dom vector from the latent space representing an
unseen input, the decoder can generate realistic-
looking novel data in the context of a text model,
making the VAE an attractive generative model.
Compared to simple neural language models, the
latent representation in a VAE is supposed to give
the model more expressive capacity.

Although syntactic properties can be implicitly
discovered by such generative models, Shi et al.
(2016) show that many deep structural details are
still missing in the generated text. As a result
of the absence of explicit syntactic information,
generative models often produce ungrammatical
sentences. To address this problem, recent works
attempt to leverage explicit syntactic knowledge
to improve the quality of machine translation
(Eriguchi et al., 2016; Bastings et al., 2017; Chen
et al., 2017) and achieve good results. Motivated
by such success, we suggest that deep latent
variable models for text generation can also benefit
from the incorporation of syntactic knowledge.
Instead of solely modeling sentences, we want
to utilize augmented data by introducing an
auxiliary input, a syntactic tree, to enrich the latent
representation and make the generated sentences
more grammatical and fluent. Syntactic trees can
either be obtained from existing human-labeled
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trees or syntactically parsed sentences using
well-developed parsers. An example of a con-
stituency tree is shown in Figure 1. In this work,
we remove leaf nodes and linearize the bracketed
parse structure into a syntactic tree sequence to
simplify the encoding and decoding processes.
For example, the syntactic tree sequence for the
sentence “The book that you love is good.” is
(S (NP (NP (DT) (NN)) (SBAR (WHNP (IN)) (S (NP (PRP
)) (VP (VBP))))) (VP (VBZ) (ADJP (JJ))) (.)).
Given such data, we aim to train a latent variable
model that jointly encodes and decodes a sentence
and its syntactic tree.

We propose a syntax-infused VAE model to help
improve generation, by integrating syntactic trees
with sentences. In contrast to the current VAE-
based sentence-generation models, a key differenti-
ating aspect of SIVAE is that we map the sentences
and the syntactic trees into two latent representa-
tions, and generate them separately from the two
latent spaces. This design decouples the semantic
and syntactic representations and makes it possible
to concentrate generation with respect to either syn-
tactic variation or semantic richness. To accommo-
date the two latent spaces in one VAE framework,
the evidence lower bound (ELBO) objective needs
to be redesigned based on optimizing the joint log
likelihood of sentences and syntactic trees. This
new objective makes SIVAE a task-agnostic model,
with two encoders and two decoders, so that it can
be further used for other generative tasks.

Two variants of SIVAE that differ in the forms
of the prior distributions corresponding to the syn-
tactic tree latent variables are presented. SIVAE-c
captures dependencies between two latent variables
by making the syntax prior conditioned on the sen-
tence prior. During generation, we first sample a
latent variable from the sentence latent space and
then sample the syntactic tree latent variable de-
pending on the sampled sentence latent variable.
This process resembles how humans write: think
about substances like entities and topics first, then
realize with a specific syntactic structure. We fur-
ther propose SIVAE-i assuming the two priors are
independent, and change the ELBO of the joint
log likelihood correspondingly. This independence
assumption manifests syntactically-controlled sen-
tence generation as it allows to alter the syntac-
tic structure, desirable for related tasks like para-
phrase generation. Given a sentence and a syntactic
tree template, the model produces a paraphrase of

the sentence whose syntax conforms to the tem-
plate. Our SIVAE-based paraphrasing network is
purely unsupervised, which makes it particularly
suitable for generating paraphrases in low-resource
languages or types of content.

The experiments are conducted on two datasets:
one has trees labeled by humans and the other has
trees parsed by a state-of-the-art parser (Kitaev and
Klein, 2018). Other than employing the standard
language modeling evaluation metrics like perplex-
ity, we also adopt the targeted syntactic evaluation
(Marvin and Linzen, 2018) to verify whether the
incorporation of syntactic trees improves the gram-
mar of generated sentences. Experiments demon-
strate that the proposed model improves the quality
of generated sentences compared to other baseline
methods, on both the reconstruction and grammar
evaluations. The proposed methods show the abil-
ity for unsupervised paraphrase generation under
different syntactic tree templates.

Our contributions are four-fold: 7) We propose a
syntax-infused VAE that integrates syntactic trees
with sentences, to grammatically improve the gen-
erated sentences. i¢) We redesign the ELBO of
the joint log likelihood, to accommodate two sepa-
rate latent spaces in one VAE framework, for two
SIVAE model variants based on different intuitions,
which can be further used for other applications.
111) We evaluate our models on data with human-
constituted trees or parsed trees, and yield promis-
ing results in generating sentences with better re-
construction loss and less grammatical errors, com-
pared to other baseline methods. 7v) We present
an unsupervised paraphrasing network based on
SIVAE-i that can perform syntactically controlled
paraphrase generation.

2 Methodology

Given a sentence x and its corresponding syntactic
tree y, the goal is to jointly encode  and y into
latent representations z, € R4 and zZy € R4, and
then decode them jointly from the two latent spaces.
We employ the VAE framework such that realistic-
looking novel sentences can be generated with ran-
domly sampled latent representations. However,
current VAE-based language models cannot ac-
commodate two separate latent spaces for z, and
zy. To incorporate x, y, 2, and z, in one VAE
framework, the objective needs to be redesigned to
optimize the log joint likelihood log p(x,y). We
propose two model variants of SIVAE. The first
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Figure 2: Block diagram of the proposed SIVAE model encoding and decoding sentences and their syntactic trees
jointly. The prior network (dashed lines) is used only for the sampling stage of SIVAE-c.

model (SIVAE-c; Section 2.1), directly capturing
the dependencies between z, and z,, presumes
that semantic information should influence syntax
structure. During the sampling stage, the prior
for z, is drawn based on z, from a conditional
prior network p(zy|2,); 2, implicitly encodes the
subject of the sentence, and z, encodes the corre-
sponding syntax. Although this model has robust
performance on generation, it doesn’t allow us to
syntactically control the generated sentences by
freely changing the syntactic tree template in z,,.
Thus we propose SIVAE-i (Section 2.2), which gen-
erates sentences and syntactic trees assuming the
priors p(z,) and p(z,) are independent. The entire
architecture is shown in Figure 2.

2.1 Modeling Syntax-Semantics

Dependencies

Since the syntax of a sentence is influenced by
the semantics, especially when the content is long,
we first propose a generative model to exploit the
dependencies between z, and z,, through a condi-
tional prior network p(zy|z,). Formally, STVAE-
¢ models the joint probability of the sentence and
its syntactic tree:

P, y) = /d ) /d _Plaly.z2)plulzss =)

p(zy|z2)p(22)dz, dz,, (1)

where the prior over z, is the isotropic Gaussian
p(zz) = N(0,I). We define ¢(-) to be the varia-
tional posterior distributions that approximate the
true posterior distributions. The model is trained by

maximizing the lower bound of the log likelihood

logp(z,y) > L(z,y;0,9,¢) = (2)
Eq, (2. |2) 108 Po(x|y, 22) — KL[gy (22 |2)||p(22)]
+Eq, (zyly,2.) 108 Do (Y|2y)

— KL[gy(2y|y, 22)|Ipy (2y]22)],

where 1), ¢, and 6 are the parameters of the prior
network, the recognition networks, and the gener-
ation networks, respectively. We apply the repa-
rameterize trick to yield a differentiable unbiased
estimator of the lower bound objective.

Conditional Prior Network The key to SIVAE-
¢ is the conditional prior which is used to model
the dependencies between the sentence latent vari-
able z, and the syntactic tree latent variable z,,.
Given z;, the prior for z, is sampled from a con-
ditional probability py(z,|z,) modeled by a mul-
tivariate Gaussians N'(u/, 0"?I). The parameters
of the Gaussian distribution are computed from z,
with a conditional prior network parameterized by
1. In particular, g’ and o' are the outputs of mul-
tilayer perceptron (MLP) networks taking z,. as the
input.

Recognition Networks To differentiate through
the sampling stage z ~ ¢4(z|x), the VAE encoder
¢s(zz|x) is also assumed to be a Gaussian distri-
bution N (p,, X,.), where pu(x) and diag(X(x))
are the outputs of feedforward networks taking x
as the input. The recognition network consists of
a bidirectional LSTM encoder to produce a sen-
tence embedding for « and two linear networks
to transform the embedding to the Gaussian pa-
rameters. The Kullback-Leibler (KL) divergence
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between g4 (2,|x) and the isotropic Gaussian prior
p(zg) is

KL(g5 (22 o) [p(22)) = 5[~ o8[S

— d+ () + ph ). 3)

So we only need to model g, and the diagonal of
33, to compute the KL divergence.

To reconcile the conditional prior py,(zy|z4), the
variational posterior q¢(2y|y, 22) = N (p,, o21),
also depends on the latent variable z,. p, and o-Z
are obtained from a recognition network that con-
tains a bidirectional LSTM encoder, producing a
syntactic tree embedding, and two linear networks,
taking the embedding and z, as inputs. The KL

divergence is then given by

KL(qp(2y|y, z2) [Py (2y]22)) =

1 0’1
§[log |o”1| — log \0'3211\ —d+ tr(o-’y?I)

+ (=) o I — ). (4)

Generation Networks We employ an LSTM to
generate y from py(y|2,). A word v, is selected by
computing the probability of y, = v, conditioned
on previously generated words y_,; and z,

Py, = vyly_y, 2y) eXP((vZWyhi’)), (5)

where h{ is the current hidden states of the LSTM
tree decoder

hi = LSTM(zy, e(yi-1), hi_y,¢{_1).  (6)

To generate x from py(x|y, z,), we modify the
generative model in GNMT (Shah and Barber,
2018). First, the last hidden states h‘yy| and cfy‘
in (6) are directly used as the generated syntactic
tree y, where |y| is the length of y. Then we use
another LSTM for sentence generation,

hi = LSTM(z,, e(x_1), h%yl’ hi 1, ¢t ). (1)
The conditional probabilities of x; = v, for t =
1,---, |x| are computed as

plae = vol@—t. 20, y) o exp((vg WTR)). (8)

In this way, the generated sentence is conditioned
on z, and the generated syntactic tree y. SIVAE-
¢ selects possible syntactic tree templates for a
given sentence latent variable, but the syntactic tree
template cannot be freely determined.

2.2 Syntactically-Controlled Sentence
Generation

In order to freely change the syntactic tree template
embedded in z,, we propose an alternative model
assuming the independence of two priors. Let pri-
ors z; and z, be independent random variables
drawn from N (0,I). The variational posteriors
¢s(zz|x) and g4 (2,|y) follow Gaussian distribu-
tions parameterized by the outputs of feedforward
networks, whose inputs are  and y. The model is
trained by maximizing the lower bound objective

logp(z,y) > L(z,y:0,6) = ©))
Eqy (2 )2) l0g po(z|y, z2) — KL[gs (22 |2)[|p(22)]
+ Eq, (2, ly) log po(ylzy) — KL{gg(2y|y)[Ip(2y)]-

Since y and z, are assumed to be independent
when computing the joint probability p(x, y), we
seek to minimize the mutual information I(y; z,)
during training.

The recognition networks and the generation net-
works of SIVAE-i are similar to those adopted in
SIVAE-c, so we omit them for brevity.

3 Unsupervised Paraphrasing

Paraphrases are sentences with the same meaning
but different syntactic structures. SIVAE allows us
to execute syntax transformation, producing the
desired paraphrases with variable syntactic tree
templates. The syntactically controlled paraphrase
generation is inspired by Iyyer et al. (2018); the
difference is that our SIVAE-based syntactic para-
phrase network is purely unsupervised. Unsuper-
vised paraphrasing can be performed using both
SIVAE-c and SIVAE-i.

One way to generate paraphrases is to perform
syntactically controlled paraphrase generation us-
ing SIVAE-i. The latent representations of an input
sentence 2, and a syntactic tree template z,, are fed
into SIVAE-i, and the syntax of the generated sen-
tence conforms with the explicitly selected target
template. However, linearized syntactic sequences
are relatively long (as shown in Table 1) and long
templates are more likely to mismatch particular
input sentences, which may result in nonsensical
paraphrase outputs. Therefore, we use simplified
syntactic sequences as templates, by taking the top
two levels of the linearized constituency trees.

The paraphrase generative process is:

1. Encode the original sentence to z,;
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Dataset \ Train Test Valid Ave s Max_s Voc_s Tree Type Ave_t Max_t Voc_t
PTB 39366 4921 4921 25 271 24699 Golden 113 1051 1272
wiki90M | 71952 8995 8994 28 318 28907 Parsed 119 1163 387

Table 1: Statistics of the two datasets used in this paper. Ave_s/ Ave_t, Max_s/ Max_t, and Voc_s/ Voc_t denote
the average length, maximum length, and vocabulary size for sentences/ tree sequences correspondingly.

2. Select and encode a syntactic template into
o
Y

3. Generate the reconstructed syntactic sequence
y from p(y|z,);

4. Generate the paraphrase of the original sen-
tence that conforms to y from p(x|y, z,.).

We can also use a trained SIVAE-c to generate
paraphrases. The paraphrase generation process
is similar to sampling from a standard VAE with
various tempera. The difference is that SIVAE-c
first selects possible syntactic tree templates using
the conditional prior network py,(2,|2,) then gen-
erates paraphrases based on the syntactic template
and the latent variable.

4 Related Work

Syntax-Aware Neural Text Generation The
ability to generate sentences is core to many NLP
tasks, such as machine translation (Bahdanau et al.,
2015), summarization (Rush et al., 2015), and di-
alogue generation (Vinyals and Le, 2015). Re-
cent works have shown that neural text genera-
tion can benefit from the incorporation of syntac-
tic knowledge (Shen et al., 2018; Choe and Char-
niak, 2016). Sennrich and Haddow (2016) propose
to augment each source word representation with
its corresponding part-of-speech tag, lemmatized
form and dependency label; Eriguchi et al. (2016)
and Bastings et al. (2017) utilize a tree-based en-
coder and a graph convolutional network encoder
respectively to embed the syntactic parse trees as
part of the source sentence representations; Chen
et al. (2017) model source-side syntactic trees with
a bidirectional tree encoder and tree-coverage de-
coder; Eriguchi et al. (2017) implicitly leverage lin-
guistic prior by treating syntactic parsing as an aux-
iliary task. However, most of these syntax-aware
generation works only focus on neural machine
translation.

Deep Latent Variable Models Deep latent vari-
able models that combine the complementary

strengths of latent variable models and deep learn-
ing have drawn much attention recently. Genera-
tive adversarial networks (Goodfellow et al., 2014)
and variational autoencoders (Kingma and Welling,
2014) are the two families of deep generative mod-
els that are widely adopted in applications. As
VAE:s allow discrete generation from a continuous
space, they have been a popular variant for NLP
tasks including text generation (Bowman et al.,
2016; Yang et al., 2017; Xu and Durrett, 2018;
Shen et al., 2019; Wang et al., 2019). The flexibil-
ity of VAEs also enables adding conditions during
inference to perform controlled language genera-
tion (Hu et al., 2017; Zhao et al., 2017). Diver-
gent from these VAE-based text generation models,
our work decouples the latent representations cor-
responding to the sentence and its syntactic tree
respectively.

Paraphrase Generation Due to the similarity
between two tasks, neural machine-translation-
based models can often be utilized to achieve para-
phrase generation (Hasan et al., 2016; Mallinson
etal., 2017). Recently, lyyer et al. (2018) proposed
to syntactically control the generated paraphrase
and Gupta et al. (2018) generate paraphrases in a
deep generative architecture. However, all these
methods assume the existence of some parallel
paraphrase corpora while unsupervised paraphrase
generation has been little explored.

5 Experiments

We conduct our experiments on two datasets:
sentence-level Penn Treebank (Marcus et al., 1993)
with human-constituted parse trees and a 90 mil-
lion word subset of Wikipedia (Gulordava et al.,
2018) with parsed trees. When the decoder is too
strong, VAE suffers from posterior collapse where
the model learns to ignore the latent variable (Bow-
man et al., 2016). To avoid posterior collapse, KL-
term annealing and dropping out words during de-
coding are employed for training in this work. We
also tried an advanced method replacing Gaussian
priors with von Mises-Fisher priors (Xu and Dur-
rett, 2018) to prevent KL collapse, but the results
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wiki9OM

Model Standard Inputless Standard Inputless
PPL NLL KL PPL NLL KL PPL NLL KL PPL NLL KL
KNS5 145 132 593 169 141 141 588 182
LSTM-LM 110 124 - 520 165 105 133 - 521 179 -
VAE 112 125 2 317 153 106 133 5 308 164 22
SIVAE-c 98(1.6)  121(53)  5(0.5) | 286(2.4) 150(99) 17(1.3) | 94(1.6) 130(56) 12(1.0) | 278(2.3) 161(99) 29(2.4)
SIVAE-i 90(1.7)  119(60)  9(1.0) | 261(2.6) 147(108)  24(2.5) | 89(1.7)  128(63) 16(1.9) | 256(2.4)  158(104)  36(5.1)

Table 2: Language modeling results on testing sets of PTB and wiki90M. For two SIVAE models, the syntactic
tree sequence reconstruction scores are shown in parenthesis alongside the sentence reconstruction scores. Lower

is better for PPL and NLL. The best results are in bold.

are about the same.

To discover whether the incorporation of syntac-
tic trees is helpful for sentence generation, we com-
pare our two versions of SIVAE with three base-
lines that do not utilize syntactic information: a 5-
gram Kneser-Ney language model (KN5) (Heafield
et al., 2013), an LSTM language model (LSTM-
LM) (Sundermeyer et al., 2012), and a standard
VAE (Bowman et al., 2016) using an LSTM-based
encoder and decoder. Experimental results of lan-
guage modeling are evaluated by the reconstruction
loss using perplexity and the targeted syntactic eval-
uation proposed in (Marvin and Linzen, 2018). In
section 5.3, we show the unsupervised paraphrase
generation results.

Datasets We use two datasets in this paper. For
sentence-level Penn Treebank (PTB), the syntactic
trees are labeled by humans (i.e. “gold-standard”
trees). For Wikipedia-90M (wiki90M), which does
not contain human-generated trees, we first feed
the sentences into a state-of-the-art constituency
parser (Kitaev and Klein, 2018), and then use the
parsed trees as syntactic information for our model.
Further, we replace (low-frequency) words that ap-
pear only once in both datasets with the <unk>
token. Statistics about the two datasets are shown
in Table 1. As we can see, the linearized sequences
are much longer than sentences. The vocabulary
of trees sequences is much smaller than the vocab-
ulary of sentences; and golden trees have larger
vocabulary than parsed trees.

Settings The parameters are fine-tuned on the
validation set. Our implementation of SIVAE uses
one-layer bi-directional LSTM architectures for
both encoders, and one-layer unidirectional LSTM
architectures for both decoders. The size of hid-
den units in the LSTM is 600 and the size of word
embeddings is 300. The latent variable size is set
to 150 for both sentences and their syntactic trees.
The hidden units size of the MLP in the conditional

prior network is 400. We also tried to use different
model sizes for sentences and syntactic trees but
the results are about the same and the performance
even get worse when the difference of the model
sizes is too big. We use SGD for optimization, with
a learning rate of 0.0005. The batch size is 32 and
the number of epochs is 10. The word dropout
rate during decoding is 0.4. For KL annealing,
the initial weights of the KL terms are 0, and then
we gradually increase the weights as training pro-
gresses, until they reach the KL threshold of 0.8;
the rate of this increase is set to 0.5 with respect to
the total number of batches.

5.1 Language Modeling Results

We explore two settings for the decoders: standard
and inputless. In the standard setting, the input to
the LSTM decoder is the concatenation of the la-
tent representation z and the previous ground truth
word. A powerful decoder usually results in good
reconstruction in this setting but the model may ig-
nore the latent variable. In the inputless setting, the
decoder purely relies on the latent representations
without any use of prior words, so that the model is
driven to learn high-quality latent representations
of the sentences and syntactic trees.

The language-modeling results, on testing sets
evaluated by negative log likelihood (NLL) and
perplexity (PPL), are shown in Table 2. SIVAEs
outperform all other baselines on both datasets,
demonstrating the explicit incorporation of syntac-
tic trees helps with the reconstruction of sentences.
The performance boost on the wiki90M dataset
also shows that syntactic trees parsed by a well-
developed parser can serve the same function as
human-constituted trees, for our model to utilize
syntactic information; this underscores how mature
parser technology may be leveraged in text genera-
tion. Between the two proposed methods, SIVAE-i
is better at reconstructing sentences while SIVAE-c
is better at reconstructing syntactic trees. In the
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standard setting, VAE performs almost the same as
the LSTM language model, possibly because the
strong LSTM decoder plays a dominant role when
it uses prior words, so the VAE becomes similar to
an LSTM language model. Furthermore, the KL
divergence of the proposed models indicate that
SIVAE is better at avoiding posterior collapse, so
the LSTM sentence decoder can take advantage
of the encoded latent variable as well as the pre-
viously generated syntactic tree. In the inputless
setting, we see that VAE contains a significantly
larger KL term and shows substantial improvement
over KN5 and LSTM language models. SIVAEs
further reduces PPL from 317 to 261 on PTB and
from 308 to 256 on wiki90M, compared to VAE.

5.2 Targeted Syntactic Evaluation

We adopt targeted syntactic evaluation (Marvin and
Linzen, 2018) to examine whether the proposed
methods improve the grammar of generated sen-
tences. The idea is to assign a higher probability
for generating the grammatical sentence than the
ungrammatical one, given a pair of sentences that
only differ in grammar. There are three types of
sentence pairs used in this work.

Subject-verb agreement (SVA): Third-person
present English verbs need to agree with the num-
ber of their subjects.

For example, simple SVA:

(a). The author laughs.

(b). *The author laugh.

Reflexive anaphoras (RA): A reflective pro-
noun such as himself needs to agree in number
(and gender) with its antecedent.

For example, simple RA:

(a). The senators embarrassed themselves.

(b). *The senators embarrassed herself.

Negative polarity items (NPI): Words like any
and ever that can only be used in the scope of
negation are negative polarity items.

For example, simple NPI:

(a). No students have ever lived here.

(b). *Most students have ever lived here.

In the above examples, we expect the probability
of generating (a) to be higher than the probability
of generating (b). However, it is trivial to identify
these simple test pairs with simple syntax. Thus
we include complex longer test pairs with greater

SVA RA NPI
Model s c¢c|s c¢cl|s ¢
Humans | 096 085 | 096 087 | 098 0.1

KN5 | 079 050 | 050 050 | 0.50 0.50

LSTM.LM | 094 056 | 0.83 055 | 050 0.50

VAE | 094 057|084 057|051 050

SIVAEc | 097 0.75 | 0.89 0.64 | 0.57 0.52

SIVAE4 | 095 071 | 088 0.63 | 056 052

Table 3: Accuracy of targeted syntactic evaluation for
each grammar test case. S and C denote simple test-
ing pairs and complex testing pairs. The total num-
ber of test sentences is 44800. Models are trained on
wiki90M. The best results are in bold.

depth in relative clauses, identifying which requires
more understanding of the syntactic structure.

The accuracy per grammar test case of each
method is shown in Table 3. Human scores on
these test pairs in (Marvin and Linzen, 2018) are
also shown for reference. SIVAE outperforms other
baselines on grammar testing cases, demonstrating
the explicit incorporation of syntactic trees helps
with the grammar of generated sentences. For sim-
ple SVA testing pairs, SIVAE-c has a better score
than humans. Even for a difficult grammar test like
NPI, our methods still makes significant progress
compared to other baselines, whose scores show no
syntactic understanding of these sentences. From
Table 3, note that KNS5 can only identify simple
SVA pairs. In addition, VAE has similar syntactic
performance as a LSTM language model, which
verifies the results in reconstruction. Between the
two proposed methods, SIVAE-i makes more gram-
mar mistakes than SIVAE-c, although it has better
perplexity in Table 2. This is because SIVAE-c
considers the dependency between the sentence
prior and the syntactic tree prior, so it can more ef-
ficiently prevent the mismatch between two latent
variables. In other words, SIVAE-c learns more
robust syntactic representations, but this advantage
is not reflected on the reconstruction evaluation.

5.3 Unsupervised Paraphrasing Results

The proposed method is used for generating para-
phrases by implicitly selecting (SIVAE-c) or ex-
plicitly changing (SIVAE-i) the syntactic tree tem-
plates. Our model is not trained on a paraphrase
corpora, which makes it a purely unsupervised para-
phrasing network.

Syntactically Controlled Paraphrasing
SIVAE-i as the syntactically controlled para-
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Template Paraphrase

original

(SBARQ (NP) (VP) (,)(SQ)(?))
(S()(NP)(VP)(”)(NP)(VP)(.))
(SCVP)(,)(NP)(.))

the discovery of dinosaurs has long been accompanied by a legend .
the discovery of dinosaurs has been a legend , is it ?

“ the discovery of dinosaurs is a legend ” he said .

having been accompanied , the unk lengend .

original
(S(PP)(PP)(NP)(VP)(.))
(S(VP)(NP)(CC)(NP)(PP)(.))
(S(NP)(;)(S)(PP)(.))

in 1987 a clock tower and a fountain were erected at council unk monument .
in 1987 at council a fountain was erected .

build a clock and a fountain at council unk unk .

a clock p ; he shops everything on the fountain at unk unk .

Table 4: Examples of syntactically controlled paraphrases generated by SIVAE-i. We show two successful and one
failed (in blue) generations with different templates for each input sentence.

Ori the new york times has been one of the best selling Model PTB wiki90M
newspapers in america . Rele Read Div | Rele Read Div
Genl the new york times also has been used as american VAE \ 263 3.07 277 \ 303 320 2.60
best selling newspaper SIVAE-c | 293 347 280 | 327 367 273
Gen2 the new york times also has been used as a *“ unk ” SIVAE-i | 3.00 330 3.13 | 337 353 3.20

that sells in america .

Gen3 the new york times also has been used as the best
unk ” selling in america .

Table 5: An example of paraphrases generated by
SIVAE-c.

phrasing network is trained on sentences and
their simplified syntactic sequences of PTB and
wiki90M dataset. Table 4 shows some example
paraphrases generated by SIVAE-i using different
syntactic templates. We see that SIVAE-i has
the ability to syntactically control the generated
sentences that conform to the target syntactic tem-
plate. The examples are well-formed, semantically
sensible, and grammatically correct sentences that
also preserve semantics of the original sentences.
However, the model can generate nonsensical
outputs, like the failed cases in Table 4, when the
target template mismatches the input sentence.

Paraphrasing with Different Tempera We fur-
ther perform paraphrasing using SIVAE-c with dif-
ferent tempera. Table 5 shows example paraphrases
generated by SIVAE-i. We see that SIVAE-c can
generate grammatical sentences that are relevant
to the original sentence. However, the generated
paraphrases are very similar, indicating that the
variance of the conditional prior network is small.
In other words, given a sentence latent represen-
tation, the range for SIVAE-c selecting a possible
syntactic tree representation is small, so it tends to
generate similar paraphrases.

Qualitative Human Evaluation We adopt simi-
lar human evaluation metrics as in (Gupta et al.,

Table 6: Human evaluation results on Relevance, Read-
ability, and Diversity of generated paraphrases.

2018) for generated paraphrases. For 20 origi-
nal sentences, we collect 5 paraphrases for each
sentence (100 in total) generated by SIVAE-c or
SIVAE-i using 5 different syntactic templates. The
models are trained on PTB and wiki90M. Three as-
pects are verified in human evaluation: Relevance
with the original sentence, Readability w.r.t. the
syntax of generated sentences, and Diversity of dif-
ferent generations for the same original sentence.
Three human evaluators assign a score on a scale of
1-5 (higher is better) for each aspect per generation.

The human evaluation results for unsupervised
paraphrase generation using standard VAE, SIVAE-
i and SIVAE-c are shown in Table 6. SIVAE-c has
the best scores and standard VAE has the worst
scores at the readability of generated sentences,
which further verifies that syntactic information
is helpful for sentence generation. Paraphrases
generated by SIVAE-i are more diverse under dif-
ferent syntactic templates, compared to SIVAE-c
and standard VAE. All three models show better
paraphrasing performance on the wiki90M dataset.

5.4 Continuity of Latent Spaces

We further test the continuity of latent spaces in
our model. Two vectors z 4 and zp are randomly
sampled from the sentence latent space of SIVAE-
c. Table 7 shows generated sentences based on
intermediate points between z 4 and zp. We see
the transitions are smooth and the generations are
grammatical, verifying the continuity of the sen-
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A in january 2014 , the unk announced that one player
would be one of the first two heroes .

e injanuary 2014 , he was one of the first two players to be
the most successful .

e until the end of the first half of the series , he has played
the most reported time .

e until the end of world war i, he was the first player in the
united states .

e there are also a number of other members in the american
war association .

B there are also a number of other american advances , such
as the unk unk of the american association .

Table 7: Intermediate sentences are generated between
two random points in the latent space of SIVAE-c.

tence latent space. The syntactic structure remains
consistent in neighborhoods along the path, indicat-
ing the continuity in the syntactic tree latent space.

6 Conclusion

We present SIVAE, a novel syntax-infused varia-
tion autoencoder architecture for text generation,
leveraging constituency parse tree structure as the
linguistic prior to generate more fluent and gram-
matical sentences. The new lower bound objec-
tive accommodates two latent spaces, for jointly
encoding and decoding sentences and their syn-
tactic trees. The first version of SIVAE exploits
the dependencies between two latent spaces, while
the second version enables syntactically controlled
sentence generation by assuming the two priors are
independent. Experimental results demonstrate the
incorporation of syntactic trees is helpful for recon-
struction and grammar of generated sentences. In
addition, SIVAE can perform unsupervised para-
phrasing with different syntactic tree templates.
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