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Abstract

A lot of work has been done in the field of im-
age compression via machine learning, but not
much attention has been given to the compres-
sion of natural language. Compressing text
into lossless representations while making fea-
tures easily retrievable is not a trivial task, yet
has huge benefits. Most methods designed to
produce feature rich sentence embeddings fo-
cus solely on performing well on downstream
tasks and are unable to properly reconstruct
the original sequence from the learned embed-
ding. In this work, we propose a near lossless
method for encoding long sequences of texts
as well as all of their sub-sequences into fea-
ture rich representations. We test our method
on sentiment analysis and show good perfor-
mance across all sub-sentence and sentence
embeddings.

1 Introduction

Compressing information by encoding it into a
fixed size representation in such a way that per-
fect decoding is possible is challenging. Instead,
most of the existing sentence encoding methods
focus more on learning encoding such that the
encoded representations are good enough for the
downstream tasks. In this work, we focus on per-
fectly decodable encoding of sentences which will
be very useful in designing good generative mod-
els that can generate longer sentences.

Early efforts such as (Hinton and Salakhutdi-
nov, 2006) have shown autoencoders to effectively
yield compressed input representations. Pollack
(1990) was the first to propose using autoencoders
recursively. Such models have been shown to
be useful for a multitude of tasks. Luong et al.
(2013) use recursive neural networks and neural
language models to better represent rare words
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via morphemes. Socher et al. (2011a) use recur-
sive autoencoders for paraphrase detection, learn-
ing sentence embeddings (Socher et al., 2010)
and syntactic parsing. Socher et al. (2011b) also
use a recursive autoencoder to build a tree struc-
ture based on error reconstruction. Additionally,
Socher et al. (2012) use a matrix-vector RNN to
learn semantic relationships present in natural lan-
guage and show good performance on such task
as well as sentiment classification. Then, Socher
et al. (2013) introduced the Recursive Neural Ten-
sor Network, trained on a their proposed Senti-
ment Treebank corpus to better deal with negat-
ing sub-sequences for better sentiment classifica-
tion. Recently, Kokkinos and Potamianos (2017)
proposed Structural Attention to build syntactic
trees and improve even further performance on
SST. Parse trees do alleviate the burden of learn-
ing the syntactic structure of text, but these meth-
ods limit the number of generated embeddings to
the number of nodes in the parse tree. Our pro-
posed method does not have such a restriction as
all possible syntactic tree can be simultaneously
represented by the architecture.

Convolutional Neural Networks (LeCun et al.,
1989) have been used in natural language process-
ing as well. Convolutions work well for extracting
low and high level text features and building se-
quence representations. Lai et al. (2015) proposed
to use CNNs recurrently and show good perfor-
mance on various language tasks. Zhang et al.
(2015); Dos Santos and Gatti de Bayser (2014)
both train CNNs on character level for sentiment
analysis, while Johnson and Zhang (2014) work
on word level. Kalchbrenner et al. (2014) pro-
pose a Dynamic Convolutional Neural Network
for semantic modelling of sentences and apply
their model to sentiment prediction. Our proposed
model is very similar to 1D CNNs. In our case
though, we use a multilayer perceptron in parallel
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instead of a kernel to extract meaningful informa-
tion out of the layer’s input.

Much progress has been made in recent years in
the field of general purpose sentence embeddings.
Fixed length representations of sentence wide con-
text are learned with the objective of serving for
a wide range of downstream tasks. Conneau
et al. (2017) trained a bidirectional LSTM on the
AIINLI natural language inference corpus (Bow-
man et al., 2015; Williams et al., 2017) producing
embeddings that generalized well on the SentEval
(Conneau and Kiela, 2018) benchmark. Follow-
ing this trend, Subramanian et al. (2018) trained
a GRU (Cho et al., 2014) on Skip-thought vec-
tors (Kiros et al., 2015), neural machine trans-
lation, parsing and natural language inference to
get even better downstream task results. More re-
cently, Devlin et al. (2018); Liu et al. (2019b,a)
use Transformers (Vaswani et al., 2017) to pro-
duce sentence wide context embeddings for each
input token and get state-of-the-art results on mul-
tiple natural language processing tasks. Dai et al.
(2019) improve the Transformer method by recur-
sively applying it to fixed length segments of text
while using a hidden state to model long depen-
dencies. One downside to these sentence embed-
ding generation methods is that the context is al-
ways sequence wide. Our proposed model com-
putes a sentence embedding as well as an embed-
ding for all possible sub-sentences of the sequence
with sub-sentence wide context only. All embed-
dings generated throughout our architecture are
constructed the same way and thus share the same
properties.

2 Recursive Autoencoder

We introduce our recursive autoencoding ap-
proach in this section. First we define our model’s
architecture and how each encoding and decoding
recursion is performed. We then describe how the
model keeps track of the recursion steps, followed
by a description of how the input is represented.
We also explain the advantages of using the mean
squared error loss for our method. Finally, we dive
into the implementation details.

2.1 Model Architecture

Our model is a recursive auto-encoder. Figure 1
shows an example of our architecture for a se-
quence of length three.

The encoder takes an

input sequence

Figure 1: Example of our recursive autoencoder with
an input sequence of length three. The encoder recur-
sively takes two embeddings and outputs one until a
single one is left and the decoder takes one embedding
and outputs two until there are as many as in the origi-
nal sequence.

{z1,--- ,z,}, where n is the sequence length
of the layer’s input, and outputs a sequence
{y1,"* ,yn—1}. The same {y1, -+ ,yn—_1} is
then used as input for the next recursion until the
output sequence contains only a single element y1,
the sentence embedding. The recursion performs
the following operation:

;i = MLP¢,. ([l’i;:L'Z'Jrl])\V/i S {1, e ,m — 1}
(1
where MLP,,,. is a shared multilayer perceptron
and [x;; x;41] is the concatenation of the embed-
dings x; and x;41. MLP,, is shared throughout
all of the encoding recursion steps.
For decoding, it is the inverse procedure
of recursively transforming an input se-
quence {z1,---,z,} into an output sequence

{yh e 7yn+1}:
[Wi5 Yip1) = MLPgec (z) Vi € {1,--- ,n} (2)

where MLP .. is the shared multilayer perceptron
used by all decoding recursive steps and [y;; y;, 1]
is an embedding twice the size of x;, which we
then split into two embeddings y; and y;_ ;, each
of the same size as x;. Since we obtain two
embeddings y; and y; 4 for each z;, we will
have the following embeddings: y1, {y2, -, Yn}»
{v5, -+ ,y,} and ;. We merge the overlap-
ping sets by computing the mean:

. /
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and set y,41 = ¥;,,;. We now have a single set
of embeddings {y1, - ,Yn+1}. Both max and
mean functions gave similar results, hence we
stick with mean throughout all experiments. The
output embeddings are then used as input for the
next decoding recursion until we get as many ele-
ments as the original input sequence.

2.2 Step Encoding

To help the recursive autoencoder keep track of
the number of recursive steps which were applied
to an embedding, we concatenate to the input of
MLP,,,. the number of the current recursive step
as a scalar, starting from 1 for the first recursion,
as well as a one-hot of that scalar with custom
bucket sizes: {1, 2, 3-4, 5-7, ...}. All buckets af-
ter 5-7 are also of size 3. We found this combina-
tion of both scalar and one-hot to give best results.
When decoding, we also concatenate to the input
of MLP,,. this scalar and one-hot, but instead of
increasing our recursive step count, we subtract
one to it after each recursive decoding step.

2.3 Input Representation

We use uncased GloVe embeddings (Pennington
et al., 2014) of size 300 to represent the ini-
tial input sequence words, which are then passed
through a learned resizing multilayer perceptron
(MLP;,,) before given as input to the encoder.
The output of the decoder is also passed through
a different learned resizing multilayer perceptron
(MLP,,+) to get back to the GloVe embedding
size. We use a vocabulary of 337k words through-
out all tasks.

2.4 Mean Squared Error

To compute the loss between input GloVe embed-
dings and the output embeddings, we use the mean
squared error (MSE) loss. Obtaining an MSE of 0
would mean our method is lossless, which would
not necessarily be the case with the cross entropy
loss. MSE also allows us to work with a vocab-
ulary far larger than what is usually the case, as
the common classification layer plus cross entropy
loss setup tends to have issues with large vocabu-
laries.

2.5 Implementation Details

The two embeddings given as input to MLP,,,. are
each of size d.,,,;, as is also its output embedding.
Same for MLPg,., the input embedding is of size
demp and the two output embeddings are each of

size demp. Both multilayer perceptrons have one
hidden layer of size %demb, halfway between the
input and output size. We apply LayerNorm (Lei
Baet al., 2016) on the output of each layers of the
MLPs, followed by a ReLU activation. The input
and output resizing modules MLP;,, and MLP,,;
also have one hidden layer halfway the size of their
input and output. They also use ReLLU activations,
except for MLP,,,;’s last layer. No LayerNorm is
used in these resizing components. We test four
different d.,,,;, embedding sizes in section 3.1.

3 Experiments

In this section, we first present the autoencoding
results. Then we present the results on sentiment
analysis using our sentence encoding on the Stan-
ford Sentiment Treebank dataset (Socher et al.,
2013).

3.1 Autoencoding

As a first experiment, we tested our model on
the autoencoding task. Training was done on the
BookCorpus (Zhu et al., 2015) dataset, compris-
ing eleven thousand books and almost one billion
words. At test time, we measured accuracy by
computing the MSE distance between an output
embedding and the entire vocabulary. We count an
output embedding as “correct” if the closest em-
bedding out of all the vocabulary of size 337k is
its corresponding input embedding.

For the autoencoder, we tried four embedding
sizes: 300, 512, 1024 and 2048. In all cases, mod-
els are given GloVe embeddings of size 300 as in-
put. They also all output embeddings of size 300.
Reconstruction accuracy is shown for different se-
quence lengths in Figure 2. With an embedding
size of 2048, the model is able to reproduce near
perfectly sequences of up to 40 tokens. Longer
sentences aren’t able to do better and have on aver-
age 39 correct tokens. This results in model accu-
racy linearly going down after a certain threshold,
as can be seen in Figure 2.

To demonstrate how good our model is at re-
construction, we trained a stacked LSTM on the
same autoencoding task. Figure 2 shows perfor-
mance of LSTM models for embedding sizes 300,
512 and 1024. All LSTMs have two encoder and
two decoder layers. The 1024 variant seems to
have reached a saturation point, as it performs sim-
ilarly to the 512 version. All RAEs and LSTMs
were trained for 20 epochs and models with same
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Figure 2: Accuracy comparison of different embedding sizes (300, 512, 1024 and 2048) for different sequence
lengths. Left is our recursive autoencoder and right a stacked LSTM. An output embedding is counted as correct
if the closest embedding out of all the vocabulary is its corresponding input embedding.
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Figure 3: Accuracy comparison of our RAE model ver-
sus a stacked LSTM for embedding sizes 512 and 1024.
Models of same embedding size have the same capac-

1ty.

embedding size have the same capacity. Figure 3
shows a better side by side comparison of the RAE
and the LSTM for embedding sizes 512 and 1024.
Table 1 shows the MSE loss of all models on the
dev set after 20 epochs. The LSTM with an em-
bedding size of 1024 only slightly achieves lower
MSE than the RAE with embedding size 300.

When the output and input embeddings don’t
match as nearest, they are usually close. Figure 4
shows the gain in accuracy for the 1024 and 2048
variants when considering an output embedding as
correct if the input embedding is in the five clos-
est to the output, out of all the vocabulary. For
the 1024 version, we see on average an increase
in accuracy of 2.7%, while for the 2048 variant,
the gain only starts to get noticeable for sequences
longer than 30, with an overall average increase of
1.4%.

Model d.,,;, MSE (dev)

LSTM 300 0.0274
512 0.0231
1024 0.0191

RAE 300 0.0208
512 0.0124
1024 0.0075
2048 0.0019

Table 1: Mean squared error loss of stacked LSTMs
and our RAE model for different embedding sizes. All
models are trained on the autoencoding task for 20
epochs and models of same embedding size have the
same capacity. MSE is computed on the BookCorpus
dev set (Zhu et al., 2015), between the input GloVe em-
beddings (Pennington et al., 2014) and output embed-
dings.

3.2 Sentiment Analysis

With strong autoencoding performance, one
would think that features get deeply encoded into
the representation, making it difficult to easily ex-
tract them back, which is crucial for a great num-
ber of tasks. To this end, we test our architecture
on the sentiment analysis task.

The Stanford Sentiment Treebank (Socher et al.,
2013) is a sentiment classification task where each
sample in the dataset is a sentence with its corre-
sponding sentiment tree. Each node in the tree is
human annotated, with the leaves representing the
sentiment of the words, all the way up to the root
node, representing the whole sequence. Compari-
son is usually done on a binary or five label clas-
sification task, ranging from negative to positive.
Most models are usually by design only able to
classify the root node, while our architecture al-
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Figure 4: Difference in accuracy when counting an
output embedding as correct if the corresponding in-
put embedding is in the five closest versus the closest.
Comparison is done on our RAE model with embed-
ding sizes 1024 and 2048.

lows classification of every node in the tree. We
use a linear layer on top of each embedding in the
encoder to classify sentiment.

We present in Table 2 results for fine-grained
sentiment analysis on all nodes as well as compar-
ison with recent state-of-the-art methods on binary
sentiment classification of the root node. For the
five class sentiment task, we compare our model
with the original Sentiment Treebank results and
beat all the models. In order to compare our
approach with state-of-the-art methods, we also
trained our model on the binary classification task
with sole classification of the root node. Other
presented models are GenSen (Subramanian et al.,
2018) and BERTgasg (Devlin et al., 2018). Both
these recent methods perform extremely well on
multiple natural language processing tasks. We set
the RAE embedding size d.,,; to 1024. Larger
embedding sizes did not improve the accuracy
of our model for this task. In this setting, the
RAE has 11M parameters, while the models we
compare with, GenSen and BERTgasg, have re-
spectively 100M and 110M parameters. Both our
model and GenSen fail to beat the RNTN model
for the SST-2 task. We see an improvement in
accuracy when combining both methods’ embed-
dings, surpassing every model in the SST paper,
while being close to BERTgasg’s performance.

Training solely on sentiment classification had
same performance as jointly training on the au-
toencoding task, as the latter had no impact on
the sentiment analysis performance. Joint training
though had a small impact on reconstruction.

Model SST-5 (All) SST-2 (Root)
NB 67.2 81.8
SVM 64.3 79.4
BiNB 71.0 83.1
VecAvg 73.3 80.1
RNN 79.0 82.4
MV-RNN 78.7 82.9
RNTN 80.7 85.4
RAE 81.07 83
GenSen - 84.5
RAE + GenSen - 86.43
BERTgAsE - 93.5

Table 2: SST-5 and SST-2 performance on all and root
nodes respectively. Model results in the first section are
from the Stanford Treebank paper (2013). GenSen and
BERTgAsE results are from (Subramanian et al., 2018)
and (Devlin et al., 2018) respectively.

4 Conclusion & Future Work

In this paper, we introduced a recursive autoen-
coder method for generating sentence and sub-
sentence representations. Decoding from a single
embedding and working with a 337k vocabulary,
we manage to get near perfect reconstruction for
sequences of up to 40 length and very good re-
construction for longer sequences. Capitalizing on
our model’s architecture, we showed our method
to perform well on sentiment analysis and more
precisely its advantage when classifying sentiment
trees.

Continuing in the direction of training our
model on different NLP tasks, we would like our
representations to generalize well on downstream
tasks while maintaining their reconstruction prop-
erty. We would also like to further explore the us-
age of sub-sentence representations in natural lan-
guage processing. Finally, we would like to learn
our sentence embeddings’ latent space, similarly
to Subramanian et al. (2018)’s method, so as to
leverage our autoencoder’s strong reconstruction
ability and generate very long sequences of text.
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