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Abstract

Recent approaches to data-to-text generation
have shown great promise thanks to the use
of large-scale datasets and the application of
neural network architectures which are trained
end-to-end. These models rely on represen-
tation learning to select content appropriately,
structure it coherently, and verbalize it gram-
matically, treating entities as nothing more
than vocabulary tokens. In this work we pro-
pose an entity-centric neural architecture for
data-to-text generation. Our model creates
entity-specific representations which are dy-
namically updated. Text is generated con-
ditioned on the data input and entity mem-
ory representations using hierarchical atten-
tion at each time step. We present experi-
ments on the ROTOWIRE benchmark and a
(five times larger) new dataset on the baseball
domain which we create. Our results show that
the proposed model outperforms competitive
baselines in automatic and human evaluation.'

1 Introduction

Data-to-text generation is the task of generating
textual output from non-linguistic input (Reiter
and Dale, 1997; Gatt and Krahmer, 2018). The in-
put may take on several guises including tables of
records, simulations of physical systems, spread-
sheets, and so on. As an example, Figure 1 shows
(in a table format) the scoring summary of a major
league baseball (MLB) game, a play-by-play sum-
mary with details of the most important events in
the game recorded chronologically (i.e., in which
play), and a human-written summary.

Modern approaches to data-to-text generation
have shown great promise (Lebret et al., 2016;
Mei et al., 2016; Perez-Beltrachini and Lapata,
2018; Puduppully et al., 2019; Wiseman et al.,

'0ur code and dataset can be found at https://
github.com/ratishsp/data2text—entity-py.

2017) thanks to the use of large-scale datasets and
neural network models which are trained end-to-
end based on the very successful encoder-decoder
architecture (Bahdanau et al., 2015). In con-
trast to traditional methods which typically imple-
ment pipeline-style architectures (Reiter and Dale,
2000) with modules devoted to individual genera-
tion components (e.g., content selection or lexical
choice), neural models have no special-purpose
mechanisms for ensuring how to best generate a
text. They simply rely on representation learning
to select content appropriately, structure it coher-
ently, and verbalize it grammatically.

In this paper we are interested in the genera-
tion of descriptive texts such as the game summary
shown in Figure 1. Descriptive texts are often
characterized as “entity coherent” which means
that their coherence is based on the way entities
(also known as domain objects or concepts) are
introduced and discussed in the discourse (Kara-
manis et al., 2004). Without knowing anything
about baseball or how game summaries are typi-
cally written, a glance at the text in Figure 1 re-
veals that it is about a few entities, namely players
who had an important part in the game (e.g., Brad
Keller, Hunter Dozier) and their respective teams
(e.g., Orioles, Royals). The prominent role of en-
tities in achieving discourse coherence has been
long recognized within the linguistic and cogni-
tive science literature (Kuno, 1972; Chafe, 1976;
Halliday and Hasan, 1976; Karttunen, 1976; Clark
and Haviland, 1977; Prince, 1981), with Centering
Theory (Grosz et al., 1995) being most prominent
at formalizing how entities are linguistically real-
ized and distributed in texts.

In this work we propose an entity-centric neu-
ral architecture for data-to-text generation. Instead
of treating entities as ordinary tokens, we create
entity-specific representations (i.e., for players and
teams) which are dynamically updated as text is
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TEAM Inn1 Inn2 Inn3 Inn4 ... R H E .

Orioles 1 0 0 0 .2 4 0.

Royals 1 0 0 3 .9 14 1 .

BATTER HV AB R H RBI TEAM timore

C. Mullins H 4 2 2 1 Orioles ...

J. Villar H 4 0 0 O Orioles ...

W. Merrifield V2 3 2 1 Royas ...

R.OHeasn V 5 1 3 4 Royals ... runs,
PITCHER HV W L IP H R ER BB K ...
A.Cashner H 4 13 51 9 4 4 3 1 ...

B. Keller v 7 580 4 2 2 2 4 ...

Inn1: innings, R: runs, H: hits, E: errors, AB: at-bats,
RBI: runs-batted-in, H/V: home or visiting, W: wins,

KANSAS CITY, Mo. — Brad Keller kept up his recent pitching surge
with another strong outing. Keller gave up a home run to the first
batter of the game — Cedric Mullins — but quickly settled in to pitch
eight strong innings in the Kansas City Royals’ 9-2 win over the Bal-
in a matchup of the teams with the worst records in the
majors. Keller (7-5) gave up two runs and four hits with two walks
and four strikeouts to improve to 3—0 with a 2.16 ERA in his last four
starts. Ryan O’Hearn homered among his three hits and drove in four
scored three runs, and and Cam
Gallagher also went deep to help the Royals win for the fifth time in
six games on their current homestand. With the scored tied 1-1 in the
fourth, Andrew Cashner (4-13) gave up a sacrifice fly to
after loading the bases on two walks and a single. led off the
fifth inning with a 423-foot home run to left field to make it 3-1. The
pulled within a run in the sixth when Mullins led off with a
double just beyond the reach of at third, advanced to third on a
fly ball and scored on Trey Mancini’s sacrifice fly to the wall in right.
The Royals answered in the bottom of the inning as Gallagher hit his

L: losses, IP: innings pitched, ER: earned runs, BB:

first home run of the season. ..

walks, K: strike outs.

BATTER PITCHER SCORER EVENT TEAM INN RUNS ...
C. Mullins B. Keller Home run Orioles 1 1
H. Dozier A. Cashner W. Merrifield Grounded into DP Royals 1 1
W. Merrifield A. Cashner B. Goodwin Sac fly Royals 4 2
H. Dozier A. Cashner Home run 4 3

Royals

Figure 1: MLB statistics tables and game summary. The tables summarize the performance of the two teams and of
individual team members who played as batters and pitchers as well as the most important events (and their actors)
in each play. Recurring entities in the summary are boldfaced and colorcoded, singletons are shown in black.

being generated. Our model generates descriptive
texts with a decoder augmented with a memory
cell and a processor for each entity. At each time
step in the decoder, the processor computes an up-
dated representation of the entity as an interpola-
tion between a candidate entity memory and its
previous value. Processors are each a gated recur-
rent neural network and parameters among them
are shared. The model generates text by hierarchi-
cally attending over memory cells and the records
corresponding to them.

We report experiments on the benchmark RoO-
TOWIRE dataset (Wiseman et al., 2017) which
contains statistics of NBA basketball games paired
with human-written summaries. In addition, we
create a new dataset for MLB (see Figure 1). Com-
pared to ROTOWIRE, MLB summaries are longer
(approximately by 50%) and the input records are
richer and more structured (with the addition of
play-by-play). Moreover, the MLB dataset is five
times larger in terms of data size (i.e., pairs of ta-
bles and game summaries). We compare our entity
model against a range of recently proposed neural
architectures including an encoder-decoder model
with conditional copy (Wiseman et al., 2017) and
a variant thereof which generates texts while tak-
ing content plans into account (Puduppully et al.,

2019). Our results show that modeling entities ex-
plicitly is beneficial and leads to output which is
not only more coherent but also more concise and
grammatical across both datasets.

Our contributions in this work are three-fold: a
novel entity-aware model for data-to-text genera-
tion which is linguistically motivated, yet resource
lean (no preprocessing is required, e.g., to extract
document plans); a new dataset for data-to-text
generation which we hope will encourage further
work in this area; a comprehensive evaluation and
comparison study which highlights the merits and
shortcomings of various recently proposed data-
to-text generation models on two datasets.

2 Related Work

The sports domain has attracted considerable at-
tention since the early days of generation systems
(Robin, 1994; Tanaka-Ishii et al., 1998). Like-
wise, a variety of coherence theories have been de-
veloped over the years (e.g., Mann and Thomson
1988; Grosz et al. 1995) and their principles have
found application in many symbolic text genera-
tion systems (e.g., Scott and de Souza 1990; Kib-
ble and Power 2004). Modeling entities and their
communicative actions has also been shown to
improve system output in interactive storytelling
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(Cavazza et al., 2002; Cavazza and Charles, 2005)
and dialogue generation (Walker et al., 2011).

More recently, the benefits of modeling entities
explicitly have been demonstrated in various tasks
and neural network models. Ji et al. (2017) make
use of dynamic entity representations for language
modeling. And Clark et al. (2018) extend this
work by adding entity context as input to the de-
coder. Both approaches condition on a single en-
tity at a time, while we dynamically represent and
condition on multiple entities in parallel. Kiddon
et al. (2016) make use of fixed entity representa-
tions to improve the coverage and coherence of
the output for recipe generation. Bosselut et al.
(2018) model actions and their effects on entities
for the same task. However, in contrast to our
work, they keep entity representations fixed during
generation. Henaff et al. (2017) make use of dy-
namic entity representations in machine reading.
Entity representations are scored against a query
vector to directly predict an output class or com-
bined as a weighted sum followed by softmax over
the vocabulary. We make use of a similar entity
representation model, extend it with hierarchical
attention and apply it to data-to text generation.
The hierarchical attention mechanism was first in-
troduced in Yang et al. (2016) as a way of learn-
ing document-level representations. We apply at-
tention over records and subsequently over entity
memories.

Several models have been proposed in the last
few years for data-to-text generation (Mei et al.
2016; Lebret et al. 2016; Wiseman et al. 2017,
inter alia) based on the very successful encoder-
decoder architecture (Bahdanau et al., 2015). Vari-
ous attempts have also been made to improve these
models, e.g., by adding content selection (Perez-
Beltrachini and Lapata, 2018) and content plan-
ning (Puduppully et al., 2019) mechanisms. How-
ever, we are not aware of any prior work in this
area which explicitly handles entities and their
generation in discourse context.

3 Background: Encoder-Decoder with
Conditional Copy

The input to our model is a table of records (see
Figure 1). Records in turn have features, repre-
sented as {r;;}_, where L is the number of fea-
tures in each record. Examples of features are
values (r;1; e.g., 8.0, Baltimore) or entities (7 2;
e.g., Orioles, C. Mullins). The model output y is a

document containing words y = y - - - y|,| Where
ly| is the document length. Following previous
work (Wiseman et al., 2017; Puduppully et al.,
2019), we embed features into vectors, and then
use a multilayer perceptron to obtain a vector rep-
resentation r; for each record:

r; = RGLU(WT[I‘]‘J; rj2;...; rj,L] + bT) (D)

where [;] indicates vector concatenation, W, €
R™*"L b, € R™ are parameters, and ReL U is the
rectifier activation function.

Let {e; }ljil denote the output of the encoder.
We use an LSTM decoder to compute the proba-
bility of each target word, conditioned on previ-
ously generated words, and on e;. In the case of
ROTOWIRE, we follow previous work (Wiseman
et al., 2017; Puduppully et al., 2019) and consider
e; = rj. The first hidden state of the decoder
is initialized by the average of the record vectors,
ave({e;},).

In the case of MLB, information encoded in
play-by-play is sequential. Recall, that it doc-
uments the most important events in a game in
chronological order. To account for this, we en-
code MLB records into {e; }‘;11 with a bidirec-
tional LSTM. We impose an ordering on records in
the box score (i.e., home team followed by away
team) which is in turn followed by play-by-play
where records are naturally ordered by time. The
decoder is initialized with the concatenation of the
hidden states of the final step of the encoder.

At time step ¢, the input to the decoder LSTM
is the embedding of the previously predicted
word y;—1. Let d; denote the hidden state of the
t-th LSTM unit. We compute attention scores o ;
over the encoder output e; and obtain dynamic
context vector q; as the weighted sum of the hid-
den states of the input:

ar,; x exp(d] Wee;)
qi = Z Q€5
J
dj"" = tanh(W.[ds; q]) 2)

where W, € R”X”,Zj ar; =1, W, € Rnx2n
and d** is the attention vector.

The probability of output text y conditioned on
the input table r is modeled as:

pgen(yt‘y<t7 T):SOftmath(Wyd?tt + by) 3)
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Figure 2: Diagram of entity memory network (block A) and hierarchical attention (blocks B and C). Module fy

represents update equations (6)—(8) where € is the set of trainable parameters.

The gate represents the entity

memory update (Equation (9)). Block B covers Equations (10) and (11), and block C Equations (12) and (13).

where W, € RIVv*" b, € RV are parameters
and |V, | is the output vocabulary size.

We further augment the decoder with a copy
mechanism i.e., the ability to copy values from the
input; copy implies y; = r;1 for some ¢ and j
(e.g., Royals, Orioles, 9, 2 in the summary in Fig-
ure 1 are copied from r). We use the conditional
copy method proposed in Gulcehre et al. (2016)
where a binary variable is introduced as a switch
gate to indicate whether y; is copied or not.

4 Entity Memory and Hierarchical
Attention

We extend the basic model from Section 3 with
entity memory and hierarchical attention. Figure 2
provides a schematic overview of our architecture.
4.1 Entity Memory

In order to render the model entity-aware, we com-
pute xi as an average of record representation for
each unique entity k (i.e., one of r; o values):

xi = (Urje = Krj)/ D Llrjz =k @
j j

where 1[x] = 1 if z is true, and 0 otherwise.
We initialize u;—_1 , the memory representa-
tion of an entity at time ¢t = —1, as:

U= = WiXg ()

where u;—_; ;, € R and W; € RP*",

To capture the fact that discourse in descrip-
tive texts may shift from one entity to the next,
e.g., some entities may be salient in the beginning
of the game summary (see Brad Kelly in the text in
Figure 1), others only towards the end (see Dozier
in Figure 1), and a few throughout (e.g., references
to teams), we update entity representations at each
time step during decoding. We use gate =y, to in-
dicate whether there should be an update in the
entity representation:

v = 0(Wyd; + bg) (6)

where ¢t >= 0, o is the sigmoid function, W, €
RP*P_and by € RP.

We also compute d; j, the extent to which the
entity representation should change, and 11, 5, , the
memory of the candidate entity:

81 =7 ©0(Wedi+be+Wpuy_1 +by)  (7)
ﬁt,k :ngt ®)

where © denotes element-wise multiplication,
W, e RP*", Wy € RPXP, b, by € RP, and
¢, 0¢k € [0, 1]7 (see block A in Figure 2).

An element in gate v, will have value approach-
ing 1 if an update in any u;_1 4 is required. The
value of an element in gate d; ,, will approach 1 if
the corresponding value of the element in u;_1 g
changes. Equation (9) computes the update in
entity memory as an interpolation over the gated
representation of the previous value of the entity
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memory and the candidate entity memory:
W =(1—-0ip) Ow1p+0 00 (9

where u, j, represents entity & at time ?.

Previous work (Henaff et al., 2017; Ji et al.,
2017; Clark et al., 2018) employs a normalization
term over u, ;. We empirically found that normal-
ization hurts performance and hence did not in-
clude it in our model.

4.2 Hierarchical Attention

We hypothesize that our generator should first fo-
cus on entities (e.g., the main players and their
teams) and then on the records corresponding
to theses entities (e.g, player performance in the
game). Our model implements this view of text
generation via a hierarchical attention mechanism
which we explain below. We also expect that fo-
cusing on entities first should improve the preci-
sion of the texts we generate as the entity distribu-
tion will constrain the probability distribution of
records corresponding to each entity.

To better understand the hierarchical attention
mechanism, we can view the encoder output e; as
a 2-dimensional array gy, , where k € [1, K| rep-
resents entities and z € [1, Z] represents records
of entities and there is a one-to-one correspon-
dence between positions j and k, z. We compute
attention over gy, ., the encoder output, as:

ke X exp(dgwagk,z) (10)
where W, € R™*" %" ;. = 1 (see block B
in Figure 2). We compute the entity context as:

Stk = Y Otk Bk (11)
z
while attention over entity vectors uy j, is:
‘l’t,k X exp(dIWhutk) (12)

with W), € R"*P, %" W, ;. = 1. And the encoder
context q; (see block C in Figure 2) is computed
as follows:

a = Viisik (13)
k

We feed q; into Equation (2) and com-
pute Pgen (Ye|y<¢, ), the probability of generating
output text y conditioned on records 7, as shown
in Equation (3).

ROTOWIRE MLB
Vocab Size 11.3K 38.9K
# Tokens 1.5M 14.3M
# Instances 49K 26.3K
Avg Length 337.1 542.05
# Record Types 39 53
Avg Records 628 565

Table 1: Vocabulary size, number of tokens, number
of instances (i.e., record-summary pairs), average sum-
mary length, number of record types and average num-
ber of records in ROTOWIRE and MLB datasets.

We experimented with feeding >, W; puy ;, as
input context along the lines of Clark et al. (2018);
however, results on the development dataset de-
graded performance, and we did not pursue this
approach further.

5 Training and Inference

Our training objective maximizes the log likeli-
hood of output text given an input table of records:

max »  logp(ylr)

(r,y)eD

where D is the training set consisting of pairs of
record tables and output game summaries. During
inference, we make use of beam search to approx-
imately obtain the best output ¢ among candidate
outputs y':

j = argmaxp(y/|r)
y/

6 Experimental Setup

Data We performed experiments on two
datasets. The first one is ROTOWIRE (Wiseman
et al.,, 2017) which contains NBA basketball
game statistics matched with human-written
summaries. In addition, we created MLB, a
new dataset which contains baseball statistics
and corresponding human-authored summaries
obtained from the ESPN website.” Basic statistics
on the two datasets are given in Table 1. As
can be seen, MLB is approximately five times
larger than ROTOWIRE, with richer vocabulary
and longer summaries. For ROTOWIRE, we used
the official training, development, and test splits
of 3,398/727/728 instances. Analogously, for
MLB we created a split of 22,821/1,739/1,744 in-
stances. Game summaries in MLB were tokenized

“http://www.espn.com/mlb/recap?gameld={ gameid}
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using nltk and hyphenated words were separated.
Sentences containing quotes were removed as
they included opinions and non-factual statements
unrelated to the input tables. Sometimes MLB
summaries contain a “Game notes” section with
incidental information which was also removed.
For MLB, the value of L in Equation (1) is 6,
and for ROTOWIRE it is 4. The first four fea-
tures are similar in both datasets and include value
(rj1; e.g., 8.0, Baltimore), entity (7 2; €.g., Orioles,
C. Mullins), record type (r;3; e.g., RBI, R,H) and
whether a player is on the home- or away- team
(r;,4). MLB has two additional features which in-
clude the inning of play (r;5; e.g., 9, 7, and -1 for
records in the box score), and play index, a unique
play identifier for a set of records in a play (r;¢;
e.g., 0,10, and -1 for records in the box score).

Information Extraction For automatic evalua-
tion, we make use of the Information Extraction
(IE) approach proposed in Wiseman et al. (2017).
The idea is to use a fairly accurate IE tool to extract
relations from gold summaries and model sum-
maries and then quantify the extent to which the
extracted relations align or diverge (see Section 7
for the specific metrics we use).

The IE system first identifies candidate entities
(i.e., players, teams) and values (i.e., numbers),
and given an “entity, value” pair it predicts the type
of relation. For example, in ROTOWIRE, the rela-
tion for the pair “Kobe Bryant, 40” is PTS. Train-
ing data for the IE system is obtained automat-
ically by matching entity-value pairs from sum-
mary sentences against record types. The IE sys-
tem has an ensemble architecture which combines
convolutional and bidirectional LSTM models.

We reused the updated IE models from Pudup-
pully et al. (2019) for ROTOWIRE? and trained
our own IE system for MLB. Box and line scores
in MLB are identical in format to ROTOWIRE
and pose no particular problems to the IE system.
However, it is difficult to extract information from
play-by-play and match it against the input tables.
Consider the sentences Ryan O’Hearn homered or
Keller gave up a home run from Figure 1 where we
can identify entities (Ryan O’Hearn, Keller) and
record types (home-run-batter, home-run-pitcher)
but no specific values. We created a dummy value
of -1 for such cases and the IE system was trained
to predict the record type of entity value pairs such
as (Ryan O’Hearn, -1) or (Keller, -1). Moreover,

3https://github.com/ratishsp/data2text-1/

the IE system does not capture attributes such as
inning and team scores in play-by-play as it is
difficult to deterministically match these against
corresponding spans in text. The IE system thus
would not be able to identify any records in the
snippet tied 1-1 in the fourth. On MLB, the sys-
tem achieved 83.4% precision and 66.7% recall
(on held out data). We note that designing a highly
accurate IE module for MLB is in itself a research
challenge and outside the scope of this paper.

In order to compare our model against Pudup-
pully et al. (2019), we must have access to content
plans which we extracted from ROTOWIRE and
MLB by running the IE tool on gold summaries
(training set). We expect the relatively low IE re-
call on MLB to disadvantage their model which
relies on accurate content plans.

Training Configuration Model hyperparame-
ters were tuned on the development set. We used
the Adagrad optimizer (Duchi et al., 2011) with
an initial learning rate of 0.15, decayed by 0.97
for every epoch after the 4th epoch. We used
truncated BPTT (Williams and Peng, 1990) of
length 100 and made use of input feeding (Luong
et al., 2015). We summarize the hyperparameters
of the ROTOWIRE and MLB models in the Ap-
pendix. All models were implemented on a fork
of OpenNMT-py (Klein et al., 2017).

System Comparison We compared our entity
model against the following systems:

TEMPL is a template-based generator; we reused
TEMPL from Wiseman et al. (2017) for RO-
TOWIRE and created a new system for MLB.
The latter consists of an opening sentence
about the two teams playing the game. It
then describes statistics of pitchers (innings
pitched, runs and hits given etc.) followed by
a description of play-by-play (home run, sin-
gle, double, triple etc.).

ED+CC is the encoder-decoder model with con-
ditional copy from Section 3 and the best per-
forming system in Wiseman et al. (2017).

NCP+CC is the best performing system in
Puduppully et al. (2019); it generates con-
tent plans by making use of pointer networks
(Vinyals et al., 2015) to point to the input e;;
the resultant content plans are then encoded
using a BiLSTM followed by an LSTM de-
coder with an attention and copy mechanism.
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RG cS co RG S co
W 4 P% | P% R% | DLD% |PLEU Y 4 P% | P% R% |DLD% | BLEU
TEMPL [54.23 99.94] 2699 58.16 | 1492 | 846 ED+CC|22.68 7940 | 29.06 3411 | 1600 | 14.00
WS-2017(23.72 74.80| 2949 36.18 | 1542 | 14.19 +Hier |30.76 93.02 | 33.99 4479 | 19.03 | 14.19
NCP+CC|34.28 87.47| 34.18 5122 | 1858 |16.50 +Dyn |27.93 90.85 | 34.19 4227 | 1847 | 1540
ENT  [30.11 92.69| 38.64 4851 | 20.17 |16.12 +Gate |31.84 91.97 | 36.65 48.18 | 19.68 | 15.97

RG cS co RG S co
MLB 4 P% | P%» R% | DLD% |PMEU MLB 1 “pg, | p% RrR% | DLD% | BLEV
TEMPL [59.93 97.96] 22.57 68.46 | 1064 | 381 ED+CC| 18.60 92.65 | 62.29 51.36 | 2593 | 9.55
ED+CC |18.69 92.19| 62.01 50.12 | 2544 | 9.69 +Hier |19.02 9371 | 62.84 52.12 | 25.72 | 1038
NCP+CC|17.93 88.11| 60.48 55.13 | 26.71 | 9.68 +Dyn |20.28 89.19 | 58.19 58.94 | 24.49 | 10585
ENT  [2135 8829| 5835 61.14 | 2451 | 1151 +Gate |21.32 88.16 | 57.36 61.50 | 24.87 | 11.13

Table 2: Evaluation on ROTOWIRE (RW) and MLB
test sets using relation generation (RG) count (#) and
precision (P%), content selection (CS) precision (P%)
and recall (R%), content ordering (CO) in normalized
Damerau-Levenshtein distance (DLD%), and BLEU.

7 Results

Automatic Evaluation We first discuss the re-
sults of automatic evaluation using the metrics de-
fined in Wiseman et al. (2017). Let ¢ be the gold
output and y the model output. Relation Gen-
eration measures how factual y is compared to
input r. Specifically, it measures the precision
and number of relations extracted from y which
are also found in r. Content Selection measures
the precision and recall of relations between g
and y. Content Ordering measures the Damerau-
Levenshtein distance between relations in y and
relations in ¢. In addition, we also report BLEU
(Papineni et al., 2002) with the gold summaries as
reference.

Table 2 (top) summarizes our results on the RO-
TOWIRE test set (results on the development set
are available in the Appendix). We report results
for our dynamic entity memory model (ENT),
the best system of Wiseman et al. (2017) (WS-
2017) which is an encoder-decoder model with
conditional copy, and NCP+CC (Puduppully et al.,
2019). We see that ENT achieves scores compara-
ble to NCP+CC, but performs better on the met-
rics of RG precision, CS precision, and CO. ENT
achieves substantially higher scores in CS preci-
sion compared to WS-2017 and NCP+CC, with-
out any planning component; CS recall is worse
for ENT compared to NCP+CC mainly because
the latter model is trained to first create a content
plan with good coverage of what to say.

Table 2 (bottom) also presents our results on
MLB (test set). Note that ED+CC is a reim-
plementation of Wiseman et al.’s (2017) encoder-

Table 3: Ablation results on ROTOWIRE (RW) and
MLB development set using relation generation (RG)
count (#) and precision (P%), content selection (CS)
precision (P%) and recall (R%), content ordering
(CO) in normalized Damerau-Levenshtein distance
(DLD%), and BLEU.

decoder model (with conditional copy) on MLB.
We see that ENT achieves highest BLEU amongst
all models and highest CS recall and RG count
amongst neural models. The RG precision of ENT
is lower than ED+CC. Inspection of model out-
put revealed that on MLB, ED+CC tends to fo-
cus on one or two players getting most of the
facts about them right, whereas ENT sometimes
gets the coreference wrong, and thus lower RG
precision. The TEMPL system scores highest on
RG precision and count, and CS recall on both
datasets. This is because TEMPL can make use
of domain knowledge which is not available to the
neural models. TEMPL performs poorly on MLB
in terms of BLEU, in fact it is considerably worse
compared to the similar template system on RO-
TOWIRE (see Table 2). This suggests that the task
of creating MLB game summaries is hard, even
for a template system which does not perform any
sophisticated generation.

Ablation Experiments We further examined
how individual model components contribute to
the quality of the generated summaries. To as-
sess the impact of hierarchical attention (Sec-
tion 4.2) over ED+CC, we report the performance
of a stripped-down variant of our model without
dynamic entity memory. Specifically, the entity
memory was kept static and set to u;—_1 ; (see
Equation (5)). In this model, attention over entity

vectors is:
U, g o< exp(df Whw—_q 1) (14)

We next examined the contribution of dynamic
memory, by adding it to this model without the
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gate v, (i.e., we set v, to one) and Equation (7)
then becomes:

01y =0(Wed¢ +be + Wew_q 1, +by) (15)

Finally, we obtain our final ENT model, by incor-
porating the update gate mechanism.

The results of the ablation study are shown
in Table 3. We compare ED+CC against vari-
ants “+Hier”, “+Dyn” and “+Gate” corresponding
to successively adding hierarchical attention, dy-
namic memory, and the update gate mechanism.
On both datasets, hierarchical attention, improves
relation generation, content selection, and BLEU.
Dynamic memory and the update gate brings fur-
ther improvements to content selection and BLEU.

Because it conditions on entities, ENT is able
to produce text displaying nominal coreference
which is absent from the outputs of ED+CC and
WS-2017. We present an example in Table 4 (and
in the Appendix) where entities Dwight Howard
and James Harden are introduced and then later re-
ferred to as Howard and Harden. We also see that
while generating the last sentence about the next
game, ENT is able to switch the focus of attention
from one team (Rockets) to the other (Nuggets),
while NCP+CC verbalises Nuggets twice.

Human-Based Evaluation Following -earlier
work (Wiseman et al., 2017; Puduppully et al.,
2019), we also evaluated our model by asking hu-
mans to rate its output in terms of relation gen-
eration, coherence, grammaticality, and concise-
ness. Our studies were conducted on the Ama-
zon Mechanical Turk platform. For ROTOWIRE,
we compared ENT against NCP+CC, Gold, and
TEMPL. We did not compare against WS-2017
or ED+CC, since prior work (Puduppully et al.,
2019) has shown that NCP+CC is superior to these
models in terms of automatic and human-based
evaluation. For MLB, we compared ENT against
NCP+CC, ED+CC, Gold, and TEMPL.

In the first study, participants were presented
with sentences randomly selected from the game
summary (test set) together with corresponding
box and line score tables and were asked to count
supporting and contradicting facts in these sen-
tences. We evaluated 30 summaries and 4 sen-
tences per summary for each of ROTOWIRE and
MLB. We elicited 5 responses per summary.

As shown in Table 5, on ROTOWIRE ENT
yields a comparable number of supporting and
contradicting facts to NCP+CC (the difference is

The (18-5) defeated the

(10-13) 108-96 on Tuesday at the Toyota Center in Hous-
ton. The had a strong first half where they out—
scored ... The were led by Donatas Motiejunas,
who scored a game-high of 25 points ... James Harden
also played a factor in the win, as he went 7—for . .. Coming
off the bench, Donatas Motiejunas had a big game and fin-
ished with 25 points . . . The only other player to reach dou-
ble figures in points was Arron Afflalo, who came off the
bench for 12 points ... Coming off the bench, Arron Af-
flalo chipped in with 12 points . .. The ’ next game
will be on the road against the Boston Celtics on Friday,
while the will travel to Boston to play the Celtics
on Wednesday.

The Houston Rockets (18-5) defeated the Denver Nuggets
(10-13) 108-96 on Monday at the Toyota Center in Hous-
ton. The Rockets were the superior shooters in this game,
going ... The Rockets were led by the duo of Dwight
Howard and James Harden. Howard shot 9—for-11 from
the field and ... Harden on the other hand recorded 24
points (7-20 FG, 2-5 3Pt, 8-9 FT), 10 rebounds and 10
assists, The only other Nugget to reach double figures in
points was Arron Afflalo, who finished with 12 points (4—
17 FG,... The Rockets’ next game will be on the road
against the New Orleans Pelicans on Wednesday, while the
Nuggets will travel to Los Angeles to play the Clippers on
Friday.

Table 4: Examples of model output for NCP+CC (top)
and ENT (bottom) on ROTOWIRE. Recurring entities
in the summaries are boldfaced and colorcoded, single-
tons are shown in black.

not statistically significant). TEMPL has the high-
est number of supporting facts, even relative to
gold summaries, and very few contradicting facts.
This is expected as TEMPL output is mostly fac-
tual, it essentially parrots statistics from the tables.
On MLB, ENT yields a number of supporting facts
comparable to Gold and NCP+CC, but signifi-
cantly lower than ED+CC and TEMPL. Contra-
dicting facts are significantly lower for ENT com-
pared to NCP+CC, but comparable to ED+CC and
higher than TEMPL and Gold.

We also evaluated the quality of the generated
summaries. Following earlier work (Puduppully
et al., 2019), we presented participants with two
summaries at a time and asked them to choose
which one is better in terms of Grammaticality
(is the summary written in well-formed English?),
Coherence (do the sentences in summary follow
a coherent discourse?), and Conciseness (does the
summary tend to repeat the same content?) We di-
vided the four competing systems (Gold, TEMPL,
NCP+CC, and ENT) into six pairs of summaries
for ROTOWIRE and the five competing systems
(Gold, TEMPL, ED+CC, NCP+CC, and ENT)
into ten pairs for MLB. We used Best-Worst scal-
ing (Louviere and Woodworth, 1991; Louviere
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ROTOWIRE #Supp #Contra Gram Coher Concis

Gold 2.98*  0.28*% 4.07* 333 -10.74*
TEMPL 6.98*  0.21* -3.70* -3.33*% 17.78%
NCP+CC  4.90 090  -3.33* -3.70*% -3.70
ENT 4.77 0.80 296 370 -333
MLB #Supp #Contra Gram Coher Concis
Gold 281  0.15% 1.24% 3.48% -9.33*
TEMPL 3.98*% 0.04* -10.67* -7.30% 8.43*
ED+CC 3.24%  0.40 0.22% -0.90*% -2.47*
NCP+CC 286  0.88* 0.90* -1.35*% -1.80*
ENT 286 052 831 6.07 539

Table 5: Average number of supporting and contra-
dicting facts in game summaries and best-worst scaling
evaluation (higher is better) on ROTOWIRE and MLB
datasets. Systems significantly different from ENT are
marked with an asterisk * (using a one-way ANOVA
with posthoc Tukey HSD tests; p < 0.05).

et al., 2015), a more reliable alternative to rating
scales. The score of a system is computed as the
number of times it was rated best minus the num-
ber of times is rated worst (Orme, 2009). Scores
range from —100 (absolutely worst) to 100 (ab-
solutely best). We elicited judgments for 30 test
summaries for ROTOWIRE and MLB; each sum-
mary was rated by 3 participants.

As shown in Table 5, on ROTOWIRE Gold
receives highest scores in terms of Grammati-
cality, which is not unexpected. ENT comes
close, achieving better scores than NCP+CC and
TEMPL, even though our model only enhances the
coherence of the output. Participants find ENT
on par with Gold on Coherence and better than
NCP+CC and TEMPL whose output is stilted and
exhibits no variability. In terms of Conciseness,
TEMPL is rated best, which is expected since it
does not contain any duplication, the presented
facts are mutually exclusive; ENT is comparable
to NCP+CC and better than Gold.

As far as MLB is concerned, ENT achieves
highest scores on Grammaticality and Coherence.
It is rated high on Conciseness also, second only to
TEMPL whose scores are lowest on Grammatical-
ity and Coherence. Perhaps surprisingly, Gold is
rated lower than ENT on all three metrics; we hy-
pothesize that participants find Gold’s output too
verbose compared to the other systems. Recall that
MLB gold summaries are relative long, the aver-
age length is 542 tokens compared to ROTOWIRE
whose summaries are almost half as long (see Ta-
ble 1). The average length of output summaries
for ENT is 327 tokens.

Taken together, our results show that ENT per-
forms better than comparison systems on both RO-
TOWIRE and MLB. Compared to NCP+CC, it is
conceptually simpler and more portable, as it does
not rely on content plans which have to be ex-
tracted via an IE system which must be reconfig-
ured for new datasets and domains.

8 Conclusions

In this work we presented a neural model for data-
to-text generation which creates entity-specific
representations (that are dynamically updated) and
generates text using hierarchical attention over the
input table and entity memory. Extensive auto-
matic and human evaluation on two benchmarks,
ROTOWIRE and the newly created MLB, show
that our model outperforms competitive baselines
and manages to generate plausible output which
humans find coherent, concise, and factually cor-
rect. However, we have only scratched the sur-
face; future improvements involve integrating con-
tent planning with entity modeling, placing more
emphasis on play-by-play, and exploiting depen-
dencies across input tables.
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A Appendix

Hyperparameters Table 6 contains the hyper-
parameters used for our ENT model on the RO-
TOWIRE and MLB datasets.

Results on the Development Set Table 7 (top)
shows results on the ROTOWIRE development set
for our dynamic entity memory model (ENT), the
best system of Wiseman et al. (2017) (WS-2017)
which is an encoder-decoder model with con-
ditional copy, the template generator (TEMPL),
our implementation of encoder-decoder model
with conditional copy (ED+CC), and NCP+CC
(Puduppully et al., 2019). We see that ENT
achieves scores comparable to NCP+CC, but per-
forms better on the metrics of RG precision, CS
precision, and CO. Table 7 (bottom) also presents
our results on MLB. ENT achieves highest BLEU
amongst all models and highest CS recall and RG
count amongst neural models.

Qualitative Examples Tables 8 and 9 contain
examples of model output for ROTOWIRE and
MLB, respectively. Because it conditions on en-
tities, ENT is able to produce text displaying nom-
inal coreference compared to other models.
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ROTOWIRE

MLB

RG

CS

CO

Word Embeddings 600 300 RW # P% | P% R% | DLD% > "V
Hidden state size 600 600 TEMPL [54.29 99.92| 26.61 59.16 | 14.42 | 851
Entity memory size 300 300 WS-2017(23.95 75.10| 28.11 35.86 | 15.33 | 14.57
LSTM Layers 2 1 ED+CC [22.68 79.40| 29.96 34.11 | 16.00 | 14.00
Input Feeding Yes Yes NCP+CC |33.88 87.51| 33.52 5121 | 1857 |16.19
Dropout 0.3 0.3 ENT 31.84 91.97| 36.65 48.18 | 19.68 |15.97
Optimizer Adagrad Adagrad

Initial learning rate 0.15 0.15 RG CS CO

Learning rate decay 0.97 0.97 MLB 4 P%| P% R% |DLD% |PMEV
Epochs 25 25 TEMPL |59.93 97.96| 22.82 68.46 10.64 3.81
BPTT size 100 100 ED+CC |18.69 92.65| 62.29 51.36 | 25.93 9.55
Batch size 5 12 NCP+CC|17.70 88.01| 59.76 55.23 26.87 9.43
Inference beam size 5 5 ENT 21.32 88.16| 57.36 61.50 | 24.87 |11.13

Table 6: Hyperparameters for ROTOWIRE and MLB.  Table 7: Results on ROTOWIRE (RW) and MLB de-

velopment sets using relation generation (RG) count
(#) and precision (P%), content selection (CS) preci-
sion (P%) and recall (R%), content ordering (CO) in
normalized Damerau-Levenshtein distance (DLD%),
and BLEU.

System
Template

Summary
The (44-30) defeated the Detroit Pistons (39-35) 112-95. Paul Millsap scored 23 points
(8-13 FG, 3-4 3PT, 4-5 FT) to go with 9 rebounds. Tobias Harris scored 21 points (10-20 FG, 1-3 3PT,
0-0 FT) to go with 10 rebounds. Andre Drummond scored 19 points (7-11 FG, 0-0 3PT, 5-9 FT) to go
with 17 rebounds. Kent Bazemore scored 17 points (7-9 FG, 3-5 3PT, 0-0 FT) to go with 4 rebounds.
Aron Baynes scored 15 points (5-6 FG, 0-0 3PT, 5-6 FT) to go with 7 rebounds. Al Horford scored 13
points (6-15 FG, 1-5 3PT, 0-0 FT) to go with 5 rebounds. The ” next game will be at home
against the Dallas Mavericks, while the Detroit Pistons will travel to play the Bulls.
The Atlanta Hawks (44-30) defeated the Detroit Pistons (39-35) 112-95 on Wednesday at the Palace of
Auburn Hills. The Hawks came into this game riding a three—game losing streak and it was clear they did
n’t have it all on the floor. Paul Millsap led the way for the Hawks with 23 points (8-13 FG, 3—4 3Pt, 4-5
FT), along with nine rebounds, five assists and four steals, in 33 minutes. Al Horford chipped in 13 points
(6-15 FG, 1-5 3Pt), and Kent Bazemore chipped in 17 points on 7-9 shooting, including 3-5 from deep.
Kyle Korver chipped in 12 points (5-10 FG, 1-5 3Pt, 1-1 FT) and three rebounds in 29 minutes, while
Tobias Harris chipped in 21 points (10-20 FG, 1-3 3Pt), 10 rebounds and five assists. Tobias Drummond
had a double—double of his own with 19 points (7-11 FG, 5-9 FT) and 17 rebounds, along with two blocked
shots, in 33 minutes. had a double—double of his own, with 19 points (7-11 FG, 5-9
FT) and 17 rebounds, along with two blocked shots. The only other player to score in double digits for
Detroit was , who finished with 19 points (7-11 FG, 5-9 FT) and 17 rebounds, along
with two blocked shots. The Pistons’ next game will be on the road against the Cleveland Cavaliers on
Friday, while the Pistons will travel to Minnesota to play the Timberwolves on Wednesday.
The Atlanta Hawks (44-30) defeated the Detroit Pistons (39-35) 112-95 on Monday at the Palace of
Auburn Hills. The Hawks got off to a quick start in this one, out—scoring the Pistons 27-15 in the first
quarter alone. The Hawks were the superior shooters in this game, going 45 percent from the field and 38
percent from the three—point line, while the Pistons went 39 percent from the floor and just 24 percent from
beyond the arc. The Hawks were led by the duo of and finished
with 23 points (8-13 FG, 3—4 3Pt, 4-5 FT), nine rebounds and four blocked shots, Whlle had
19 points (7-11 FG, 5-9 FT), 17 rebounds and two blocked shots. It was his second double—double in a
row, as he’s combined for 45 points and 19 rebounds over his last two games. He’s now averaging 15 points
and 7 rebounds on the season. Jeff Teague was the other starter to reach double figures in points, as he
finished with 12 points (3—13 FG, 2-3 3Pt, 4-4 FT) and 12 assists. The Hawks’ next game will be at home
against the Cleveland Cavaliers on Friday, while the Pistons will travel to Los Angeles to play the Clippers
on Friday.

NCP+CC

ENT

Table 8: Example output from the template-based system, NCP+CC (Puduppully et al., 2019) and our ENT
model for ROTOWIRE. Recurring entities in the summaries are boldfaced and colorcoded, singletons are shown
in black.
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System Summary
Template | The Tampa Bay Rays defeated the Oakland Athletics 13—4. Jason Isringhausen (0-0) allowed O runs,
1 hits and O walks in 1 innings. Jeff Niemann (4-3) allowed 4 runs, 8 hits and 0 walks in 8 innings. Sean
Gallagher (1-2) allowed 9 runs, 3 hits and 5 walks in 2 1/3 innings. Kevin Cameron (0-0) allowed 0 runs,
0 hits and 1 walks in 2 innings. Gio Gonzalez (0-0) allowed 4 runs, 6 hits and 3 walks in 3 2/3 innings.
Jason Bartlett hit 2 RBI single in the first. Orlando Cabrera hit 1 RBI homer in the third Athletics.
hit 2 RBI single in the third. Jason Bartlett hit 1 RBI triple in the fifth.
hit 1 RBI single in the fifth. Jason Bartlett hit 2 RBI single in the sixth. Jack Cust hit 2 RBI

homer in the eighth Athletics.
ED+CC | ST. PETERSBURG, Fla.— Jason Bartlett had three hits and drove in five runs, and the Tampa Bay
Rays beat the Oakland Athletics 13-4 on Tuesday night. Bartlett hit a two—run single during a six—run
first inning off Gio Gonzalez (1-2), who gave up nine runs, three hits and three walks in 2 1/3 innings.
Orlando Cabrera hit a solo homer in the third for the A’s, who have lost four of five. Orlando Cabrera
hit a solo homer for the A’s, who have lost four of five. Orlando Cabrera hit a solo homer for the A’s,
who have lost four of five. hit a two—run homer in the eighth for the A’s, who have lost four of
five. Orlando Cabrera hit a solo homer for the A’s, who have lost four of five. Orlando Cabrera hit a
solo homer for the A’s, who have lost three of four. Orlando Cabrera hit a solo homer in the third for the
A’s, who have lost four of five. Orlando Cabrera hit a solo homer in the third for the A’s, who have lost
three straight and five of six. Gallagher (1-2) gave up nine runs, four earned, and six hits in 2 1/3 innings.
He walked three and struck out six. Gallagher (1-2) gave up nine runs, four earned, and six hits in 2 1/3
innings. He walked three and struck out six. hit a two—run homer in the eighth.
NCP+CC | ST. PETERSBURG, Fla.— The Tampa Bay Rays got a big boost from Jason Bartlett’s grand slam.
Bartlett drove in five runs, Jason Bartlett had five RBIs, Jason Bartlett had five RBIs and the Rays beat
the Oakland Athletics 13-4 on Friday night. Jeff Niemann (4-3) allowed four runs, three earned, and
eight hits in eight innings. Sean Gallagher (1-2) gave up a career—high nine runs in 2 1/3 innings.

hit a two—run homer in the seventh and added a two—run homer for the A’s, who have lost
four of five. Tampa Bay has lost four of five. The Rays have lost four of five. Tampa Bay has lost four of
five. The Rays have lost four of five. Oakland has lost four of five. The Rays have lost four of five. Tampa
Bay has lost four of five. The Rays have lost four of five. Tampa Bay has lost five of six. The Rays have
lost four of five. Tampa Bay has lost five of six. The Rays have lost four of five. Tampa Bay has lost five
of six overall. Oakland has lost five of six. The Rays have lost four of five. Tampa Bay has lost four of
five. Oakland has lost four of five. Oakland has lost five of six. The Rays have lost four of five. Tampa
Bay has lost four of five. Oakland has lost four of five. Oakland has lost five of six. Oakland has lost five
of six.

ENT ST. PETERSBURG, Fla.— Jason Bartlett and the finally found a way to beat the
Oakland Athletics. Bartlett had a career—high five RBIs, Jeff Niemann pitched eight strong innings and
the beat the Oakland Athletics 13—4 on Tuesday night. Bartlett had a two—run single in the first and
added a two-run single in the third to help the take a 6—1 lead. Bartlett had a two—run single in the
third and a two—run single in the sixth. Jack Cust hit a two—run homer in the eighth for the A’s, who have
won five of six. The A’s scored six runs off Sean Gallagher (1-2), who gave up a career-high nine runs—
seven earned— and three hits in 2 1/3 innings. Niemann (4-3) gave up four runs, three earned, and eight
hits in eight innings. The right-hander struck out three and did not walk a batter for the second time this
season. The right-hander is 4-0 in six career starts against the A’s. Orlando Cabrera hit a solo homer in
the third for the A’s, who have lost four of five. Oakland starter Gio Gonzalez gave up four runs and six
hits in 3 2/3 innings. The right-hander struck out six and walked three. The right-hander was coming off
a 1-0 loss to the A’s in his previous start, when he gave up six runs in 4 1/3 innings of a 10-0 loss to the
A’s. The A’s took a 1-0 lead in the first when Ben Zobrist drew a bases—loaded walk and Bartlett had a
two—run single.

Table 9: Example output from the template-based system, ED+CC, NCP+CC (Puduppully et al., 2019) and our
ENT model for MLB. Recurring entities are boldfaced and colorcoded, singletons are shown in black.
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