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Abstract
We present a simple new method where an
emergent NMT system is used for simultane-
ously selecting training data and learning in-
ternal NMT representations. This is done in
a self-supervised way without parallel data,
in such a way that both tasks enhance each
other during training. The method is lan-
guage independent, introduces no additional
hyper-parameters, and achieves BLEU scores
of 29.21 (en2fr) and 27.36 (fr2en) on new-
stest2014 using English and French Wikipedia
data for training.

1 Introduction

Neural machine translation (NMT) has brought
major improvements in translation quality (Cho
et al., 2014; Bahdanau et al., 2014; Vaswani et al.,
2017). Until recently, these relied on the avail-
ability of high-quality parallel corpora. As such
corpora exist only for a few high-resource lan-
guage combinations, overcoming this constraint
by either extracting parallel data from non-parallel
sources or developing unsupervised techniques in
NMT is crucial to cover all languages.

Obtaining comparable corpora is becoming eas-
ier (Paramita et al., 2019) and extracting par-
allel sentences from them a wide research field.
Most of the methods estimate similarities between
fragments to select pairs. Here we focus on
similarities estimated from NMT representations.
The strength of NMT embeddings as semantic
representations was first shown qualitatively in
Sutskever et al. (2014); Ha et al. (2016) and John-
son et al. (2017), and used for estimating semantic
similarities at sentence level in España-Bonet and
Barrón-Cedeño (2017) for example. In a system-
atic study, España-Bonet et al. (2017) show that
cosine similarities between context vectors dis-
criminate between parallel and non-parallel sen-
tences already in the first stages of training. Other

approaches perform max-pooling over encoder
outputs (Schwenk, 2018; Artetxe and Schwenk,
2018) or calculate the mean of word embeddings
(Bouamor and Sajjad, 2018) to extract pairs.

On the other hand, unsupervised NMT is now
achieving impressive results using large amounts
of monolingual data and small parallel lexicons
(Lample et al., 2018a; Artetxe et al., 2018b; Yang
et al., 2018). These systems rely on very strong
language models and back-translation, and build
complex architectures that combine denoising au-
toencoders, back-translation steps and shared en-
coders among languages. The most successful
architectures also use SMT phrase tables, stand-
alone or in combination with NMT (Lample et al.,
2018b; Artetxe et al., 2018a).

In our approach, we propose a new and sim-
pler method without a priori parallel corpora. Our
premise is that NMT systems —either sequence to
sequence models with RNNs, transformers, or any
architecture based on encoder–decoder models—
already learn strong enough representations of
words and sentences to judge on-line if an input
sentence pair is useful or not. Our approach re-
sembles self-supervised learning (Raina et al.,
2007; Bengio et al., 2013), i.e. learning a pri-
mary task where labelled data is not directly avail-
able but where the data itself provides a supervi-
sion signal for another auxiliary task which lets
the network learn the primary one. In our case
this comes with a twist: we find cross-lingually
close sentences as an auxiliary task for learning
MT and learning MT as an auxiliary task for find-
ing cross-lingually close sentences in a mutually
self-supervised loop: in effect a doubly virtuous
circle.

Our approach is also related to unsupervised
NMT but differs in important aspects: since in
our case there is no back-translation involved, the
original corpus must contain similar sentences,
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therefore the use of comparable corpora is recom-
mended to speed up the training.

In the following, we describe the approach (Sec-
tion 2) and the experiments in which it is going to
be tested (Section 3). Section 4 reviews the results
and, finally, we summarise and sketch future work
in Section 5.

2 Joint Model Architecture

Without loss of generality, we consider a bidirec-
tional NMT system {L1, L2}→{L1, L2} where
the encoder and decoder have the information of
both languages L1 and L2. The bidirectionality
is simply achieved by tagging the source sentence
with the target language as done by Johnson et al.
(2017) in their multilingual systems and inputting
sentence pairs in both directions. Two dimensions
determine our architectures: (i) the specific repre-
sentation of an input sentence, and (ii) the similar-
ity or score function for an input sentence pair.

We focus on two different embedding spaces in
the encoder to build semantic sentence represen-
tations: the sum of word embeddings (Ce) and the
hidden states of an RNN or the encoder outputs of
a transformer (Ch). We define:

Ce =
T∑
t=1

et, Ch =
T∑
t=1

ht, (1)

where et is the word embedding at time step t and
ht its hidden state (RNN) or encoder output (trans-
former). In case ht is an RNN hidden state, it is
further defined by the concatenation of its forward
and backward component hRNN

t = [
−→
h t;
←−
h t].

These representations are used to score input
sentence pairs. We study two functions for sen-
tence selection with the aim of exploring whether
a threshold-free selection method is viable.

Let SL1 and SL2 be the vector representations
for each sentence of a pair (either Ce or Ch). The
cosine similarity of a sentence pair is calculated
as the dot product of their representations:

sim(SL1, SL2) =
SL1 · SL2
‖SL1‖ ‖SL2‖

, (2)

which is bounded in the [-1, 1] range. However,
the threshold to decide when to accept a pair is
not straightforward and might depend on the lan-
guage pair and the corpus (España-Bonet et al.,
2017; Artetxe and Schwenk, 2018). Besides, even
if the measure does not depend on the length of the

sentences, it might be scaled differently for differ-
ent sentences. To solve this, Artetxe and Schwenk
(2018) proposed a margin-based function:

margin(SL1, SL2) =

sim(SL1, SL2)

avrkNN(SL1, Pk)/2 + avrkNN(SL2, Qk)/2
, (3)

where avrkNN(X,Yk) corresponds to the average
similarity between a sentence X and kNN(X), its
k nearest neighbors Yk in the other language:

avrkNN(X,Yk) =
∑

Y ∈kNN(X)

sim(X,Y )

k
. (4)

This scoring method penalises sentences which
have a generally high cosine similarity with sev-
eral candidates. Following Artetxe and Schwenk
(2018), we use k = 4 in our experiments.

In the selection process that follows, we con-
sider four strategies. In all of them, sim(SL1, SL2)
and margin(SL1, SL2) can be used for scoring.

(i) Threshold dependent. We find the highest
scoring target sentence for each source sentence
(pair i) as well as the highest scoring source for
each target sentence (pair j) for either represen-
tation S=Ch or S=Ce (systems H and E respec-
tively in the experiments). Since often i 6= j,
the process is not symmetric and only pairs that
have been matched during selection in both lan-
guage directions are accepted to the candidate list.
A threshold is empirically determined to filter out
false positives.

(ii) High precision, medium recall. (system P )
We apply the same methodology as before, but we
use both representations S=Ch and S=Ce. Only
pairs that have been matched during selection in
both language directions and both representation
types are accepted to the candidate list. Ch and
Ce turn out to be complementary and this further
restriction allows us to get rid of the threshold, and
the sentence selection becomes parameter-free.

(iii) Medium precision, high recall. (systemR)
The combination of representations is a key point
for a threshold-free method, but the final selec-
tion becomes very restrictive. In order to increase
recall, we are more permissive with the way we
select pairs and instead of taking only the high-
est scoring target sentence for each source sen-
tence we take the top-n (n=2 in our experiments).
We still use both representations and extend the
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number of candidates considered only for S=Ch,
which is the most restrictive factor at the begin-
ning of training.

(iv) Low precision, high recall. Generalisa-
tion of the previous strategy where we make the
method symmetric in source–target and Ch–Ce.

3 Experimental Setting

Data. We use Wikipedia (WP) dumps1 in En-
glish (en) and French (fr), and pre-process the
articles and split the text into sentences using the
Wikitailor toolkit2 (Barrón-Cedeño et al., 2015).
We further tokenise and truecase them using stan-
dard Moses scripts (Koehn et al., 2007) and ap-
ply a byte-pair encoding (Sennrich et al., 2016)
of 100 k merge operations trained on the concate-
nation of English and French data. We also re-
move duplicates and discard sentences with more
than 50 tokens for training the MT systems. We
fix these settings as a comparison point for all
the experiments even though smaller vocabularies
and longer sentences might imply the extraction
of more parallel sentences (see Section 4). We use
newstest2012 for validation and newstest2014 for
testing.

WP dumps are used for two different purposes
in our systems: (i) to calculate initial word embed-
dings and (ii) as training corpus. In the first case,
we use the complete editions (92 M sentences /
2.247 M tokens in en and 27 M / 652 M in fr).
In the second case, we select only the subset of
articles that can be linked among languages us-
ing Wikipedia’s langlinks with Wikitailor, i.e., we
only take an article if there is the equivalent article
in the other language. For this, the total amount of
sentences (tokens) is 12 M (318 M) for en and 8 M
(207 M) for fr.

Model Specifications. We implemented3 the ar-
chitecture described in Section 2 within the Open-
NMT toolkit (Klein et al., 2017) both for RNN and
Transformer encoders, and trained:

LSTMsimP: 1-layer bidirectional encoder with
LSTM units, additive attention, 512-dim word em-
beddings and hidden states, and an initial learning
rate (λ) of 0.5 with SGD. Ce and Ch are both used

1We use WP editions downloaded in Jan. 2015 from
https://dumps.wikimedia.org/

2https://github.com/cristinae/
WikiTailor

3https://github.com/ruitedk6/
comparableNMT

as representations in the high precision mode and
sim(SL1, SL2) as scoring function.

LSTMmargP: The same as LSTMsimP but
margin(SL1, SL2) as scoring function.

LSTMmargR: The same as LSTMmargP but Ce

and Ch are used in the high recall mode.
LSTMmargH: As LSTMmargP with Ch as only

representation. A hard threshold of 1.0 is used.
LSTMmargE: As LSTMmargP with Ce as only

representation. A hard threshold of 1.2 is used.
Transformer: Transformer base as defined

in Vaswani et al. (2017) with 6-layer encoder–
decoder with 8-head self-attention, 512-dim word
embeddings and a 2048-dim hidden feed-forward.
Adam optimisation with λ=2 and beta2=0.998;
noam λ decay with 8000 warm-up steps. Labels
are smoothed (ε=0.1) and a dropout mask (p=0.1)
is applied.

The five models described in the LSTM cate-
gory have transformer counterparts which follow
the same transformer base architecture.

All systems are trained on a single GPU GTX
TITAN using a batch size of 64 (LSTM) or 50
(transformer) sentences.

4 Results and Discussion

In order to train the 10 NMT systems, we initialise
the word embeddings following Artetxe et al.
(2017) using a seed dictionary of 2.591 numerals
automatically extracted from our Wikipedia edi-
tions, and feed the system directly with compa-
rable articles. This avoids the n × m explosion
of possible combinations of sentences, where n is
the number of sentences in L1 and m in L2. In
our approach, we input

∑
article ni ×mj sentence

pairs, that is, only all possible source–target sen-
tence combinations within two articles linked by
Wikipedia’s langlinks. Hence we miss the paral-
lel sentences in non-linked articles but we win in
speed.

Articles are input in lots4. For them, the ap-
propriate representation and scoring function are
applied. Sentence pairs accepted by the selec-
tion method within a lot are extracted. Whenever
enough parallel sentences are available to create a
training batch, a training step is performed. Em-
beddings are modified by back-propagation and

4Since margin(SL1, SL2) takes into account the k-
nearest neighbors of each sentence, small input lots lead to
scarce information when selecting pairs. Considering lots
with more than 15 sentences avoids the problem.

https://dumps.wikimedia.org/
https://github.com/cristinae/WikiTailor
https://github.com/cristinae/WikiTailor
https://github.com/ruitedk6/comparableNMT
https://github.com/ruitedk6/comparableNMT
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Figure 1: Number of unique accepted sentence pairs
over the first 6 epochs for both margP systems. Points
are labeled with the difference between the average
margin scores of accepted and rejected pairs.

the next lot of articles is processed with the im-
proved representations. Notice that the extracted
pairs may therefore differ through iterations, since
it is the sentence representation at the specific
training step that is responsible for the selection.

Figure 1 shows the number of unique pairs se-
lected during the first six epochs of training for
both LSTMmargP and TransformermargP. The
number of accepted sentences increases through-
out the epochs, and so does the number of unique
sentences used in training. Especially the first it-
eration over the data set is vital for improving and
adapting the representations to the data itself. This
quadruples the number of unique sentences ac-
cepted in the second pass over the data. While
sentences are still able to pass from rejected to
accepted as training advances, the two distribu-
tions are pushed apart and the gap in average mar-
gin scores between the two distributions (∆) in-
creases as the representations get better at discrim-
inating. We observe curriculum learning in the
process: at the beginning (epoch 1) simple sen-
tences with anchors (mostly homographs such as
numbers, named entities, acronyms...) are selected
but as training progresses, complex semantically
equivalent sentences are extracted too. Curriculum
learning is important since once the capacity of a
neural architecture is exhausted, more data does
not improve the performance. This self-supervised
architecture not only selects the data but it does
it in the most useful way for the learning. It re-
mains to be checked whether smaller vocabular-
ies and therefore a larger number of common BPE
sub-units modifies the distribution of selected sen-
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Figure 2: BLEU scores of TransformermargP on new-
stest2014 as training progresses.

tences especially at the beginning of training.
These trends are common to all our models

with small nuances due to the concrete architec-
tures. Transformers generally accumulate more
unique pairs before convergence than their LSTM
counterparts for example, but other than this the
behaviour is the same. To validate our method,
we carry out a control experiment on parallel
data (Europarl) where we scramble the target sen-
tences, creating pseudo-comparable data with a
ratio of 1:5 between parallel and unrelated sen-
tences. On this data, we can measure precision
and recall and we observe how our approach pro-
gresses towards high values for these scores in
both margP and margR systems. These experi-
ments also validate the nomenclature used in Sec-
tion 2: TransformermargR reaches higher levels of
recall than TransformermargP (98.4% vs. 95.3%)
at the cost of a lower precision (73.9% vs. 94.7%).
The major increment in data through training leads
to a higher translation quality as measured by
BLEU, so extraction and training in a loop en-
hance each other’s performance. Figure 2 shows
the progressive improvement in translation perfor-
mance throughout the training process of system
TransformermargP and, again, the trend is general.

Table 1 summarises the final performance of
our 10 systems according to BLEU. The first
thing to point out is that the difference between
sim(SL1, SL2) and margin(SL1, SL2) is clear and
margin outperforms sim by more than 13 and 4
BLEU points for the LSTM and Transformer mod-
els respectively. The differences among the repre-
sentations used with the same scoring function are
not so big but still relevant. Single representation
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Corpus, BLEU
Reference en+fr sent. en2fr fr2en

(in millions)

Unsupervised NMT
Artetxe et al. (2018b) NCr13, 99+32 15.13 15.56
Lample et al. (2018a) WMT, 16+16 15.05 14.31
Yang et al. (2018) WMT, 16+16 16.97 15.58

Self-supervised NMT
LSTMsimP WP, 12+8 10.48 10.97
LSTMmargE WP, 12+8 13.71 14.26
LSTMmargH WP, 12+8 21.50 20.84
LSTMmargP WP, 12+8 23.64 22.95
LSTMmargR WP, 12+8 20.05 19.45
TransformersimP WP, 12+8 25.21 24.96
TransformermargE WP, 12+8 27.33 25.87
TransformermargH WP, 12+8 24.45 23.83
TransformermargP WP, 12+8 29.21 27.36
TransformermargR WP, 12+8 28.01 26.78

Unsupervised NMT+SMT
Artetxe et al. (2018a) NCr13, 99+32 26.22 25.87
Lample et al. (2018b) NCr17,358+69 28.10 27.20

Table 1: BLEU scores achieved on newstest2014 with
multi-bleu.perl. Training corpora differ by vari-
ous authors: News Crawl 2007–2013 (NCr13), 2007–
2017 (NCr17), the full WMT data and Wikipedia (WP).

models margE and margH (only word embed-
dings or encoder outputs) are 2–10 BLEU points
below systems that combine both representations.
It should be noted that such single representa-
tion systems can perform comparatively well (see
TransformermargH) if the threshold is optimally
set. However, this is not guaranteed even with
a preceding exploration of the threshold parame-
ter. In margP and margR, the combinations of
representations do not need such hyper-parameters
and achieve the best translation quality. The best
system, TransformermargP, focuses on extracting
parallel sentences with high precision and ob-
tains BLEU scores of 29.21 (en2fr) and 27.36
(fr2en) with a total of 2.4 M selected unique sen-
tence pairs. When increasing recall, too few new
parallel sentences are gained as compared to the
new false positives to improve the final translation,
and TransformermargR and LSTMmargR are ∼1–3
BLEU points below their medium recall counter-
parts. Notice that we do not include the Low pre-
cision, high recall strategy since the effect is even
more pronounced.

Table 1 also presents a comparison with related
work on unsupervised NMT. The comparison is
delicate because training corpora and methodol-
ogy differ. If we compare the final performance,
we observe that we achieve similar results with

less data (us vs. Lample et al. (2018b)); and when
the same order of magnitude of sentences is used
we obtain significantly better results (us vs. Lam-
ple et al. (2018a) and Yang et al. (2018)). The cru-
cial difference here is that in one case one needs
monolingual data, whereas we are using compara-
ble corpora.

5 Conclusions and Future Work

We present a joint architecture to select data
and train NMT systems simultaneously using the
emerging NMT system itself to select the data.
This is a form of self-supervision alternating be-
tween two tasks that support each other in an in-
cremental fashion. We focus on data representa-
tion, an adequate function for the selection pro-
cess, and studying how to avoid additional hyper-
parameters that depend on the input corpus. The
key point of our approach is the combination of
a margin-based score with the intersection of sen-
tence representations for filtering the input corpus.

As future work, we will apply our methodology
to domain adaptation. In this setting, word embed-
dings and hidden layers are already initialised via
standard NMT training on parallel data and train-
ing is continued with an in-domain monolingual or
comparable corpus. Our architecture is also useful
for data selection in data rich language pairs and
we will perform experiments on cleaning noisy
parallel corpora.

In the same vain as unsupervised MT, we want
to continue our research by using back transla-
tion for rejected pairs and dealing with phrases
instead of full sentences. That will allow us to
extract more parallel text from a corpus and fa-
cilitate using these approaches for low-resourced
languages. Existing approaches make use of huge
amounts of monolingual (∼100 M, references in
Table 1) or comparable (∼10 M, this work) sen-
tences and these numbers are still far from what
one can gather in a truly low-resource scenario.
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