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Abstract

We present the first challenge set and eval-
uation protocol for the analysis of gender
bias in machine translation (MT). Our ap-
proach uses two recent coreference resolution
datasets composed of English sentences which
cast participants into non-stereotypical gender
roles (e.g., “The doctor asked the nurse to help
her in the operation”). We devise an automatic
gender bias evaluation method for eight tar-
get languages with grammatical gender, based
on morphological analysis (e.g., the use of fe-
male inflection for the word “doctor”). Our
analyses show that four popular industrial MT
systems and two recent state-of-the-art aca-
demic MT models are significantly prone to
gender-biased translation errors for all tested
target languages. Our data and code are pub-
licly available at https://github.com/
gabrielStanovsky/mt_gender.

1 Introduction

Learned models exhibit social bias when their
training data encode stereotypes not relevant for
the task, but the correlations are picked up any-
way. Notable examples include gender biases in
visual SRL (cooking is stereotypically done by
women, construction workers are stereotypically
men; Zhao et al., 2017), lexical semantics (“man
is to computer programmer as woman is to home-
maker”; Bolukbasi et al., 2016), and natural lan-
guage inference (associating women with gossip-
ing and men with guitars; Rudinger et al., 2017).

In this work, we conduct the first large-scale
multilingual evaluation of gender-bias in machine
translation (MT), following recent small-scale
qualitative studies which observed that online MT
services, such as Google Translate or Microsoft
Translator, also exhibit biases, e.g., translating
nurses as females and programmers as males, re-
gardless of context (Alvarez-Melis and Jaakkola,

The doctor asked the nurse to help her in the procedure

El doctor le pidio a la enfermera que le ayudara con el procedimiento

Figure 1: An example of gender bias in machine trans-
lation from English (top) to Spanish (bottom). In
the English source sentence, the nurse’s gender is un-
known, while the coreference link with “her” identi-
fies the “doctor” as a female. On the other hand, the
Spanish target sentence uses morphological features
for gender: “el doctor” (male), versus “la enfermer-
a” (female). Aligning between source and target sen-
tences reveals that a stereotypical assignment of gender
roles changed the meaning of the translated sentence by
changing the doctor’s gender.

2017; Font and Costa-Jussà, 2019). Google Trans-
late recently tried to mitigate these biases by al-
lowing users to sometimes choose between gen-
dered translations (Kuczmarski, 2018).

As shown in Figure 1, we use data introduced
by two recent coreference gender-bias studies: the
Winogender (Rudinger et al., 2018), and the Wino-
Bias (Zhao et al., 2018) datasets. Following the
Winograd schema (Levesque, 2011), each instance
in these datasets is an English sentence which de-
scribes a scenario with human entities, who are
identified by their role (e.g., “the doctor” and “the
nurse” in Figure 1), and a pronoun (“her” in the
example), which needs to be correctly resolved
to one of the entities (“the doctor” in this case).
Rudinger et al. (2018) and Zhao et al. (2018) found
that while human agreement on the task was high
(roughly 95%), coreference resolution models of-
ten ignore context and make socially biased pre-
dictions, e.g., associating the feminine pronoun
“her” with the stereotypically female “nurse.”

We observe that for many target languages, a
faithful translation requires a similar form of (at
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least implicit) gender identification. In addition,
in the many languages which associate between
biological and grammatical gender (e.g., most Ro-
mance, Germanic, Slavic, and Semitic languages;
Craig, 1986; Mucchi-Faina, 2005; Corbett, 2007),
the gender of an animate object can be identified
via morphological markers. For instance, when
translating our running example in Figure 1 to
Spanish, a valid translation may be: “La doc-
tora le pidio a la enfermera que le ayudara con
el procedimiento,” which indicates that the doctor
is a woman, by using a feminine suffix inflection
(“doctora”) and the feminine definite gendered ar-
ticle (“la”). However, a biased translation system
may ignore the given context and stereotypically
translate the doctor as male, as shown at the bot-
tom of the figure.

Following these observations, we design a chal-
lenge set approach for evaluating gender bias in
MT using a concatenation of Winogender and
WinoBias. We devise an automatic translation
evaluation method for eight diverse target lan-
guages, without requiring additional gold trans-
lations, relying instead on automatic measures
for alignment and morphological analysis (Sec-
tion 2). We find that four widely used commercial
MT systems and two recent state-of-the-art aca-
demic models are significantly gender-biased on
all tested languages (Section 3). Our method and
benchmarks are publicly available, and are easily
extensible with more languages and MT models.

2 Challenge Set for Gender Bias in MT

We compose a challenge set for gender bias in MT
(which we dub “WinoMT”) by concatenating the
Winogender and WinoBias coreference test sets.
Overall, WinoMT contains 3,888 instances, and is
equally balanced between male and female gen-
ders, as well as between stereotypical and non-
stereotypical gender-role assignments (e.g., a fe-
male doctor versus a female nurse). Additional
dataset statistics are presented in Table 1.

We use WinoMT to estimate the gender-bias of
an MT model, M , in target-language L by per-
forming following steps (exemplified in Figure 1):
(1) Translate all of the sentences in WinoMT into
L using M , thus forming a bilingual corpus of En-
glish and the target language L.
(2) Align between the source and target transla-
tions, using fast align (Dyer et al., 2013), trained
on the automatic translations from from step (1).

Winogender WinoBias WinoMT

Male 240 1582 1826
Female 240 1586 1822
Neutral 240 0 240
Total 720 3168 3888

Table 1: The coreference test sets and resulting
WinoMT corpus statistics (in number of instances).

We then map the English entity annotated in the
coreference datasets to its translation (e.g., align
between “the doctor” and “el doctor” in Figure 1).
(3) Finally, we extract the target-side entity’s
gender using simple heuristics over language-
specific morphological analysis, which we per-
form using off-the-shelf tools for each target lan-
guage, as discussed in the following section.

This process extracts the translated genders, ac-
cording to M , for all of the entities in WinoMT,
which we can then evaluate against the gold anno-
tations provided by the original English dataset.

This process can introduce noise into our eval-
uation in steps (2) and (3), via wrong alignments
or erroneous morphological analysis. In Section 3,
we will present a human evaluation showing these
errors are infrequent.

3 Evaluation

In this section, we briefly describe the MT systems
and the target languages we use, our main results,
and their human validation.

3.1 Experimental Setup
MT systems We test six widely used MT mod-
els, representing the state of the art in both
commercial and academic research: (1) Google
Translate,1 (2) Microsoft Translator,2 (3) Amazon
Translate,3 (4) SYSTRAN,4 (5) the model of Ott
et al. (2018), which recently achieved the best per-
formance on English-to-French translation on the
WMT’14 test set, and (6) the model of Edunov
et al. (2018), the WMT’18 winner on English-to-
German translation. We query the online API for
the first four commercial MT systems, while for
the latter two academic models we use the pre-
trained models provided by the Fairseq toolkit.5

1https://translate.google.com
2https://www.bing.com/translator
3https://aws.amazon.com/translate
4http://www.systransoft.com
5https://github.com/pytorch/fairseq

https://translate.google.com
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Google Translate Microsoft Translator Amazon Translate∗ SYSTRAN
Acc ∆G ∆S Acc ∆G ∆S Acc ∆G ∆S Acc ∆G ∆S

ES 53.1 23.4 21.3 47.3 36.8 23.2 59.4 15.4 22.3 45.6 46.3 15.0
FR 63.6 6.4 26.7 44.7 36.4 29.7 55.2 17.7 24.9 45.0 44.0 9.4
IT 39.6 32.9 21.5 39.8 39.8 17.0 42.4 27.8 18.5 38.9 47.5 9.4

RU 37.7 36.8 11.4 36.8 42.1 8.5 39.7 34.7 9.2 37.3 44.1 9.3
UK 38.4 43.6 10.8 41.3 46.9 11.8 – – – 28.9 22.4 12.9

HE 53.7 7.9 37.8 48.1 14.9 32.9 50.5 10.3 47.3 46.6 20.5 24.5
AR 48.5 43.7 16.1 47.3 48.3 13.4 49.8 38.5 19.0 47.0 49.4 5.3

DE 59.4 12.5 12.5 74.1 0.0 30.2 62.4 12.0 16.7 48.6 34.5 10.3

Table 2: Performance of commercial MT systems on the WinoMT corpus on all tested languages, categorized by
their family: Spanish, French, Italian, Russian, Ukrainian, Hebrew, Arabic, and German. Acc indicates overall
gender accuracy (% of instances the translation had the correct gender), ∆G denotes the difference in performance
(F1 score) between masculine and feminine scores, and ∆S is the difference in performance (F1 score) between
pro-stereotypical and anti-stereotypical gender role assignments (higher numbers in the two latter metrics indicate
stronger biases). Numbers in bold indicate best accuracy for the language across MT systems (row), and underlined
numbers indicate best accuracy for the MT system across languages (column). ∗Amazon Translate does not have
a trained model for English to Ukrainian.

Acc ∆G ∆S

FR (Ott et al., 2018) 49.4 2.6 16.1
DE (Edunov et al., 2018) 52.5 7.3 8.4

Table 3: Performance of recent state-of-the-art aca-
demic translation models from English to French and
German. Metrics are the same as those in Table 2.

Target languages and morphological analysis
We selected a set of eight languages with gram-
matical gender which exhibit a wide range of
other linguistic properties (e.g., in terms of al-
phabet, word order, or grammar), while still al-
lowing for highly accurate automatic morpholog-
ical analysis. These languages belong to four dif-
ferent families: (1) Romance languages: Span-
ish, French, and Italian, all of which have gen-
dered noun-determiner agreement and spaCy mor-
phological analysis support (Honnibal and Mon-
tani, 2017). (2) Slavic languages (Cyrillic alpha-
bet): Russian and Ukrainian, for which we use
the morphological analyzer developed by Korobov
(2015). (3) Semitic languages: Hebrew and Ara-
bic, each with a unique alphabet. For Hebrew,
we use the analyzer developed by Adler and El-
hadad (2006), while gender inflection in Arabic
can be easily identified via the ta marbuta charac-
ter, which uniquely indicates feminine inflection.
(4) Germanic languages: German, for which we

use the morphological analyzer developed by Al-
tinok (2018).

3.2 Results

Our main findings are presented in Tables 2 and 3.
For each tested MT system and target language we
compute three metrics with respect to their abil-
ity to convey the correct gender in the target lan-
guage. Ultimately, our analyses indicate that all
tested MT systems are indeed gender biased.

First, the overall system Accuracy is calculated
by the percentage of instances in which the trans-
lation preserved the gender of the entity from
the original English sentence. We find that most
tested systems across eight tested languages per-
form quite poorly on this metric. The best per-
forming model on each language often does not
do much better than a random guess for the correct
inflection. An exception to this rule is the transla-
tion accuracies on German, where three out of four
systems acheive their best performance. This may
be explained by German’s similarity to the English
source language (Hawkins, 2015).

In Table 2, ∆G denotes the difference in per-
formance (F1 score) between male and female
translations. Interestingly, all systems, except Mi-
crosoft Translator on German, perform signifi-
cantly better on male roles, which may stem from
these being more frequent in the training set.

Perhaps most tellingly, ∆S measures the differ-
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Figure 2: Google Translate’s performance on gender translation on our tested languages. The performance on the
stereotypical portion of WinoMT is consistently better than that on the non-stereotypical portion. The other MT
systems we tested display similar trends.

Original +Adj ∆

ES 53.1 63.5 +10.4
RU 37.7 48.9 +11.2
UK 38.4 42.9 +4.5

Table 4: Performance of Google Translate on Spanish,
Russian, and Ukranian gender prediction accuracy (%
correct) on the original WinoMT corpus, versus a mod-
ified version of the dataset where we add sterotypical
gender adjectives (see Section 3.3).

ence in performance (F1 score) between stereo-
typical and non-stereotypical gender role assign-
ments, as defined by Zhao et al. (2018) who
use statistics provided by the US Department of
Labor.6 This metric shows that all tested sys-
tems have a significant and consistently better per-
formance when presented with pro-stereotypical
assignments (e.g., a female nurse), while their
performance deteriorates when translating anti-
stereotypical roles (e.g., a male receptionist).
For instance, Figure 2 depicts Google Trans-
late absolute accuracies on stereotypical and non-
stereotypical gender roles across all tested lan-
guages. Other tested systems show similar trends.

3.3 Fighting Bias with Bias

Finally, we tested whether we can affect the
translations by automatically creating a version
of WinoMT with the adjectives “handsome” and
“pretty” prepended to male and female entities, re-
spectively. For example, the sentence in Figure 1
will be converted to: “The pretty doctor asked the
nurse to help her in the operation”. We are inter-
ested in evaluating whether this “corrects” the pro-
fession bias by mixing signals, e.g., while “doc-

6https://www.bls.gov/cps/cpsaat11.htm

tor” biases towards a male translation, “pretty”
tugs the translation towards a female inflection.
Our results show that this improved performance
in some languages, significantly reducing bias in
Spanish, Russian, and Ukrainian (see Table 4).
Admittedly, this is impractical as a general debi-
asing scheme, since it assumes oracle coreference
resolution, yet it attests to the relation between
coreference resolution and MT, and serves as a fur-
ther indication of gender bias in MT.

3.4 Human Validation

We estimate the accuracy of our gender bias evalu-
ation method by randomly sampling 100 instances
of all translation systems and target languages, an-
notating each sample by two target-language na-
tive speakers (resulting in 9,600 human annota-
tions). Each instance conformed to a format sim-
ilar to that used by our automatic gender detec-
tion algorithm: human annotators were asked to
mark the gender of an entity within a given target-
language sentence. (e.g., see “el doctor” as high-
lighted in the Spanish sentence in Figure 1). By
annotating at the sentence-level, we can account
for both types of possible errors, i.e., alignment
and gender extraction.

We compare the sentence-level human anno-
tations to the output of our automatic method,
and find that the levels of agreement for all lan-
guages and systems were above 85%, with an
average agreement on 87% of the annotations.
In comparison, human inter-annotator agreement
was 90%, due to noise introduced by several inco-
herent translations.

Our errors occur when language-specific id-
iosyncrasies introduce ambiguity to the morpho-
logical analysis. For example, gender for certain
words in Hebrew cannot be distinguished without

https://www.bls.gov/cps/cpsaat11.htm
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Source [Target lang.] Predicted translation Phenomenon

The janitor does not like the baker
because she always messes up the
kitchen.

[ES] Al conserje no le gusta el panadero
porque ella siempre desordena la cocina.

Biased translation, giving “baker” a
male inflection, with a mismatched pro-
noun reference.

The janitor does not like the pretty
baker because she always messes up
the kitchen.

[ES] Al conserje no le gusta la panadera
bonita porque ella siempre desordena la
cocina.

Adding a stereotypically female adjec-
tive “fixes” the translation.

The counselor asked the guard a few
questions and praised her for the good
work.

[FR] Le conseiller a posé quelques ques-
tions à la garde et l’a louée pour le bon
travail.

French uses “garde” for both male and
female guards, allowing for a more di-
rect translation from English.

Table 5: Examples of Google Translate’s output for different sentences in the WinoMT corpus. Words in blue,
red, and orange indicate male, female and neutral entities, respectively.

diacritics (e.g., the male and female versions of the
word “baker” are spelled identically), and the con-
tracted determiner in French and Italian (l’) is used
for both masculine and feminine nouns. In ad-
dition, some languages have only male or female
inflections for professions which were stereotypi-
cally associated with one of the genders, for exam-
ple “sastre” (tailor) in Spanish or “soldat” (soldier)
in French, which do not have female inflections.
See Table 5 for detailed examples.

4 Discussion

Related work This work is most related to sev-
eral recent efforts which evaluate MT through
the use of challenge sets. Similarly to our use
WinoMT, these works evaluate MT systems (ei-
ther manually or automatically) on test sets which
are specially created to exhibit certain linguis-
tic phenomena, thus going beyond the traditional
BLEU metric (Papineni et al., 2002). These in-
clude challenge sets for language-specific idiosyn-
crasies (Isabelle et al., 2017), discourse phenom-
ena (Bawden et al., 2018), pronoun translation
(Müller et al., 2018; Webster et al., 2018), or
coreference and multiword expressions (Burchardt
et al., 2017).

Limitations and future work While our work
presents the first large-scale evaluation of gender
bias in MT, it still suffers from certain limitations
which could be addressed in follow up work. First,
like some of the challenge sets discussed above,
WinoMT is composed of synthetic English source-
side examples. On the one hand, this allows for
a controlled experiment environment, while, on
the other hand, this might introduce some artifi-
cial biases in our data and evaluation. Ideally,
WinoMT could be augmented with natural “in the
wild” instances, with many source languages, all

annotated with ground truth entity gender. Sec-
ond, similar to any medium size test set, it is clear
that WinoMT serves only as a proxy estimation for
the phenomenon of gender bias, and would prob-
ably be easy to overfit. A larger annotated cor-
pus can perhaps provide a better signal for train-
ing. Finally, even though in Section 3.3 we show
a very rudimentary debiasing scheme which relies
on oracle coreference system, it is clear that this
is not applicable in a real-world scenario. While
recent research has shown that getting rid of such
biases may prove to be very challenging (Elazar
and Goldberg, 2018; Gonen and Goldberg, 2019),
we hope that this work will serve as a first step for
developing more gender-balanced MT models.

5 Conclusions

We presented the first large-scale multilingual
quantitative evidence for gender bias in MT,
showing that on eight diverse target languages,
all four tested popular commercial systems and
two recent state-of-the-art academic MT mod-
els are significantly prone to translate based
on gender stereotypes rather than more mean-
ingful context. Our data and code are pub-
licly available at https://github.com/
gabrielStanovsky/mt_gender.
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