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Abstract

We present a simple yet powerful data aug-
mentation method for boosting Neural Ma-
chine Translation (NMT) performance by
leveraging information retrieved from a Trans-
lation Memory (TM). We propose and test two
methods for augmenting NMT training data
with fuzzy TM matches. Tests on the DGT-
TM data set for two language pairs show con-
sistent and substantial improvements over a
range of baseline systems. The results suggest
that this method is promising for any transla-
tion environment in which a sizeable TM is
available and a certain amount of repetition
across translations is to be expected, especially
considering its ease of implementation.

1 Introduction

Even though Machine Translation (MT) quality
may have increased considerably over the past
years, most notably with advances in the field of
Neural Machine Translation (NMT), Translation
Memories (TMs) still offer some advantages over
MT systems. They are not only able to trans-
late previously seen sentences ‘perfectly’ but they
also offer ‘near perfect’ translation quality when
highly similar source sentences are retrieved from
the TM. As a result, in Computer-Assisted Trans-
lation (CAT) workflows, the MT system is often
used as a backoff mechanism when the TM fails to
retrieve high fuzzy matches above a certain thresh-
old (Rossi and Chevrot, 2019; Federico et al.,
2012), even though it has been shown that this ba-
sic integration method is not always the most op-
timal TM-MT combination strategy (Simard and
Isabelle, 2009).

Our aim in this paper is to integrate the advan-
tages of TMs into NMT systems in order to im-
prove MT quality by utilizing existing translations
for highly similar source sentences in a given TM.
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We propose a simple method for TM-NMT in-
tegration that is based on augmenting the source
data with retrieved fuzzy TM targets by means
of concatenation. We train both dedicated Neu-
ral Fuzzy Repair (NFR) systems that deal specif-
ically with query sentences for which a (suffi-
ciently high-scoring) match is found in the TM
as well as unified systems capable of translat-
ing any query sentence. Several configurations
are tested on the DGT-TM data set (Steinberger
et al., 2013) for the language directions English
into Dutch (EN—NL) and English into Hungarian
(EN—HU).

In the next section, we provide an overview of
previous research on TM-MT integration. Sec-
tion 3 details the approach proposed in this paper.
The experimental setup is presented in section 4,
and the results in section 5. This is followed by the
discussion (section 6) and conclusion (section 7).

2 Research background

The idea to combine the advantages of TM and
MT is certainly not new. Early TM-MT integra-
tion approaches made use of example-based MT
systems (Simard and Langlais, 2001) or focused
on editing high-scoring TM matches (Hewavitha-
rana et al., 2005). Editing TM matches (or fuzzy
repair) proved to be beneficial for the quality
of MT output, as demonstrated in later studies
that also implemented such an approach (Ortega
et al., 2016). Alternatively, phrase-based statisti-
cal MT (PBSMT) systems have been augmented
with TM information by constraining the output
to contain (parts of) retrieved TM matches (Koehn
and Senellart, 2010a), by enriching the system’s
phrase table (Bi¢ici and Dymetman, 2008; Simard
and Isabelle, 2009), or by adapting the PBSMT
system itself (Wang et al., 2013), all leading to sig-
nificantly better performance.
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More recently, with the rise of NMT, re-
searchers focused on ways to incorporate TM in-
formation in neural MT architectures. For exam-
ple, this has been attempted by means of a lexical
memory added to the NMT system (Feng et al.,
2017), lexical constraints imposed on the NMT
search algorithms (Hokamp and Liu, 2017), re-
wards attached to retrieved and matched trans-
lation pieces that guide the NMT output (Zhang
et al., 2018), by explicitly providing the NMT sys-
tem with access to a list of retrieved TM matches
during decoding (Gu et al., 2018), or by adding an
extra encoder for retrieved TM matches (Cao and
Xiong, 2018). In all cases, this resulted in impres-
sive gains in estimated translation quality.

All of these TM-NMT integration approaches
either alter the search algorithms at decoding or
change the architecture of the NMT system by
combining information from multiple encoders.
Our method is different in that it only involves a
change in data preprocessing, without altering the
NMT system itself. The proposed change at pre-
processing is inspired by research on Automatic
Post-Editing (APE) of MT output as well as multi-
source machine translation. In the context of APE,
NMT engines have been trained with a concate-
nation of source sentence and MT output at the
source side, with a specific break token separating
the two strings (Hokamp, 2017). A similar simple
concatenation approach has also been used to take
advantage of multiple source languages to increase
the quality of NMT output (Dabre et al., 2017). In
both cases, the NMT systems managed to process
these augmented inputs successfully.

In the next section, we describe the TM-NMT
integration approach followed in this paper.

3 Neural Fuzzy Repair

We present a simple approach to TM-NMT in-
tegration, based on augmenting source sentences
with fuzzy matches retrieved from a TM, and
training dedicated or unified NMT systems. First,
we present the TM system and method for fuzzy
match retrieval. We then describe how we aug-
ment the input that is used to train an NMT sys-
tem, which is presented next.

3.1 TM and Fuzzy match retrieval

Our TM consists of any set M of source and tar-
get sentence pairs (S, 7); the same sentences that
would be used as training data for an MT system.

Each source sentence s; € S is compared to all
other source sentences s; € S using a similarity
metric Sim. The fuzzy source sentences S, € S
that match a given source sentence s; with a sim-
ilarity score higher than the specified threshold A
are stored in the set F; together with their corre-
sponding target sentences 7] € T (Sim(s;, s;) >
A). Perfect matches (Sim(s;,s;) = 1) are ex-
cluded from F,.

We use token-based edit distance (Levenshtein,
1966) as primary match metric for the tests in
this paper', based on the work of Hyyro (2001).
Since extracting fuzzy matches from a large TM
using edit distance is computationally costly?, we
attempt to speed up this process in three ways.
First, for each source sentence we extract can-
didates using the SetSimilaritySearch® library for
Python and calculate editdistance only on the ex-
tracted candidates (sss+ed). SetSimilaritySearch
offers a vector similarity search algorithm based
on indexing and optimization strategies that does
not rely on approximation methods, and offers per-
formance gains over a number of inverted list-
based approaches and signature-based methods
(Bayardo et al., 2007). To extract candidates
for high fuzzy matches with SetSimilaritySearch,
we use the similarity measure containment,qz,
which is defined as follows:

lvi 0 ]

containment ,qz (vi, vj) maz (ol o5

where v; and v; are two vectors consisting of
unique tokens obtained from two sentences s; and
sj, respectively. Second, we only calculate the ed-
itdistance score for the n-best candidates extracted
by SetSimilaritySearch (sss_nbest+ed). Finally,
we use multi-threading (sss_nbest+ed(mt)).

In Section 5.1 we evaluate what impact these
three techniques have on the speed of retrieval and
the number of matches retrieved.

3.2 Source augmentation

For each source sentence s; for which at least one
sufficiently high-scoring match is found in the TM
(i.e. Fs; # 0), an augmented source x; is gen-
erated according to one of the following formats,

"https://github.com/aflc/editdistance. This metric can be
replaced by other alternatives in the literature (Bloodgood
and Strauss, 2015).

Extracting fuzzy matches for all source sentences in a
data set consisting of 20K sentences took roughly 1 hour
(3996 seconds) on a 2.50GHz Intel Xeon ES5 core.

3https://github.com/ardate/SetSimilaritySearch
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while preserving the original target sentence ¢;:

e format 1: z; : s; @QQQ ¢}
e format2: z; : s; @QQQ t) QQQ ¢t}
e format 3: z; : 5, QQQ ¢} QQQ ¢, QQQ ¢}

where ¢/ represents the target side of the high-
est scoring match s in F;,, and ¢, and t5 the tar-
get side of the second and third highest scoring
matches s/, and s4, respectively. We use ‘@@ @’
as break token marking the boundary between two
sentences.

For formats 2 and 3, in case F;, does not con-
tain at least either 2 or 3 elements, the correspond-
ing empty slots are left blank. Each augmented
source z;, coupled with its original target sen-
tence t; taken from M, is stored in the new set
M =(X,T).

In addition to using format 1 as described
above, we also test an alternative configuration
‘format 1 n-best’, in which we include augmented-
source/target pairs (X", T') in M’ by utilizing the
n-best matches for a given s;. For example, with
this alternative configuration, when n = 3, A"
contains the following augmented source for each
s3, which are paired with the original target sen-
tence ¢;.:

e format 1 n-best:
r! s, @QQQ Y
: s, @QQQ ¢,
;s QQQ ¢

i

i

3

&

This alternative configuration only affects the

training set M’ and does not change the way test

sentences are handled. For all different values of

n, the source sentences in the test set are aug-

mented with the translation of the best possible

fuzzy match t}.

The different data augmentation strategies de-

scribed above potentially lead to different sizes of
training data sets (see Section 5.2).

3.3 NMT system

We use OpenNMT (Klein et al., 2017) with close
to standard settings to train our NFR systems.
For example, we kept the default optimizer (sgd),
learning rate (1.0), word embedding size (500 for
source and target), batch size (64) and dropout
probability (0.3). We did, however, change a num-
ber of parameters related to data preprocessing and

training. The maximum source and target length at
preprocessing are set to 300 and 100, respectively,
and the source vocabulary size is doubled to 100K
(since the augmented source input X are bilin-
gual). We train seq2seq bidirectional RNN mod-
els with global attention, and increased the hid-
den LSTM layer nodes to 750 (from 500), training
steps to 200K (from 100K) and learning rate decay
to 0.8 (from 0.5).

3.4 Integration

Two methods for integrating the augmented train-
ing set M’ in the NMT workflow are tested based
on the different formats described in Section 3.2.
We create:

e two separate NMT systems, a backoff NMT
system with M as training data and a dedi-
cated NFR system with only M’ as training
data, or

e one unified NFR system that uses the union
of sets M and M’ as training data.

We retrieve fuzzy matches for each query sen-
tence ¢; in the test set (), by comparing them to
each s; in the training set M in line with the
method described under 3.1. In case at least one
match is found for which Sim(g;,s;) > A, an
augmented query input y is generated according
to the method described under 3.2. As the dedi-
cated system is only capable of translating y, it is
combined with a backoff system capable of trans-
lating g, in order to translate all source sentences
in a given test set. On the other hand, the unified
system, which can be considered a simpler alterna-
tive to the backoff integration method, can trans-
late both ¢ and y.

4 Experimental setup

In this section we describe the baseline systems
our NFR systems are compared with, the data, and
evaluation.

4.1 Baseline systems

We compare the NFR systems to five baselines: (a)
a standard NMT model, (b) a phrase-based SMT
system, (c) TM matching, (d) a previously devel-
oped hybrid TM-SMT system (Bulté et al., 2018),
and (e) Google Translate*.

The baseline NMT system is the backoff NMT

system with M as training data as described in

*February, 2019.
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Section 3.4. As SMT baseline we train a Moses
engine (Koehn et al., 2007) with the sentence pairs
in M, using standard settings>. TM matching sim-
ply means selecting the highest scoring TM target
t) for each query sentence ¢;. Finally, we include
Google Translate as an example of a widely used
NMT system, which is not trained with domain-
specific data, unlike the other baseline systems.

4.2 Data

We use the TM of the Directorate-General for
Translation of the European Commission (Stein-
berger et al., 2013) for two language pairs: English
into Dutch and English into Hungarian. All sen-
tences were tokenized using the Moses toolkit as
well as lowercased prior to training. We randomly
divide the data into a training set (approx. 2.4M
sentence pairs), two development sets (3000 sen-
tence pairs each) and a test set (3207 sentences).
The first development set is used for validation
during training of the NMT systems and for tun-
ing the SMT systems; the second development set
is used to test the performance of different NFR
configurations. Test sentences for which a perfect
match was found in either the training or one of
the development sets were removed. We ensured
that the source side for all data sets was identical
for both language pairs.

We use pure token-based editdistance to ex-
tract fuzzy matches for the source sentences in the
two development sets and the test set, consider-
ing their relatively small size. We use editdistance
with candidate selection using SetSimilaritySearch
to extract matches in the training set (see Section
3.1). Table 1 shows the percentage of query sen-
tences in the test set for which fuzzy matches are
found in different match ranges (i.e. <50, 50-59 ...
90-99). Since the source sentences in the test and
training sets are the same for both language pairs,
the values apply to both EN-NL and EN-HU.

<50
41.3%

50-59
11.4%

60-69
10.3%

70-79
8.8%

80-89
14.2%

90-99
14.0%

Table 1: Percentage of test sentences per fuzzy match
range (n=3207).

For 58.7% of the sentences in the test set a
match of 50% or higher was found in the TM,
with proportionally most matches occurring in the
highest match ranges.

55-gram KenLM, distortion limit = 6, max. phrase length
=7.

<50 50-59 60-69 70-79 80-89 90-99
329  21.0 21.1 244 234 33.1

Table 2: Average number of source tokens per sen-
tence, per fuzzy match range.

Table 2 shows the average number of source to-
kens per sentence for each fuzzy match range. On
average, the longest sentences are found at both
ends of the fuzzy match scale, i.e. the highest
match range and the subset of sentences without
fuzzy match higher than 50%, with approximately
33 tokens per sentence. In the other match ranges,
sentences are around 10 tokens shorter.

4.3 Evaluation

Three automated evaluation metrics are used:
BLEU® (Papineni et al., 2002), TER’ (Snover
et al., 2006), and METEOR?® (Lavie and Agar-
wal, 2007). There is one reference translation per
test sentence. BLEU scores are used as the pri-
mary evaluation metric, and the significance of
performance differences in terms of BLEU scores
between systems is tested using bootstrap resam-
pling (Koehn, 2004). All evaluations are carried
out on tokenized data.

5 Results

In this section we describe the impact of our fuzzy
matching technique on the speed of retrieval and
the quantity of retrieved matches (5.1), the out-
come of the NFR system selection (5.2), the final
results on the test set (5.3), as well as the effect of
the size of the TM on the performance of the NFR
system (5.4).

5.1 Fuzzy match retrieval

Table 3 shows the fuzzy match extraction time for
four different approaches, as defined in Section
3.1, on three different sizes of data sets. To an-
alyze the fuzzy matching speed of these different
approaches, we extracted a maximum of 5 fuzzy
matches for each source sentence and used A =
0.5 as threshold for both editdistance and SetSim-
ilaritySearch. Relatively small subsets (randomly
extracted 5K, 10K and 20K sentence pairs) of the
original training data were used for these tests.
The table also shows the relative fuzzy matching

®Moses multi-bleu.perl script.
"Version 0.7.25: https://github.com/snover/terp
8Version 1.5: https://www.cs.cmu.edu/~alavie/METEOR/
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speed of the three different methods compared to
editdistance alone, on the data set containing 20K
sentence pairs (%20K).

Method 5K 10K 20K %20K
ed 303 1071 3996 100%
sss+ed 15 54 158  3,95%
sss_n20+ed 7 27 100  2,50%
sss_n20+ed(16t) 1 3 10 0,25%

Table 3: Fuzzy matching speed (seconds) on 5, 10 and
20 thousand sentence pairs using four different meth-
ods. n20 refers to 20-best candidates and /6¢ to multi-
threading with 16 threads.

By using the three techniques described in Sec-
tion 3.1, we reduced the fuzzy matching time on
the training set to 0,25% of the time it takes to ex-
tract matches using only editdistance on the 20K
data set. Using the sss_nbest+ed(mt) method, we
extracted all fuzzy matches for all source sen-
tences per training set described in Section 4.2 in
approximately 24 hours®.

While taking n-best match candidates reduces
the number of editdistance calculations, depend-
ing on the value of n, it also potentially leads to
a loss of training data. Table 4 provides the per-
centage of source sentences for which no fuzzy
matches are found above the editdistance thresh-
old of 0.5 using three different matching methods.

Method 5K 10K 20K
ed 78,86%  75,88%  71,56%
sss+ed 78,86% 75,88% 71,56%
sss.n20+ed | 78,92% 7597% 71,73%

Table 4: Percentage of source sentences without fuzzy
matches above the editdistance score of 0.5, in sets of
5, 10 and 20 thousand sentence pairs.

The results in Table 4 indicate that calculating
editdistance only on the candidates extracted by
SetSimilaritySearch does not lead to data loss in
these three data sets. Limiting the candidate list to
20-best candidates, however, slightly increases the
number of sentences for which no fuzzy matches
are found. Even though the increase seems min-
imal for these three relatively small data sets (i.e.
0,06%, 0,09% and 0,17% for 5, 10 and 20 thou-
sand sentence pairs respectively), there is an in-
creasing trend with increasing data size.

Using 2000-best candidates and 16 threads.

5.2 NFR system selection

We use the second development set to test dif-
ferent NFR configurations. For the sake of these
tests, we fix the minimum fuzzy-match threshold
Ato 0.5. Six different dedicated NFR systems and
three unified systems are compared. We test two
parameters: the augmented input format (F1-F3),
and the n-best matches included per source sen-
tence using format 1 (F1 n-best 1-3), as described
in Section 3.2. The best-scoring NFR systems are
selected for the final evaluation on the basis of the
test set.

Table 5 provides the results of the evaluation
on the second development set for the baseline
systems and the dedicated and unified NFR sys-
tems for both language pairs. Here we only con-
sider the subset of sentences for which a match
was found in the TM with a match score higher
than 0.5 (2266 sentences), and only look at BLEU
scores. Table 5 also shows the size of the training
set for each system configuration, given that the
different configurations lead to training data sets
of varying sizes (see Section 3.2).

BLEU scores Train
System EN-NL EN-HU set
Baseline NMT 64.16 53.52 2.4M
Baseline SMT 68.99 46.41 2.4M
Baseline TM 69.92 60.12 -
Google Translate 49.84 39.55 N/A
Dedicated F1 1-best 79.22 68.35 1.8M
Dedicated F1 2-best 78.95 68.25 3.2M
Dedicated F1 3-best 78.70 68.77 4.5M
Dedicated F2 79.31 68.69 1.8M
Dedicated F3 79.33 68.45 1.8M
Unified F1 1-best 78.59 67.35 4.2M
Unified F2 78.96 67.56 4.2M
Unified F3 79.06 67.65 4.2M

Table 5: BLEU scores on the development set for sen-
tences with at least one fuzzy match above the thresh-
old of 0.5, and size of training data set, per system.

For EN-NL, all NFR systems score between
8.35 and 9.41 BLEU points higher than the best
baseline system (TM) for this subset of sentences.
Only 0.74 BLEU points separate the worst and the
best performing NFR system. Dedicated F3 ob-
tained the best BLEU score, closely followed by
Dedicated F2. Unified F3 also slightly outper-
forms the other unified systems trained with the
second and the first data format.

Also for EN-HU there is only 1.42 BLEU points
difference between the worst and best scoring
NFR system. Here, the best NFR system out-
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performs the best baseline (TM) by 8.65 BLEU
points. We note that the TM baseline in itself
scores 6.6 BLEU points higher than the best MT
baseline (NMT). The dedicated NFR system F1 3-
best attains the highest BLEU score.

5.3 Test set evaluation

Table 6 contains the results for EN-NL for the en-
tire test set (3207 sentences). The dedicated NFR
+ NMT backoff approach outperforms all base-
line systems, scoring +3.19 BLEU, -3.6 TER and
+1.87 METEOR points compared to the best base-
line (TM-SMT). Compared to the NMT baseline,
the difference is 7.46 BLEU points. The best uni-
fied NFR system (Unified F3) scores only slightly
worse than the approach with a dedicated NFR
system and NMT backoff. Both NFR systems
score significantly higher than the best baseline
in terms of BLEU (p < 0.001). We note that
the baseline SMT outperforms the baseline NMT,
which in turn obtains better scores than Google
Translate on this data set.

System BLEU TER MET.
Baseline NMT 5145  36.21 69.83
Baseline SMT 54.21 3599 71.28
Baseline TM-SMT 5572 3496 72.25
Google Translate 4437 4151  65.07
Best NFR + NMT backoff | 58.91 31.36 74.12
Best NFR unified 58.60 31.57 73.96

Table 6: Test results EN-NL (all sentences).

The results for EN-HU (Table 7) show a sim-
ilar overall picture, with an even clearer advan-
tage for the NFR systems. The best dedicated
NFR system with NMT backoff (Dedicated F1 3-
best) scores 7.06 BLEU points more than the best
baseline (TM-SMT), and also yields considerable
improvements in terms of TER (-5.34) and ME-
TEOR (+4.46). The unified NFR system scores
only 0.41 BLEU points lower than the dedicated
NFR+backoff system. Also for this language pair
the differences in BLEU scores between both NFR
systems and the best baseline system are statisti-
cally significant (p < 0.001). The TM-SMT sys-
tem is the best baseline in terms of BLEU and ME-
TEOR (but not in terms of TER, with the baseline
NMT system scoring over 4.5 points better). In
contrast to the EN-NL tests, where the SMT sys-
tem scored better than the NMT system, the base-
line NMT for EN-HU obtains a higher translation
quality than the SMT baseline. Moreover, Google
Translate gives comparable results to those of the

baseline SMT system (better in terms of TER but
worse in terms of BLEU and METEOR).

System BLEU TER MET.
Baseline NMT 40.47 4545 57.68
Baseline SMT 33.65 5476 53.96
Baseline TM-SMT 41.18 49.98 58.67
Google Translate 32.11 5299 5140
Best NFR + NMT backoff | 48.24  40.11 63.13
Best NFR unified 47.83  40.14 62.77

Table 7: Test results EN-HU (all sentences).

Next we look at the performance of the different
systems on different subsets of the test set classi-
fied according to the best fuzzy match score (Ta-
ble 8). For EN-NL, both NFR systems outperform
all baselines in all match ranges from 0.6 onward.
In the match range 0.5-0.59, the SMT and TM-
SMT baselines obtain higher BLEU scores than
both NFR systems. For EN-HU, the NFR systems
outperform all baselines in all match ranges ex-
cept for No match. The scores of both NFR sys-
tems for both language pairs consistently increase
across increasing match ranges, a pattern which is
also followed by the TM baseline. We note that
the NFR systems, also in the highest match range,
clearly outperform the TM baselines for both lan-
guage pairs.

If we disregard the TM and TM-SMT base-
lines and only look at the ‘pure’ MT baselines,
the difference between the NFR systems and the
MT baselines consistently becomes larger with
increasing fuzzy match score, for both language
pairs. In the highest match range (i.e. 0.9 - 0.99),
the increase in BLEU scores compared to the
NMT baseline is 21.95 points for EN-NL and
22.776 points for EN-HU. In the range 0.8 - 0.89
this is 15.68 and 17.7 BLEU points respectively.
As Table 2 showed, there is no correlation be-
tween fuzzy match range and average sentence
length, which means that decreasing average sen-
tence length is not an explanation for the increas-
ing performance of the NFR systems with increas-
ing fuzzy match scores. The results suggest that
from a fuzzy match score of between 0.5 and 0.6
onward, it becomes advantageous to use an NFR
system using the data sets in this study.

For those sentences in the test set for which no
match higher than the given threshold (A > 0.5)
was found in the training set (No match), the uni-
fied NFR system performs slightly worse than the
best baselines for translation into both Dutch (-
0.34 BLEU) and Hungarian (-0.74 BLEU). Note
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System EN-NL EN-HU
= Baseline NMT 40.77 29.76
£ Baseline SMT 40.87 23.21
£ Baseline TM-SMT | 39.71  23.49
:2 Google Translate 39.02 27.3
Best NFR unified 40.53 29.02
Baseline NMT 51.14 39.23
Baseline SMT 54.11 33.50
% Baseline TM 34.23 28.38
u?) Baseline TM-SMT 53.86 34.67
< Google Translate 43.24 32.16
Best NFR dedicated 50.21 40.28
Best NFR unified 51.55 42.61
Baseline NMT 56.72 44.73
Baseline SMT 61.86 39.07
2 Baseline TM 49.56 40.67
g Baseline TM-SMT 61.75 41.81
= Google Translate 49.82 35.32
Best NFR dedicated 65.31 52.13
Best NFR unified 63.76 53.14
Baseline NMT 57.59 45.75
Baseline SMT 64.84 40.54
f\t Baseline TM 61.52 49.39
E Baseline TM-SMT 66.22 48.82
<= Google Translate 46.79 36.32
Best NFR dedicated 73.12 59.29
Best NFR unified 72.78 57.73
Baseline NMT 67.01 55.91
Baseline SMT 71.14 47.69
& Baseline TM 69.66 61.89
g Baseline TM-SMT 70.28 60.81
= Google Translate 52.89 38.54
Best NFR dedicated 82.69 73.27
Best NFR unified 82.09 73.61
Baseline NMT 65.95 56.16
Baseline SMT 71.49 47.12
a Baseline TM 83.77 74.67
; Baseline TM-SMT 83.49 75.24
= Google Translate 50.92 38.29
Best NFR dedicated 87.90 78.92
Best NFR unified 87.41 77.59
Baseline NMT 61.28 50.28
" Baseline SMT 66.27 43.09
< Baseline TM 64.63 55.94
Al Baseline TM-SMT 70.19 56.89
i Google Translate 49.38 36.66
Best NFR dedicated 75.31 64.85
Best NFR unified 74.96 64.78

Table 8: Test results (BLEU scores, different match
ranges).

that for this subset of test sentences the perfor-
mance of the different MT systems is highly com-
parable for EN-NL. In this match range, for exam-
ple, also Google Translate scores only 1.85 BLEU
points lower than the best-scoring system (SMT).
For EN-HU, SMT is clearly outperformed by both
NMT and Google Translate in the No match range.

5.4 Effect of TM size

Considering that the success of the NFR systems
depends on the amount of highly-similar matches

retrieved from the TM, we examine the effect of
different TM sizes by evaluating the performance
of baseline NMT and the best unified NFR sys-
tem for increasingly smaller subsets of our orig-
inal EN-NL data set. Figure 1 shows the trans-
lation quality for the baseline NMT and the best
unified NFR system (Unified F3) for five differ-
ent TM sizes, which are indicated as percentages
of the original TM size (i.e. approx. 2.4M sen-
tence pairs)'?, as well as the percentage of source
sentences in the test set for which similar sen-
tences are retrieved above the similarity threshold
(A > 0.5).

65
55
45
35
25
6,25% 12,5% 25% 50% 100%
Size of TM

B NMT baseline (BLEU) @ Unified NFR (BLEU)
Unified NFR (% sent. with matches)

Figure 1: Effect of TM size on translation quality
(BLEU) and number of ‘similar’ matches retrieved
from TM.

The NFR system outperforms the baseline
NMT system for all TM sizes. The difference in
BLEU scores between the two systems becomes
more outspoken starting from 12.5% of the orig-
inal TM size (i.e. approx. 300K sentence pairs),
when for 35% of the sentences in the test set a sim-
ilar match is retrieved from the TM. We note that
the NFR system built with 12.5% of the original
TM size yields higher BLEU scores than the base-
line NMT system trained with the full TM (51.17
vs. 50.07).

6 Discussion

The results of this study confirm that integrating
TM information in NMT systems can result in
significantly better translation quality, as demon-
strated in a number of previous studies (Cao and

'%In this experiment we used 100K steps (instead of 200K
steps) to speed up training, which led to a slight decrease
in BLEU scores for the systems built using the original TM
(100%).
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Xiong, 2018; Hokamp and Liu, 2017; Gu et al.,
2018; Zhang et al., 2018). The main novelty of
our approach is that it only involves data prepro-
cessing, without altering the architecture (e.g. by
adding additional encoders) or algorithms of the
NMT system. This makes our method easy to im-
plement, since it is compatible with any ‘standard’
or out-of-the-box NMT system. This should allow
for a smoother implementation and wider adop-
tion.

The NFR systems proposed in this study not
only outperform all MT baselines, they also ob-
tain better scores than the TM baseline in all fuzzy
match ranges (including the highest ones). This
shows that the NFR systems not only successfully
exploit the information from TM matches, but go
beyond this and effectively succeed in ‘repairing’
the fuzzy matches, at least to a certain extent. We
argue that, for this reason, NFR systems (or, more
generally speaking, systems offering NMT-TM in-
tegration) might gradually replace TM retrieval in
CAT workflows in the future, where MT is cur-
rently still often used as a backoff option (Rossi
and Chevrot, 2019; Federico et al., 2012). The
fact that the MT baselines in our study do not ob-
tain better scores than ‘pure’ TM retrieval in the
higher match ranges (i.e. 0.8-0.99 for EN-NL and
0.7-0.99 for EN-HU) appears to confirm why this
is still the case. Moreover, it is possible that NFR
systems help to lower the resistance some transla-
tors have to adopting MT (Cadwell et al., 2018),
especially when the TM-origins of parts of the
MT output are marked by using automatic word-
alignment methods (Bulté et al., 2018), since this
could potentially increase translators’ confidence
in the quality of automatically generated transla-
tions.

Even though we only performed a limited num-
ber of tests on one data set, the results show that
the NFR system is successful for two language
pairs, EN-NL and EN-HU, in spite of the typolog-
ical differences between the two target languages.
Moreover, the results of the system selection pro-
cedure reveal that the NFR system is rather robust,
in that different configurations yield comparable
results, and all lead to significant improvements
in estimated translation quality. While combining
the dedicated NFR with the baseline NMT systems
yielded the best results for both language pairs, the
unified NFR systems achieve comparable BLEU
gains over the baseline NMT systems. As a result,

the unified NFR systems offer yet a simpler alter-
native to the baseline NMT systems due to their
ability to translate all source sentences.

The analyses per match range reveal that us-
ing an NFR system starts being advantageous with
fuzzy match scores between 0.5 and 0.6. It seems
logical that any TM-based method is only suited
for contexts with a sizeable TM and with a certain
expected degree of repetition and overlap in the
data. The tests related to training data size show,
however, that with smaller TMs this method is still
beneficial. For example, an NFR system built only
with 1/8th of the original data set still achieved
higher BLEU scores than the baseline NMT sys-
tem trained on the full data set. We can argue
that the most important factor for the NFR systems
proposed in this study is the amount of overlap be-
tween the training and query sentences.

Looking at the performance of the baseline MT
systems, and in particular the relationship between
SMT and NMT, there is a clear difference between
the two target languages. The EN-NL SMT out-
performs NMT by almost 3 BLEU points when
evaluating the complete test set and obtains better
scores in each of the match ranges (Table 6). The
opposite is true for EN-HU, for which the NMT
baseline outperforms the SMT baseline by almost
7 BLEU points on the whole test set (Table 7), a
trend which is also visible in all match ranges (Ta-
ble 8). Our findings are in line with those of Koehn
et al. (2009), who compare the SMT quality of
462 language pairs and report generally lower
SMT quality when translating into morphologi-
cally rich languages, such as Hungarian, Finnish
and Estonian. The poorer translation quality of
the EN-HU SMT in this study can potentially be
attributed to the fact that a rich morphology (in-
volving inflections and derivations) leads to an in-
crease in vocabulary size and an overall data spar-
sity problem, which brings about additional chal-
lenges to the‘standard’ phrase-based SMT systems
that rely on explicit phrase alignments on surface
forms (Koehn, 2009). Instead of relying on sur-
face forms, NMT systems utilize distributed, ab-
stract word representations that can capture syn-
tactic and semantic relationship between words,
which could (partly) explain their relative success
on the EN-HU language pair.

In relation to the speed of fuzzy match retrieval,
which can be an issue when matches have to be
retrieved for all source sentences in a TM, the re-
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sults suggest that SetSimilaritySearch can be used
as a fast proxy to editdistance. However, in this
context it is important to strike the right balance
between processing time and loss of training data
by using different values for minimum similar-
ity score and n-best candidates for SetSimilarity-
Search. It still needs to be tested how well the NFR
system works with other fuzzy matching met-
rics (Vanallemeersch and Vandeghinste, 2015),
and how fast fuzzy matches can be retrieved from
a TM with alternative methods, such as using the
off-the-shelf search engine Apache Lucene (Gu
et al., 2018; Zhang et al., 2018) or other approx-
imate string matching methods (Koehn and Senel-
lart, 2010b; Navarro, 2001).

7 Conclusion

The TM-NMT integration approach presented in
this paper, Neural Fuzzy Repair, makes use of data
augmentation to help improve machine translation
quality using information retrieved from a transla-
tion memory. Compared to previous approaches
to incorporate TM information into MT systems,
NFR does not require different NMT architectures
or algorithms, but relies solely on input prepro-
cessing, and can thus be used in combination with
any existing NMT system or toolkit. Tests on two
language pairs (EN-NL and EN-HU) showed that
this method can achieve substantial gains in esti-
mated translation quality compared to a range of
baseline systems, even for relatively small training
set sizes. We believe that the ease of implementa-
tion of NFR could lead to the wider adoption of
TM-NMT integration.

In a next step, we plan to compare the perfor-
mance of NFR to other approaches to TM-NMT
integration, for example by carrying out evalua-
tions on the JRC-Acquis corpus (Gu et al., 2018;
Koehn and Senellart, 2010a; Zhang et al., 2018).
The approach also needs to be tested on data
sets with a lower frequency of repeated sentences,
other language pairs as well as different domains,
ultimately also involving human evaluation (both
in term of perceived quality and post-editing time).
In addition, it would be informative to carry out a
qualitative analysis of the NFR output in terms of
how and to what extent the information contained
in the fuzzy matches is used in the final transla-
tion, in comparison with the NMT baseline. We
also intend to carry out further tests to potentially
improve the quality of the output, for example by

testing different match metrics and retrieval meth-
ods, NMT architectures (e.g. transformer), ways
to include alignment information and by applying
additional morphological preprocessing.
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