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Abstract

We present a PaperRobot who performs as an
automatic research assistant by (1) conduct-
ing deep understanding of a large collection
of human-written papers in a target domain
and constructing comprehensive background
knowledge graphs (KGs); (2) creating new
ideas by predicting links from the background
KGs, by combining graph attention and con-
textual text attention; (3) incrementally writ-
ing some key elements of a new paper based
on memory-attention networks: from the in-
put title along with predicted related entities
to generate a paper abstract, from the abstract
to generate conclusion and future work, and
finally from future work to generate a title
for a follow-on paper. Turing Tests, where
a biomedical domain expert is asked to com-
pare a system output and a human-authored
string, show PaperRobot generated abstracts,
conclusion and future work sections, and new
titles are chosen over human-written ones up
to 30%, 24% and 12% of the time, respec-
tively.1

1 Introduction

Our ambitious goal is to speed up scientific dis-
covery and production by building a PaperRobot,
who addresses three main tasks as follows.

Read Existing Papers. Scientists now find it
difficult to keep up with the overwhelming amount
of papers. For example, in the biomedical domain,
on average more than 500K papers are published
every year2, and more than 1.2 million new pa-
pers are published in 2016 alone, bringing the to-
tal number of papers to over 26 million (Van No-
orden, 2014). However, human’s reading ability

1The programs, data and resources are publicly avail-
able for research purpose at: https://github.com/
EagleW/PaperRobot

2http://dan.corlan.net/medline-trend/
language/absolute.html

keeps almost the same across years. In 2012,
US scientists estimated that they read, on aver-
age, only 264 papers per year (1 out of 5000
available papers), which is, statistically, not dif-
ferent from what they reported in an identical sur-
vey last conducted in 2005. PaperRobot automat-
ically reads existing papers to build background
knowledge graphs (KGs), in which nodes are enti-
ties/concepts and edges are the relations between
these entities (Section 2.2).
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Figure 1: PaperRobot Incremental Writing

Create New Ideas. Scientific discovery can
be considered as creating new nodes or links in
the knowledge graphs. Creating new nodes usu-
ally means discovering new entities (e.g., new pro-
teins) through a series of real laboratory experi-
ments, which is probably too difficult for Paper-
Robot. In contrast, creating new edges is eas-
ier to automate using the background knowledge
graph as the starting point. Foster et al. (2015)
shows that more than 60% of 6.4 million papers
in biomedicine and chemistry are about incremen-
tal work. This inspires us to automate the in-
cremental creation of new ideas and hypotheses
by predicting new links in background KGs. In
fact, when there is more data available, we can
construct larger and richer background KGs for
more reliable link prediction. Recent work (Ji
et al., 2015b) successfully mines strong relevance
between drugs and diseases from biomedical pa-

https://github.com/EagleW/PaperRobot
https://github.com/EagleW/PaperRobot
http://dan.corlan.net/medline-trend/language/absolute.html
http://dan.corlan.net/medline-trend/language/absolute.html
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Figure 2: PaperRobot Architecture Overview

pers based on KGs constructed from weighted co-
occurrence. We propose a new entity representa-
tion that combines KG structure and unstructured
contextual text for link prediction (Section 2.3).

Write a New Paper about New Ideas. The fi-
nal step is to communicate the new ideas to the
reader clearly, which is a very difficult thing to do;
many scientists are, in fact, bad writers (Pinker,
2014). Using a novel memory-attention network
architecture, PaperRobot automatically writes a
new paper abstract about an input title along with
predicted related entities, then further writes con-
clusion and future work based on the abstract, and
finally predicts a new title for a future follow-on
paper, as shown in Figure 1 (Section 2.4).

We choose biomedical science as our target do-
main due to the sheer volume of available pa-
pers. Turing tests show that PaperRobot-generated
output strings are sometimes chosen over human-
written ones; and most paper abstracts only re-
quire minimal edits from domain experts to be-
come highly informative and coherent.

2 Approach

2.1 Overview

The overall framework of PaperRobot is illus-
trated in Figure 2. A walk-through example pro-
duced from this whole process is shown in Table 1.
In the following subsections, we will elaborate on
the algorithms for each step.

2.2 Background Knowledge Extraction

From a massive collection of existing biomedi-
cal papers, we extract entities and their relations

to construct background knowledge graphs (KGs).
We apply an entity mention extraction and linking
system (Wei et al., 2013) to extract mentions of
three entity types (Disease, Chemical and Gene)
which are the core data categories in the Com-
parative Toxicogenomics Database (CTD) (Davis
et al., 2016), and obtain a Medical Subject Head-
ings (MeSH) Unique ID for each mention. Based
on the MeSH Unique IDs, we further link all enti-
ties to the CTD and extract 133 subtypes of rela-
tions such as Marker/Mechanism, Therapeutic,
and Increase Expression. Figure 3 shows an ex-
ample.

2.3 Link Prediction

After constructing the initial KGs from existing
papers, we perform link prediction to enrich them.
Both contextual text information and graph struc-
ture are important to represent an entity, thus we
combine them to generate a rich representation for
each entity. Based on the entity representations,
we determine whether any two entities are seman-
tically similar, and if so, we propagate the neigh-
bors of one entity to the other. For example, in
Figure 3, because Calcium and Zinc are similar
in terms of contextual text information and graph
structure, we predict two new neighbors for Cal-
cium: CD14 molecule and neuropilin 2 which are
neighbors of Zinc in the initial KGs.

We formulate the initial KGs as a list of tuples
numbered from 0 to κ. Each tuple (ehi , ri, e

t
i) is

composed of a head entity ehi , a tail entity eti, and
their relation ri. Each entity ei may be involved in
multiple tuples and its one-hop connected neigh-
bors are denoted as Nei = [ni1, ni2, ...]. ei is
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Figure 3: Biomedical Knowledge Extraction and Link Prediction Example (dash lines are predicted links)

also associated with a context description si which
is randomly selected from the sentences where ei
occurs. We randomly initialize vector representa-
tions ei and ri for ei and ri respectively.
Graph Structure Encoder To capture the impor-
tance of each neighbor’s feature to ei, we perform
self-attention (Veličković et al., 2018) and com-
pute a weight distribution over Nei :

e
′
i = Weei, n

′
ij = Wenij

cij = LeakyReLU(Wf (e
′
i ⊕ n

′
ij))

c
′
i = Softmax(ci)

where We is a linear transformation matrix ap-
plied to each entity. Wf is the parameter for a sin-
gle layer feedforward network. ⊕ denotes the con-
catenation operation between two matrices. Then
we use c

′
i and Nei to compute a structure based

context representation of εi = σ
(∑

c
′
ijn

′
ij

)
,

where nij ∈ Nei and σ is Sigmoid function.
In order to capture various types of relations

between ei and its neighbors, we further perform
multi-head attention on each entity, based on mul-
tiple linear transformation matrices. Finally, we
get a structure based context representation ẽi =
[ε0
i ⊕ ... ⊕ εMi ], where εmi refers to the context

representation obtained with the m-th head, and
ẽi is the concatenated representation based on the
attention of all M heads.
Contextual Text Encoder Each entity e is also
associated with a context sentence [w1, ..., wl].
To incorporate the local context information, we
first apply a bi-directional long short-term mem-
ory (LSTM) (Graves and Schmidhuber, 2005) net-
work to get the encoder hidden states Hs =

[h1, ...,hl], where hi represents the hidden state
of wi. Then we compute a bilinear attention
weight for each word wi: µi = e>Wshi,µ

′
=

Softmax(µ), where Ws is a bilinear term. We fi-
nally get the context representation ê = µ

′>hi.
Gated Combination To combine the graph-based
representation ẽ and local context based represen-
tations ê, we design a gate function to balance
these two types of information:

ge = σ(g̃e), e = ge � ẽ+ (1− ge)� ê

where ge is an entity-dependent gate function of
which each element is in [0, 1], g̃e is a learnable
parameter for each entity e, σ is a Sigmoid func-
tion, and � is an element-wise multiplication.
Training and Prediction To optimize both
entity and relation representations, following
TransE (Bordes et al., 2013), we assume the re-
lation between two entities can be interpreted as
translations operated on the entity representations,
namely h+ r ≈ t if (h, r, t) holds. Therefore, for
each tuple (ehi , ri, e

t
i), we can compute their dis-

tance score: F (ehi , ri, e
t
i) =‖ ehi + ri − eti ‖22. We

use marginal loss to train the model:

Loss =
∑

(ehi ,ri,e
t
i)∈K

∑
(ēhi ,r̄i,ē

t
i)∈K̄

max(0,

γ + F (ehi , ri, e
t
i)− F (ēhi , r̄i, ē

t
i))

where (eh, r, th) is a positive tuple and (ēh, r̄h, t̄h)
is a negative tuple, and γ is a margin. The negative
tuples are generated by either replacing the head
or the tail entity of positive tuples with a randomly
chosen different entity.
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Title Snail transcription factor negatively regulates maspin tumor suppressor in human prostate cancer cells
Entities Related: nasopharyngeal carcinoma; diallyl disulfide
Output Human (Neal et al., 2012) System Post-edited by Human
Abstract Background: Maspin, a putative tu-

mor suppressor that is down-regulated
in breast and prostate cancer, has been
associated with decreased cell motility.
Snail transcription factor is a zinc fin-
ger protein that is increased in breast
cancer and is associated with increased
tumor motility and invasion by induc-
tion of epithelial-mesenchymal transi-
tion (EMT). We investigated the molec-
ular mechanisms by which Snail in-
creases tumor motility and invasion
utilizing prostate cancer cells. Meth-
ods: Expression levels were analyzed
by RT-PCR and western blot analyses.
Cell motility and invasion assays were
performed , while Snail regulation and
binding to maspin promoter was ana-
lyzed by luciferase reporter and chro-
matin immunoprecipitation (ChIP) as-
says. Results: Snail protein expression
was higher in different prostate can-
cer cells lines as compared to normal
prostate epithelial cells.

Background: Snail is a multi-
functional protein that plays an
important role in the pathogene-
sis of prostate cancer. However,
it has been shown to be associ-
ated with poor prognosis. The
purpose of this study was to in-
vestigate the effect of negatively
on the expression of maspin in
human nasopharyngeal carci-
noma cell lines. Methods: Quan-
titative real-time PCR and west-
ern blot analysis were used to
determine whether the demethy-
lating agent was investigated by
quantitative RT-PCR (qRT-PCR)
and Western blotting. Results
showed that the binding protein
plays a significant role in the reg-
ulation of tumor growth and pro-
gression.

Background: Snail is a
multifunctional protein that
plays an important role in
the pathogenesis of prostate
cancer. It has been shown
associated with poor prog-
nosis. The purpose of this
study is to investigate the
negative effect of on the ex-
pression of Maspin in hu-
man nasopharyngeal car-
cinoma cell lines. Meth-
ods: Quantitative RT-PCR
(qRT-PCR) and western blot
analyses were used to deter-
mine correlation of the two
proteins expressions. Re-
sults showed that the bind-
ing protein plays a signifi-
cant role in the regulation of
tumor growth and progres-
sion.

Conclusion
and Future

work

Collectively, our results indicate for the
first time that Snail can negatively reg-
ulate maspin through direct promoter
repression resulting in increased migra-
tion and invasion in prostate cancer
cells. This study reveals a novel mech-
anism of how Snail may function and
show the importance of therapeutic tar-
geting of Snail signaling in future.

In summary, our study demon-
strates that Snail negatively in-
hibited the expression of Maspin
in human nasopharyngeal car-
cinoma cell lines and in vitro.
Our results indicate that the com-
bination of the demethylating
agent might be a potential ther-
apeutic target for the treatment of
prostate cancer.

In summary, our study in
vitro demonstrates that Snail
negatively inhibits the ex-
pression of Maspin in hu-
man nasopharyngeal carci-
noma cell lines. Our results
further indicate that Maspin
might be a potential thera-
peutic target for the treat-
ment of prostate cancer.

New Title Role of maspin in cancer (Berardi
et al., 2013)

The role of nasopharyngeal car-
cinoma in the rat model of
prostate cancer cells

The role of Maspin in the
rat model of nasopharyn-
geal carcinoma cells

Table 1: Comparison of Human and System Written Paper Elements (bold words are topically related entities;
italic words show human edits)

After training, for each pair of indirectly con-
nected entities ei, ej and a relation type r, we
compute a score y to indicate the probability that
(ei, r, ej) holds, and obtain an enriched knowledge
graph K̃ = [(ehκ+1, rκ+1, e

t
κ+1, yκ+1)...].

2.4 New Paper Writing

In this section, we use title-to-abstract generation
as a case study to describe the details of our pa-
per writing approach. Other tasks (abstract-to-
conclusion and future work, and conclusion and
future work-to-title) follow the same architecture.

Given a reference title τ = [w1, ..., wl], we ap-
ply the knowledge extractor (Section 2.2) to ex-
tract entities from τ . For each entity, we retrieve a
set of related entities from the enriched knowledge
graph K̃ after link prediction. We rank all the re-
lated entities by confidence scores and select up to

10 most related entities Eτ = [eτ1 , ..., e
τ
v ]. Then

we feed τ and Eτ together into the paper genera-
tion framework as shown in Figure 2. The frame-
work is based on a hybrid approach of a Mem2seq
model (Madotto et al., 2018) and a pointer gener-
ator (Gu et al., 2016; See et al., 2017). It allows
us to balance three types of sources for each time
step during decoding: the probability of generat-
ing a token from the entire word vocabulary based
on language model, the probability of copying a
word from the reference title, such as regulates in
Table 1, and the probability of incorporating a re-
lated entity, such as Snail in Table 1. The output is
a paragraph Y = [y1, ..., yo].

3

Reference Encoder For each word in the refer-

3During training, we truncate both of the input and the
output to around 120 tokens to expedite training. We label
the words with frequency < 5 as Out-of-vocabulary.
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ence title, we randomly embed it into a vector
and obtain τ = [w1, ...,wl]. Then, we apply
a bi-directional Gated Recurrent Unit (GRU) en-
coder (Cho et al., 2014) on τ to produce the en-
coder hidden statesH = [h1, ...,hl].
Decoder Hidden State Initialization Not all pre-
dicted entities are equally relevant to the title.
For example, for the title in Table 2, we pre-
dict multiple related entities including nasopha-
ryngeal carcinoma and diallyl disulfide, but na-
sopharyngeal carcinoma is more related because
nasopharyngeal carcinoma is also a cancer related
to snail transcription factor, while diallyl disul-
fide is less related because diallyl disulfide’s anti-
cancer mechanism is not closely related to maspin
tumor suppressor. We propose to apply memory-
attention networks to further filter the irrelevant
ones. Recent approaches (Sukhbaatar et al., 2015;
Madotto et al., 2018) show that compared with
soft-attention, memory-based multihop attention
is able to refine the attention weight of each mem-
ory cell to the query multiple times, drawing better
correlations. Therefore, we apply a multihop at-
tention mechanism to generate the initial decoder
hidden state.

Given the set of related entities E = [e1, ..., ev],
we randomly initialize their vector representation
E = [e1, ..., ev] and store them in memories.
Then we use the last hidden state of reference en-
coderhl as the first query vector q0, and iteratively
compute the attention distribution over all memo-
ries and update the query vector:

pki = ν>k tanh
(
W k

q qk−1 +Uk
e ei + bk

)
qk = p>k e+ qk−1

where k denotes the k-th hop among ϕ hops in
total.4 After ϕ hops, we obtain qϕ and take it as
the initial hidden state of the GRU decoder.
Memory Network To better capture the contri-
bution of each entity ej to each decoding output,
at each decoding step i, we compute an attention
weight for each entity and apply a memory net-
work to refine the weights multiple times. We take
the hidden state h̃i as the initial query q̃0 = h̃i and
iteratively update it:

p̃kj = ν>k tanh
(
W̃ k

q̃ q̃k−1 + Ũk
e ej +Wĉĉij + bk

)
uik = p̃

′>
k ej , q̃k = uik + q̃k−1

4We set ϕ = 3 since it performs the best on the develop-
ment set.

where ĉij =
∑i−1

m=0 βmj is an entity coverage vec-
tor and βi is the attention distribution of last hop
βi = p̃

′
ψ, and ψ is the total number of hops. We

then obtain a final memory based context vector
for the set of related entities χi = uiψ.
Reference Attention Our reference attention is
similar to (Bahdanau et al., 2015; See et al., 2017),
which aims to capture the contribution of each
word in the reference title to the decoding output.
At each time step i, the decoder receives the pre-
vious word embedding and generate decoder state
h̃i, the attention weight of each reference token is
computed as:

αij = ς> tanh
(
Whh̃i +Wτhj +Wc̃c̃ij + bτ

)
α

′
i = Softmax (αi) ; φi = α

′>
i hj

c̃ij =
∑i−1

m=0 αmj is a reference coverage vector,
which is the sum of attention distributions over
all previous decoder time steps to reduce repeti-
tion (See et al., 2017). φi is the reference context
vector.
Generator For a particular word w, it may occur
multiple times in the reference title or in multi-
ple related entities. Therefore, at each decoding
step i, for each word w, we aggregate its attention
weights from the reference attention and memory
attention distributions: P iτ =

∑
m|wm=w α

′
im and

P ie =
∑

m|w∈em βim respectively. In addition, at
each decoding step i, each word in the vocabu-
lary may also be generated with a probability ac-
cording to the language model. The probability is
computed from the decoder state h̃i, the reference
context vector φi, and the memory context vector
χi: Pgen = Softmax(Wgen[h̃i;φi;χi] + bgen),
where Wgen and bgen are learnable parameters.
To combine Pτ , Pe and Pgen, we compute a gate
gτ as a soft switch between generating a word
from the vocabulary and copying words from the
reference title τ or the related entities E: gp =
σ(W>

p h̃i + W>
z zi−1 + bp), where zi−1 is the

embedding of the previous generated token at step
i − 1. Wp, Wz , and bp are learnable parame-
ters, and σ is a Sigmoid function. We also com-
pute a gate g̃p as a soft switch between copying
words from reference text and the related entities:
g̃p = σ(W>

φ φi +W>
χ χi + b̃p), whereWφ,Wχ,

and b̃p are learnable parameters.
The final probability of generating a token z at

decoding step i can be computed by:

P (zi) = gpPgen + (1− gp) (g̃pPτ + (1− g̃p)Pe)
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Dataset # papers # avg entities
in Title /

paper

# avg predicted
related entities /

paper
Title-to-
Abstract

Abstract-to-Conclusion
and Future work

Conclusion and
Future work-to-Title

Training 22,811 22,811 15,902 4.8 -
Development 2,095 2,095 2,095 5.6 6.1
Test 2,095 2,095 2,095 5.7 8.5

Table 2: Paper Writing Statistics

Model Title-to-Abstract Abstract-to-Conclusion
and Future Work

Conclusion and
Future Work-to-Title

Perplexity METEOR Perplexity METEOR Perplexity METEOR
Seq2seq (Bahdanau et al., 2015) 19.6 9.1 44.4 8.6 49.7 6.0
Editing Network (Wang et al., 2018b) 18.8 9.2 30.5 8.7 55.7 5.5
Pointer Network (See et al., 2017) 146.7 8.5 74.0 8.1 47.1 6.6
Our Approach (-Repetition Removal) 13.4 12.4 24.9 12.3 31.8 7.4
Our Approach 11.5 13.0 18.3 11.2 14.8 8.9

Table 3: Automatic Evaluation on Paper Writing for Diagnostic Tasks (%). The Pointer Network can be viewed as
removing memory network part from our approach without repetition removal.

The loss function, combined with the coverage
loss (See et al., 2017) for both reference attention
and memory distribution, is presented as:

Loss =
∑

i
− logP (zi) + λ

∑
i
(min (αij , c̃ij)

+ min (βij , ĉij))

where P (zi) is the prediction probability of the
ground truth token zi, and λ is a hyperparameter.
Repetition Removal Similar to many other long
text generation tasks (Suzuki and Nagata, 2017),
repetition remains a major challenge (Foster and
White, 2007; Xie, 2017). In fact, 11% sentences
in human written abstracts include repeated enti-
ties, which may mislead the language model. Fol-
lowing the coverage mechanism proposed by (Tu
et al., 2016; See et al., 2017), we use a cover-
age loss to avoid any entity in reference input
text or related entity receiving attention multiple
times. We further design a new and simple mask-
ing method to remove repetition during the test
time. We apply beam search with beam size 4 to
generate each output, if a word is not a stop word
or punctuation and it is already generated in the
previous context, we will not choose it again in
the same output.

3 Experiment

3.1 Data
We collect biomedical papers from the PMC Open
Access Subset.5 To construct ground truth for
new title prediction, if a human written paper A

5ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/
oa_package/

cites a paper B, we assume the title of A is gen-
erated from B’s conclusion and future work ses-
sion. We construct background knowledge graphs
from 1,687,060 papers which include 30,483 enti-
ties and 875,698 relations. Tables 2 shows the de-
tailed data statistics. The hyperparameters of our
model are presented in the Appendix.

3.2 Automatic Evaluation

Previous work (Liu et al., 2016; Li et al., 2016;
Lowe et al., 2015) has proven it to be a major
challenge to automatically evaluate long text gen-
eration. Following the story generation work (Fan
et al., 2018), we use METEOR (Denkowski and
Lavie, 2014) to measure the topic relevance to-
wards given titles and use perplexity to further
evaluate the quality of the language model. The
perplexity scores of our model are based on the
language model6 learned on other PubMed pa-
pers (500,000 titles, 50,000 abstracts, 50,000 con-
clusions and future work) which are not used for
training or testing in our experiment.7 The results
are shown in Table 3. We can see that our frame-
work outperforms all previous approaches.

3.3 Turing Test

Similar to (Wang et al., 2018b), we conduct Turing
tests by a biomedical expert (non-native speaker)
and a non-expert (native speaker). Each human
judge is asked to compare a system output and a
human-authored string, and select the better one.

6https://github.com/pytorch/examples/
tree/master/word_language_model

7The perplexity scores of the language model are in the
Appendix.

ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_package/
ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_package/
https://github.com/pytorch/examples/tree/master/word_language_model
https://github.com/pytorch/examples/tree/master/word_language_model
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Task Input Output Domain Expert Non-expert

End-to-End

Human Title Different Abstract (1st) 10 30
Same 30 16

System Abstract Different Conclusion and
Future work

12 0
Same 8 8

System Conclusion and
Future work

Different
Title

12 2
Same 12 25

System Title Different Abstract (2nd) 14 4

Diagnostic
Human Abstract Different Conclusion and

Future work
12 14

Same 24 20
Human Conclusion and

Future work
Different Title 8 12

Same 2 10

Table 4: Turing Test Human Subject Passing Rates (%). Percentages show how often a human judge chooses our
system’s output over human’s when it is mixed with a human-authored string. If the output strings (e.g., abstracts)
are based on the same input string (e.g., title), the Input condition is marked “Same”, otherwise “Different”.

BLEU1 BLEU2 BLEU3 BLEU4 ROUGE TER
59.6 58.1 56.7 55.4 73.3 35.2

Table 5: Evaluation on Human Post-Editing(%)

Table 4 shows the results on 50 pairs in each
setting. We can see that PaperRobot generated
abstracts are chosen over human-written ones by
the expert up to 30% times, conclusion and fu-
ture work up to 24% times, and new titles up to
12% times. We don’t observe the domain expert
performs significantly better than the non-expert,
because they tend to focus on different aspects -
the expert focuses on content (entities, topics, etc.)
while the non-expert focuses on the language.

3.4 Human Post-Editing

In order to measure the effectiveness of Paper-
Robot acting as a wring assistant, we randomly
select 50 paper abstracts generated by the system
during the first iteration and ask the domain expert
to edit them until he thinks they are informative
and coherent. The BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004) and TER (Snover et al., 2006)
scores by comparing the abstracts before and af-
ter human editing are presented in Table 5. It took
about 40 minutes for the expert to finish editing 50
abstracts. Table 1 includes the post-edited exam-
ple. We can see that most edits are stylist changes.

3.5 Analysis and Discussions

To better justify the function of each component,
we conduct ablation studies by removing mem-
ory networks, link prediction, and repetition re-
moval respectively. The results are shown in Ta-
ble 6. We can see that the approach without
memory networks tends to diverge from the main
topic, especially for generating long texts such as

abstracts (the detailed length statistics are shown
in Table 8). From Table 6 we can see the later
parts of the abstract (Methods and Results) include
topically irrelevant entities such as “imipramine”
which is used to treat depression instead of human
prostate cancer.

Link prediction successfully introduces new
and topically related ideas, such as “RT-PCR” and
“western blot” which are two methods for ana-
lyzing the expression level of Snail protein, as
also mentioned in the human written abstract in
Table 1. Table 7 shows more examples of enti-
ties which are related to the entities in input titles
based on link prediction. We can see that the pre-
dicted entities are often genes or proteins which
cause the disease mentioned in a given title, or
other diseases from the same family.

Our simple beam search based masking method
successfully removes some repeated words and
phrases and thus produces more informative out-
put. The plagiarism check in Table 9 shows our
model is creative, because it’s not simply copying
from the human input.

3.6 Remaining Challenges

Our generation model is still largely dependent
on language model and extracted facts, and thus
it lacks of knowledge reasoning. It generates a
few incorrect abbreviations such as “Organophos-
phates(BA)”, “chronic kidney disease(UC)” and
“Fibrosis(DC)”) because they appear rarely in the
training data and thus their contextual representa-
tions are not reliable. It also generates some in-
correct numbers (e.g., “The patients were divided
into four groups : Group 1 , Group B...”) and pro-
nouns (e.g., “A 63-year-old man was referred to
our hospital ... she was treated with the use of the
descending coronary artery” ).
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Output Without Memory Networks Without Link Prediction Without Repetition Removal
Abstract Background: Snail has been reported

to exhibit a variety of biological func-
tions. In this study, we investigated
the effect of negatively on maspin
demethylation in human prostate
cancer cells. Methods: Quantitative
real-time PCR and western blot analy-
sis were used to investigate the effects
of the demethylating agent on the ex-
pression of the protein kinase (TF)
gene promoter. Results: The results
showed that the presence of a single
dose of 50 µM in a dose-dependent
manner, whereas the level of the BMP
imipramine was significantly higher
than that of the control group.

Background: Snail has been
shown to be associated with
poor prognosis. In this study,
we investigated the effect of
negatively on the expression
of maspin in human prostate
cancer cells. Methods: Cells
were treated with a single dose
of radiotherapy for 24 h, and
was used to investigate the sig-
nificance of a quantitative factor
for the treatment of the disease.
Results: The remaining controls
showed a significant increase in
the G2/M phase of the tumor
suppressor protein (p<0.05).

Background: Snail is a major
health problem in human ma-
lignancies. However, the role
of Snail on the expression of
maspin in human prostate can-
cer cells is not well understood.
The aim of this study was to
investigate the effect of Snail
on the expression of maspin in
human prostate cancer cells.
Methods: The expression of the
expression of Snail and maspin
was investigated using quantita-
tive RT-PCR and western blot
analysis. Results: The remaining
overall survival (OS) and overall
survival (OS) were analyzed.

Conclusion
and

Future
work

In summary, our study demonstrated
that negatively inhibited the expres-
sion of the BMP imipramine in hu-
man prostate cancer cells. Our find-
ings suggest that the inhibition of
maspin may be a promising therapeu-
tic strategy for the treatment.

In summary, our results demon-
strate that negatively inhibited
the expression of maspin in hu-
man prostate cancer cells. Our
findings suggest that the combi-
nation of radiotherapy may be
a potential therapeutic target for
the treatment of disease.

In summary, our results demon-
strate that snail inhibited the ex-
pression of maspin in human
prostatic cells. The expression
of snail in PC-3 cells by snail,
and the expression of maspin
was observed in the presence of
the expression of maspin.

New Title Protective effects of homolog on hu-
man breast cancer cells by inhibiting
the Endoplasmic Reticulum Stress

The role of prostate cancer in
human breast cancer cells

The role of maspin and maspin
in human breast cancer cells

Table 6: Ablation Test Results on the Same Title in Table 1

Titles Predicted Related Entities
Pseudoachondroplasia/COMP translating from the bench to the
bedside

osteoarthritis; skeletal dysplasia; thrombospondin-5

Role of ceramide in diabetes mellitus: evidence and mechanisms diabetes insulin ceramide; metabolic disease
Exuberant clinical picture of Buschke-Fischer-Brauer palmo-
plantar keratoderma in bedridden patient

neoplasms; retinoids; autosomal dominant disease

Relationship between serum adipokine levels and radiographic
progression in patients with ankylosing spondylitis

leptin; rheumatic diseases; adiponectin; necrosis;
DKK-1; IL-6-RFP

Table 7: More Link Prediction Examples (bold words are entities detected from titles)

Abstract Conclusion and
Future Work

Title

System 112.4 88.1 16.5
Human 106.5 105.5 13.0

Table 8: The Average Number of Words of System and
Human Output

Output 1 2 3 4 5
Abstracts 58.3 20.1 8.03 3.60 1.46

Conclusions 43.8 12.5 5.52 2.58 1.28
Titles 20.1 1.31 0.23 0.06 0.00

Table 9: Plagiarism Check: Percentage (%) of n-grams
in human input which appear in system generated out-
put for test data.

All of the system generated titles are declar-
ative sentences while human generated titles are
often more engaging (e.g., “Does HPV play any
role in the initiation or prognosis of endometrial

adenocarcinomas?”). Human generated titles of-
ten include more concrete and detailed ideas such
as “etumorType , An Algorithm of Discriminating
Cancer Types for Circulating Tumor Cells or Cell-
free DNAs in Blood”, and even create new entity
abbreviations such as etumorType in this example.

3.7 Requirements to Make PaperRobot
Work: Case Study on NLP Domain

When a cool Natural Language Processing (NLP)
system like PaperRobot is built, it’s natural to ask
whether she can benefit the NLP community it-
self. We re-build the system based on 23,594
NLP papers from the new ACL Anthology Net-
work (Radev et al., 2013). For knowledge ex-
traction we apply our previous system trained for
the NLP domain (Luan et al., 2018). But the re-
sults are much less satisfactory compared to the
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biomedical domain. Due to the small size of data,
the language model is not able to effectively copy
out-of-vocabulary words and thus the output is of-
ten too generic. For example, given a title “Statis-
tics based hybrid approach to Chinese base phrase
identification”, PaperRobot generates a fluent but
uninformative abstract “This paper describes a
novel approach to the task of Chinese-base-phrase
identification. We first utilize the solid foundation
for the Chinese parser, and we show that our tool
can be easily extended to meet the needs of the
sentence structure.”.

Moreover, compared to the biomedical domain,
the types of entities and relations in the NLP do-
main are rather coarse-grained, which often leads
to inaccurate prediction of related entities. For ex-
ample, for an NLP paper title “Extracting molec-
ular binding relationships from biomedical text”,
PaperRobot mistakenly extracts “prolog” as a re-
lated entity and generates an abstract “In this pa-
per, we present a novel approach to the problem
of extracting relationships among the prolog pro-
gram. We present a system that uses a macro-
molecular binding relationships to extract the re-
lationships between the abstracts of the entry. The
results show that the system is able to extract the
most important concepts in the prolog program.”.

4 Related Work

Link Prediction. Translation-based ap-
proaches (Nickel et al., 2011; Bordes et al.,
2013; Wang et al., 2014; Lin et al., 2015; Ji
et al., 2015a) have been widely exploited for link
prediction. Compared with these studies, we are
the first to incorporate multi-head graph atten-
tion (Sukhbaatar et al., 2015; Madotto et al., 2018;
Veličković et al., 2018) to encourage the model
to capture multi-aspect relevance among nodes.
Similar to (Wang and Li, 2016; Xu et al., 2017),
we enrich entity representation by combining the
contextual sentences that include the target entity
and its neighbors from the graph structure. This is
the first work to incorporate new idea creation via
link prediction into automatic paper writing.

Knowledge-driven Generation. Deep Neu-
ral Networks have been applied to generate nat-
ural language to describe structured knowledge
bases (Duma and Klein, 2013; Konstas and Lap-
ata, 2013; Flanigan et al., 2016; Hardy and Vla-
chos, 2018; Pourdamghani et al., 2016; Trisedya
et al., 2018; Xu et al., 2018; Madotto et al.,

2018; Nie et al., 2018), biographies based on at-
tributes (Lebret et al., 2016; Chisholm et al., 2017;
Liu et al., 2018; Sha et al., 2018; Kaffee et al.,
2018; Wang et al., 2018a; Wiseman et al., 2018),
and image/video captions based on background
entities and events (Krishnamoorthy et al., 2013;
Wu et al., 2018; Whitehead et al., 2018; Lu et al.,
2018). To handle unknown words, we design
an architecture similar to pointer-generator net-
works (See et al., 2017) and copy mechanism (Gu
et al., 2016). Some interesting applications in-
clude generating abstracts based on titles for the
natural language processing domain (Wang et al.,
2018b), generating a poster (Qiang et al., 2016) or
a science news blog title (Vadapalli et al., 2018)
about a published paper. This is the first work on
automatic writing of key paper elements for the
biomedical domain, especially conclusion and fu-
ture work, and follow-on paper titles.

5 Conclusions and Future Work

We build a PaperRobot who can predict related en-
tities for an input title and write some key elements
of a new paper (abstract, conclusion and future
work) and predict a new title. Automatic evalua-
tions and human Turing tests both demonstrate her
promising performance. PaperRobot is merely an
assistant to help scientists speed up scientific dis-
covery and production. Conducting experiments
is beyond her scope, and each of her current com-
ponents still requires human intervention: con-
structed knowledge graphs cannot cover all tech-
nical details, predicted new links need to be veri-
fied, and paper drafts need further editing. In the
future, we plan to develop techniques for extract-
ing entities of more fine-grained entity types, and
extend PaperRobot to write related work, predict
authors, their affiliations and publication venues.
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