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Abstract

Transfer learning is effective for improving
the performance of tasks that are related, and
Multi-task learning (MTL) and Cross-lingual
learning (CLL) are important instances. This
paper argues that hard-parameter sharing, of
hard-coding layers shared across different
tasks or languages, cannot generalize well,
when sharing with a loosely related task. Such
case, which we call sparse transfer, might ac-
tually hurt performance, a phenomenon known
as negative transfer. Our contribution is us-
ing adversarial training across tasks, to “soft-
code” shared and private spaces, to avoid the
shared space gets too sparse. In CLL, our pro-
posed architecture considers another challenge
of dealing with low-quality input.

1 Introduction

Transfer learning in neural networks has been ap-
plied in recent years to improving the performance
of related tasks, for example, 1) multi-task learn-
ing (MTL) with different tasks (labeled data avail-
able all tasks) and 2) cross-lingual learning (CLL)
with different language (but the same task) though
labeled data available only in source language. For
both settings, one of their most common strate-
gies is hard-parameter sharing, as shown in Fig-
ure 1a, which shares the hidden layers across
tasks, which we will call shared layer. This ap-
proach works well when tasks are closely related,
when most features are invariant across tasks. Oth-
erwise, which we call sparse transfer, transfer-
ring between loosely related tasks often hurt per-
formance, known as negative transfer. We elabo-
rate this problem in MTL and CLL scenarios.

First, for MTL, the shared space is reported to
be sparse, in an architecture with one shared en-
coder (Sachan and Neubig, 2018), when shared by
K (e.g.,K > 2 tasks) loosely-related tasks. To ad-
dress this problem, as shown in Figure 1b, recent

models (Liu et al., 2017; Lin et al., 2018) divide
the features of different tasks into task-invariant
and task-dependent latent spaces, which we will
call shared and private spaces from this point
on. However, since such approach still hard-codes
shared and private features, deciding which sub-
sets of tasks should share encoders in many-task
settings, among all possible combinations of tasks,
is a non-trivial design problem (Ruder et al., 2019;
Sanh et al., 2019).

Second, for CLL, the given task in source lan-
guage (with rich resources) transfers to that for
target languages without training resources. For
the latter, machine-translated resources are fed in-
stead, to the shared encoder (Schwenk and Douze,
2017; Conneau et al., 2018). When translation is
perfect, the shared space would be dense: For ex-
ample, English training pair with entailment rela-
tionship, “Because it looked so formidable” and
“It really did look wonderful” can be translated to
Chinese sentences of the same meaning, to pre-
serve labels. Meanwhile, its translation into “因为
它看起来那么可怕” (Because it looks so scary)
and “它真的看起来很棒” (It really looks great),
fails to preserve the entailment relationship, and
makes the shared space sparse.

As a unified solution for both problems, we pro-
pose soft-coding approaches that can adapt in the
following novel ways.

First, for MTL, we propose Task-Adaptive
Representation learning using Soft-coding,
namely TARS, wherein shared and private fea-
tures are both mixtures of features. Specifically,
as shown in Figure 1c, TARS begins as a generic
sharing framework using one common shared
encoder, but also adopts its paired task-specific
layers to feed a Mixture-of-Experts (MoE) mod-
ule (Shazeer et al., 2017; Guo et al., 2018) which
captures soft-private features with a weighted
combination of all task-dependent features, where
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Figure 1: Illustration of transfer learning architectures. Yellow and green boxes represent shared and private LSTM
layers. G and P indicates a gating network and a policy network respectively.

a gating network G in Figure 1c, decides on
output weights for each task. Based on this
basic architecture, TARS softly-shares features
balanced by two conflicting auxiliary losses: one
is used to eliminate private features from the
shared space, which decreases the generalization
across task, while the other is used to keep shared
space “dense” with soft-private features, which
is a form of adversarial training. Such balancing
efforts prevent the shared space from being too
sparse to be generalized for every task, even when
K > 2.

Second, for CLL, we propose a Cross-lingual
AdverSarial Example, namely CASE. Compared
to Figure 1c, task-specific private layers no longer
exist in Figure 1d, because CLL deals with a sin-
gle task for multiple languages. Instead, for an
additional challenge of refining low-quality input,
we add Refiner. Specifically, once the source lan-
guage is translated into the target language, CASE
moves the noisy representation on the target side
towards a direction of space on the source side
back in a form of adversarial example, and uses
this as an additional training data to task classi-
fier. However, this refinement may have adverse
effects (Yeo et al., 2018), for which a policy net-
work P in Figure 1d decides whether to refine or
not.

To demonstrate the effectiveness and flexibility
of our soft-coding approaches, we evaluate TARS
on five different datasets covering diverse scenar-
ios and CASE on cross-lingual natural language
inference (XNLI) datasets with 15 languages (in-
cluding low-resource language such as Swahili

and Urdu), and show that TARS and CASE out-
perform existing hard-coding approaches.

2 Preliminaries

2.1 Problem Statement

Formally, we assume the existence of K datasets
{Dk}Kk=1, where each Dk contains |Dk| data sam-
ples for classification task k. Specifically,

Dk = {(xki , yki )}|D
k|

i=1 (1)

where xki and yki denote a sentence (or pair) and
its corresponding label for task k. In CLL, Dk is
given only for one language, for which we create
a new dataset D̃k = {(x̃ki , yki )}, where x̃ki is trans-
lated, using neural machine translation (NMT), for
training task k (for another language). Transfer
learning aims to improve classification by learn-
ing these K tasks in parallel. Thus, our objective
is to learn a sentence (or pair) representation xk per
task k, but take into account the correlation among
related tasks.

Specifically, given an input sequence xk =
{wk1 , wk2 , ..., wkT } with length T , we aim to learn a
sentence representation xk for the entire sequence
as follows, xk = Encoder({wk1 , wk2 , ..., wkT }).
Following (Conneau et al., 2017), the final out-
put representation xk is ultimately fed into a cor-
responding classifier which consists of multiple
fully connected layers culminating in a softmax
layer, i.e., ŷk = softmax(Wkxk + bk). The pa-
rameters of the network are trained to minimize
the loss Ltask of the predicted and true distribu-
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tions on all the tasks as follows:

Ltask =
K∑
k=1

L(ŷk, yk) (2)

where L(ŷk, yk) denote a typical cross-entropy
loss for each task k.

2.2 Baseline: Hard-code Approach

As overviewed in Section 1, the success of transfer
learning depends on the sharing scheme in latent
feature space. Existing architectures differ in how
to group the shared features to maximize sharing,
as illustrated in Figure 1. We overview the existing
approaches into the following two categories.

Base I: Fully-Shared Model (FS) As shown in
Figure 1a, the Fully-Shared (FS) model adopts a
single shared encoder S-Encoder to extract fea-
tures generalized for all the tasks. For example,
given two tasks k and m, all features sk of task k
are expected to be shared by taskm and vice versa,
i.e., sk = S-Encoder({wk1 , wk2 , ..., wkT }; θs),
where θs represents the parameters of the shared
encoder. In FS model, sk is equivalent to xk fed
into classifiers.

Base II: Shared-Private Model (SP) As Fig-
ure 1b shows, the Shared-Private (SP) model con-
sists of two modules: (1) the underlying shared
encoder S-Encoder responsible to capture task-
invariant features, and (2) the private encoder
P-Encoder to extract task-dependent features,
i.e., pk = P-Encoder({wk1 , wk2 , ..., wkT }; θkp),
where θkp represents the parameters of each pri-
vate encoder. Then, both shared representation sk
and private representation pk are concatenated to
construct the final sentence representation: xk =
sk ⊕ pk.

These hard-code approaches greatly reduce the
risk of overfitting to capture all of the tasks si-
multaneously, but have the caveat that the ability
of shared space to model task-invariant features
can be significantly reduced (Sachan and Neubig,
2018). We empirically show our observations are
consistent in Section 5.2.

3 Soft-code Approach for MTL: TARS

Inspired by the limitation of hard-coding ap-
proaches, our proposed model, TARS, begins with
FS model but progressively adapts to task charac-
teristics, as shown in Figure 1c.

Soft-Private Module TARS first models the mul-
tiple tasks as MoE, where each task has an individ-
ual expert network, and weighs the experts for dif-
ferent task examples. To be specific, TARS feeds
the shared features sk into individual P-Encoder
for each task, to encode task-dependent features as
follows:

pk = P-Encoder(sk; θkp) (3)

Simultaneously, a gating network decides on
output weights for each expert (i.e., individual
P-Encoder). Specifically, the gating networkG,
parameterized by θg, is used to map the shared rep-
resentation of current task into the correct expert,
and each expert is thus learning task-dependent
features for that task, estimating task label of sk:

G(sk; θg) = softmax(Wgsk + bg) (4)

where Wg and bg is a trainable weight matrix and
a bias, respectively. Based on above, the final soft-
private representation p(sk) is a mixture of all ex-
pert outputs with respect to sk as the following:

p(sk) =
K∑
k=1

G(sk; θg) · pk (5)

Soft-Shared Module In order to learn task-
invariant features, inspired by (Liu et al., 2017),
TARS adopts an adversarial network, which con-
tains a feature extractor and a task discriminator
D. The basic idea is to learn features that can-
not be distinguished by D. Specifically, D aims to
discriminate which task the feature comes from,
while the feature extractor (e.g., S-Encoder)
tries to fool D so that it cannot identify the task
of the feature and is hence task-invariant. More
formally,

Ladv = min
θs

λmax
θd

K∑
k=1

|Dk|∑
i=1

dki log[D(sk; θd)]

(6)
where dki is the ground-truth task label, θd is the
parameter of task discriminator D, and λ is a hy-
perparameter. As mentioned before, such adver-
sarial learning has been verified to be very effec-
tive for extracting task-invariant features. How-
ever, trying to keep the shared space too pure in-
evitably leads to sparseness, for which we addi-
tionally introduce the density constraint Ldense for
this purpose.
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Specifically, the objective of the density con-
straint Ldense is to push the soft-private features
from the private embeddings closer to the shared
ones, such that the shared space is encouraged to
being dense rather than being too sparse, resolving
the sparseness of the shared space. Therefore, the
soft-shared features might be more informative in
this case. Formally,

Ldense =

K∑
k=1

||p(sk)− sk||2 (7)

where || · ||2 is the mean squared L-2 norm.
Training and Inference Lastly, the soft-private
and soft-shared representations p(sk) and sk are
concatenated, i.e., xk = sk ⊕ p(sk), to feed the all
networks in TARS with the following loss:

LTARS = Ltask + Ladv + Ldense (8)

TARS is trained with backpropagation, and adopts
a gradient reversal layer (Ganin and Lempitsky,
2015) to address minimax optimization problem.
Note that, unlike hard-code approaches, zero-shot
learning is also possible since TARS can adapt to
a new target task (e.g., cross-domain or -lingual),
by aligning it with the trained expert gate deciding
what combination of the expert to use in Eq. (4)
and Eq. (5) on inference.

4 Soft-code Approach for CLL: CASE

This section revises Ldense in Eq. (7) for CLL sce-
nario. Note that, in CLL, sparse space corresponds
to mistranslated low-resource language, which we
call pseudo-sentence. The goal of Ldense is thus
replaced by, softly correcting the representation to
align better Lalign, while preserving the semantics
Lsem. For that purpose, we propose a Refiner re-
placing Ldense with these two new losses.
Refinement by Perturbation We first discuss
how to refine pseudo-sentences by perturbation ∆
for higher learning effectiveness. Related ideas
are ensuring the robustness of a model, by finding
∆ that changes a prediction, or, f(x) = y while
f(x+∆) 6= y (Goodfellow et al., 2015). Inspired,
CASE explores if incorrect translations that may
cause wrong predictions in the target language can
be moved back to change predictions.

For which, based on the basic architecture
of variational auto-encoder (VAE) (Kingma and
Welling, 2013), CASE models a neural refiner to
refine low-quality representations. Specifically, as

shown in Figure 1d, CASE first encodes pseudo-
parallel sentences into shared space, e.g., (x, x̃).
Then, the refiner which consists of two encod-
ing feed-forward network µ(x) and σ(x) converts
the representations into two distribution variables
µ(x̃) and σ(x̃), the mean and standard devia-
tion for pseudo representations. Unlike traditional
VAE minimizing the latent loss that measures how
closely the latent variables match a unit Gaus-
sian, i.e., KL(N (µ(x), σ(x)),N (0, 1)), CASE
enhances the latent loss with the pseudo-parallel
representation, to generate pseudo-adversarial ex-
ample z̃ that roughly follows a representation x
from resource-rich space as follows:

Lalign = KL(N (µ(x̃), σ(x̃)),N (µ(x), σ(x)))
(9)

In order to optimize the KL divergence, CASE
applies a simple reparameterization trick (Kingma
and Welling, 2013). Using this trick, pseudo-
adversarial example z̃ is generated from the mean
and standard deviation vectors, i.e., z̃ = µ(x̃) +
σ(x̃) · ε, where ε ∈ N (0, 1). This constraint not
only allows us to generate an informative repre-
sentation, but also improves the generalization of
our network, towards x (e.g., English) with higher
confidence. Then, CASE aims at preserving its
original semantics in the latent space, for which
CASE includes the reconstruction loss, which is a
mean squared error, to measure how accurately the
pseudo-adversarial example z̃ preserves its origi-
nal semantics. i.e., Lsim = Σ|D̃|||z̃ − x̃||2. As a
result, z̃ is fed into the classifier, and the overall
loss of CASE is defined as follows:

LCASE = Ltask + Ladv

+ Lalign + Lsim
(10)

Selective Refinement Lastly, CASE aims to refine
only when the perturbation can refine the transla-
tion. In other words, if the translation is already
good, CASE avoids a refinement, by parameter-
izing refinement with α set to be near zero. Not
applying a refinement for correct translation is im-
portant, since more than half of translations is cor-
rectly translated, as reported by (Yeo et al., 2018),
such that refinement may lower the quality.

For computing α, CASE adapts a policy net-
work P , which consists of a feed forward network
P(x; θp) = softmax(Wpx + bp), to identify
wrong translations by capturing the difference of
domain distribution. Then, the policy is calculated
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as follows:

α = KL(P(x̃)||P(x)) =
∑

x∈D,x̃∈ ˜D
P(x̃) log

P(x̃)

P(x)

(11)
in which P(x) outputs a domain distribution of
x, and CASE estimates α as the difference be-
tween two distributions (i.e., KL divergence), and
the final loss function is defined factoring in α:
LCASE = Ltask + Ladv + α(Lalign + Lsim).

5 Experiments

5.1 Experimental Settings
To show the effectiveness of our proposed ap-
proaches, we conduct experiments on both multi-
task and cross-lingual settings.
Multi-task Dataset For Multi-task learning, we
use five different datasets on Natural Lan-
guage Inference (NLI) and Paraphrase Identifi-
cation (PI) tasks: SNLI (Bowman et al., 2015),
MNLI (Williams et al., 2018), and CNLI1,
for single-domain-English, multi-domain-English,
and Chinese NLI respectively; QQP (Csernai
et al., 2017) and LCQMC (Liu et al., 2018) for
English and Chinese PI.
Cross-lingual Dataset We use the cross-lingual
natural language inference (XNLI) dataset (Con-
neau et al., 2018)2 from 15 different languages for
Cross-lingual learning. The dataset is a version
of MNLI (Williams et al., 2018) where 2,500 dev
and 5,000 test sets have been translated (by hu-
mans) into 14 languages. For training datasets, the
English training data is translated into each target
language by NMT.
Implementation Details For all encoder, we
adopt BiLSTM-max (Conneau et al., 2017) model
and the pre-trained word embeddings we use are
300-dimensional fastText word embeddings (Bo-
janowski et al., 2017). Following (Conneau et al.,
2018), the BiLSTM hidden states is set to 256
and Adam optimizer with a learning rate of 0.001
was applied. The learning rate was decreased
by a factor of 0.85 when the target dev accuracy
does not improve. As in (Conneau et al., 2018),
for text classification networks, we use a feed-
forward neural network with one hidden layer of
128 hidden units with a dropout rate of 0.1, to

1https://github.com/blcunlp/CNLI
2https://www.nyu.edu/projects/bowman/xnli/XNLI-

1.0.zip

Source Model SNLI MNLI QQP
(Single Task) BiLSTM-max 81.95 65.98 85.89

SNLI+MNLI

AFS 82.06 66.51 -(+0.11) (+0.53)

ASP 82.28 67.39 -(+0.33) (+1.41)

TARS 82.67 67.79 -(+0.70) (+1.81)

SNLI+QQP

AFS 82.03 - 85.08
(+0.08) (-0.81)

ASP 82.20 - 86.22
(+0.25) (+0.33)

TARS 82.54 - 86.51
(+0.59) (+0.62)

MNLI+QQP

AFS - 66.62 85.59
(+0.64) (-0.30)

ASP - 66.92 86.12
(+0.94) (+0.23)

TARS - 67.37 86.47
(+1.39) (+0.58)

Table 1: Accuracy over MTL with two-source tasks

measure the relatedness of a given premise and hy-
pothesis. The hyperparameter λ is empirically set
to 0.005. All our implementation is available at
github.com/haejupark/soft.

5.2 Experimental Result I: MTL

Using (Liu et al., 2017) as hard-code baselines, we
apply Adversarial training (and so-called orthogo-
nality constraints) to FS and SP models, namely
AFS and ASP. Such techniques enhance the dis-
tinct nature of shared and private features.

Two-source MTL Table 1 shows the perfor-
mance on three text classification tasks. The
first row shows the results of “single task”, and
other rows show the results of “multiple tasks”
by corresponding MTL models trained with two
source tasks. More concretely, (SNLI+MNLI) and
(*NLI+QQP) are for cross-domain and cross-task
classification respectively. In this table, we can
see that TARS achieves higher accuracy than all
sharing scheme baselines in all scenarios, surpass-
ing multi-task learning (i.e., ASP) as well as sin-
gle task learning. These results show that our soft-
code approach also works well in typical MTL set-
tings with two source tasks, though they are not
our targeted sparse scenario.

Three-source MTL In Table 2, MTL models use
three source tasks (SNLI+MNLI+QQP), where
the first row shows the results of “single task”.
We first test SNLI, MNLI, and QQP as a super-
vised target task. From the results, we can see that
TARS outperforms all baselines including MoE,
which is a variant of TARS excluding the two aux-
iliary losses. We also include the recent work,

github.com/haejupark/soft
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Model SNLI MNLI QQP CNLI LCQMC
BiLSTM-max 81.95 65.98 85.89 64.42 79.69

AFS 81.70 66.78 85.41 39.70 61.29
(-0.25) (+0.80) (-0.48) (-24.72) (-18.40)

ASP 82.23 66.92 86.04 - -(+0.28) (+0.94) (+0.15)

MoE 81.55 66.72 85.23 39.45 63.02
(-0.40) (+0.74) (-0.66) (-24.97) (-16.67)

MMoE 81.46 67.01 85.29 - -(-0.49) (+1.03) (-0.60)

TARS 83.12 68.24 86.15 40.52 63.45
(+1.17) (+2.26) (+0.26) (-23.90) (-16.24)

Table 2: Accuracy of MTL with three-source tasks

MMoE (Ma et al., 2018), which explicitly learns
to model task relationship by modeling an expert
for each task (which is not desirable for a new
task). This suggests that the synergetic effect of
soft-private and -shared modules in TARS is criti-
cal to outperform other baselines.

Specifically, AFS and ASP show a “nega-
tive transfer”, which is an inherent challenge of
MTL. For example, ASP with three-source tasks
achieves 82.23% and 66.92% accuracy, respec-
tively, in SNLI and MNLI, which are lower than
82.28% and 67.39% accuracy with its best per-
formance with two-source tasks. In contrast,
TARS overcomes such challenges, for example,
83.12% > 82.67% and 68.24% > 67.79% in
SNLI and MNLI, except for QQP, which can
be further improved by asymmetric MTL tech-
niques (Lee et al., 2016).

To investigate how TARS helps transfer knowl-
edge across tasks, Figure 2a and 2b contrast the
feature representation of shared space in ASP and
TARS, in two- and three-source settings respec-
tively. First, for two-sources, ASP and TARS
are comparable, capturing the distribution of two
tasks that are nearly identical, which is desirable
for transfer learning. Second, for three sources,
the shared space of ASP shows two quite distinct
distributions (task-dependent), while TARS keeps
two distributions comparable (and task-invariant).

Zero-shot Learning Lastly, in Table 2, we test
zero-shot learning with two target tasks, CNLI and
LCQMC, excluding their own training data (ex-
cept for the first row single task). As ASP requires
target task labels to train its private encoders, we
compare TARS only with AFS and MoE, where
TARS shows the best performance in MTL. As
shown in Figure 3, we observe that when TARS
covers sentences in CNLI and LCQMC, using its
gating network that identifies that the unknown
target tasks are the most similar to SNLI and QQP,

respectively: Specifically, highest weights are as-
signed to these two, but other source tasks also
contribute, with non-zero weights.

(a) Shared space for two-source

(b) Shared space for three-source

Figure 2: PCA visualization. Blue and red indicate the
shared features of SNLI and QQP, respectively, using
ASP (left) and TARS (right).

0.0 0.2 0.4 0.6 0.8 1.0

LCQMC

CNLI

SNLI MNLI QQP

Figure 3: Gating weights in zero-shot learning.

5.3 Experimental Result II: CLL

Table 3 shows our results on 14 XNLI languages.
Following (Conneau et al., 2018), we divide the
models into following three categories: 1) Trans-
late train, where the English NLI training set
is translated into each XNLI language and train
a language-specific NLI classifier for each lan-
guage; 2) Translate test, where all dev and test
set of XNLI is translated to English and apply
English NLI classifier; and 3) Zero-shot Learn-
ing, where English classifier is directly applied to
the target language without any translation. We
also report the results of XNLI baselines (Con-
neau et al., 2018), a supervised cross-lingual MTL
model that combines the Ladv loss using pseudo-
parallel data (Liu et al., 2017), the multilingual
BERT (Devlin et al., 2018), and the recent work
of (Artetxe and Schwenk, 2018).

First, in Table 3, we can see that BiLSTM model
(Conneau et al., 2018), in Translate test, appears
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en→ xx

fr es de el bg ru tr ar vi th zh hi sw ur
Translate train, each NLI models for each language
BiLSTM (Conneau et al., 2018) 68.3 68.8 66.5 66.4 67.4 66.5 64.5 65.8 66.0 62.8 67.0 62.1 58.2 56.6
BiLSTM+MTL (Liu et al., 2017) 66.0 68.7 67.3 67.4 68.2 64.8 65.3 65.1 66.1 59.3 66.2 54.2 60.0 58.0
CASE (w/o selective) 70.4 70.3 70.2 69.2 70.0 69.6 69.4 68.8 69.3 67.4 70.9 67.4 67.9 66.8
CASE (w selective) 71.1 71.2 70.0 70.3 69.9 69.8 70.0 70.1 70.5 68.9 71.3 68.7 67.7 67.5
Multilingual BERT (Devlin et al., 2018) - 77.3* 75.2* - - - - 70.5* - - 74.2* - - 61.7*
Multilingual BERT on CASE (w selective) 78.7 78.2 76.4 76.7 75.8 75.5 73.3 73.7 74.2 72.3 74.3 72.2 71.6 71.3
Translate test, one English NLI model for all languages
BiLSTM (Conneau et al., 2018) 70.4 70.7 68.7 69.1 70.4 67.8 66.3 66.8 66.5 64.4 68.3 64.2 61.8 59.3
Multilingual BERT (Devlin et al., 2018) - 74.9* 74.4* - - - - 70.4* - - 70.1* - - 62.1*
Zero-Shot Learning, one NLI model for all languages
BiLSTM (Conneau et al., 2018) 67.7 68.7 67.7 68.9 67.9 65.4 64.2 64.8 66.4 64.1 65.8 64.1 55.7 58.4
Multilingual BERT (Devlin et al., 2018) - 74.3* 70.5* - - - - 62.1* - - 63.8* - - 58.3*
(Artetxe and Schwenk, 2018) 71.9 72.9 72.6 73.1 74.2 71.5 69.7 71.4 72.0 69.2 71.4 65.5 62.2 61.0

Table 3: Accuracy over 14 XNLI languages (test set accuracy). We report results for translation baselines, multi-
task learning baselines and zero-shot baselines. Overall best results are in bold, and the best in each group is un-
derlined. All results * from its Github project https://github.com/google-research/bert/blob/
master/multilingual.md.

to perform consistently better than Translate train
for all languages, which means a single English
model works better than training each target model
with translated data. In contrast, Multilingual
BERT (Devlin et al., 2018) achieves best results
on Translate train, outperforming most languages,
suggesting the generalization of BERT across lan-
guages significantly better than BiLSTM model.

Meanwhile, CASE, significantly outperforms
the BiLSTM and BiLSTM+MTL models in Trans-
late train for all languages, and even outperforms
BiLSTM in Translate test. Compared to the
best performing MTL baseline, CASE achieves
an improvement of 1.7% and 9.5% in Bulgarian
(bg) and Urdu (ur) languages respectively. From
these results, we observe that: 1) the improve-
ments on low-resource language (e.g., Swahili and
Urdu) are more substantial than those on other lan-
guages; 2) the selective refinement strategy con-
sistently contributes to the performance improve-
ment. These results show that CASE, by incor-
porating pseudo-adversarial example as an addi-
tional resource, contributes to the robustness and
the generalization of the model.

Lastly, we show that CASE with multilingual
BERT model achieves the state-of-the-art, and
even significantly outperforms the supervised ap-
proach of (Artetxe and Schwenk, 2018) enjoying
an unfair advantage of extremely large amounts of
parallel sentences. These results show that CASE,
with the help of strong baselines, gets a significant
boost in performance, particularly for Swahili and
Urdu that are low-resource languages, achieving
the improvement of 9.4% and 10.3% respectively.

Robustness Analysis In order to verify whether
CASE is robust, inspired by (Goodfellow et al.,
2015), we test if models keep its prediction, even
after changes to the sentence, as long as the mean-
ing remains unchanged. For example, the given
sentence can be paraphrased by changing some
words with their synonyms, and the models should
give the same answer to the paraphrase.

Meanwhile, existing models, especially those
overfitted to surface forms, are sensitive to such
“semantic-preserving” perturbations. As human
annotation for such perturbations is expensive,
an automated approach (Alzantot et al., 2018)
was studied for English, to generate semantic-
preserving adversaries that fool well-trained sen-
timent analysis and NLI models with success rates
of 97% and 70%, respectively. In our problem set-
ting of XNLI, we need such a generator (or gener-
ated resources) for each language. For which, we
identify three research questions:

• (RQ1) How hard is it to build a generator for
a new language?

• (RQ2) Are the observations consistent?

• (RQ3) Does our model improve robustness?

Specifically, in this paper we focus on Chinese, as
we could hire native speaking volunteers to val-
idate whether automatically generated perturba-
tions indeed preserve semantics.

First, for RQ1, we leverage Chinese synonyms
and antonyms to build counter fitting vectors
as (Mrkšić et al., 2016) to ensure the selected
words are synonyms. Then, we slightly change

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
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Original Text Prediction: Contradiction (Confidence = 97%)

Premise: 能帮助我的女孩在小镇的另一边。
Hypothesis: 没没没有有有人能帮助我。

Adversarial Text Prediction: Entailment (Confidence = 59%)

Premise: 能帮助我的女孩在小镇的另一边。
Hypothesis: 并并并没没没有有有人能帮助我。

Table 4: Example of generated adversarial example for
chinese natural language inference task.

(Alzantot et al., 2018)3 to automatically generate
Chinese perturbations for NLI task. Following
the convention of (Alzantot et al., 2018), for NLI
problem, we only add perturbation to the hypoth-
esis, excluding premise, and aim to divert the pre-
diction result from entailment to contradiction,
and vice versa. Table 4 is an example of generated
adversarial example.

For RQ2, we validate the automatically gener-
ated perturbations by native speaking volunteers.
We show volunteers 500 samples to label whether
it is contradiction, neutral or entailment. 84 per-
cent of the responses matched the original ground
truth. Second, we sample 500 samples, with each
sample including the original sentence and the cor-
responding adversarial example. Volunteers were
asked to judge the similarity of each pair on a scale
from 1 (very different) to 4 (very similar). The av-
erage rating is 2.12, which shows the performance
of our implementation for Chinese perturbation is
also competitive.

Lastly, for RQ3, we show the attack success
rates over generated adversarial example in Ta-
ble 5. For comparison, we include the single task
and MTL baselines. As shown in the Table 5,
CASEs are able to achieve higher defense rate
(or lower success rate) in performance of 36.6%,
while baselines obtained 15.7% and 21.4% respec-
tively, which demonstrates incorporating pseudo-
adversarial example is indeed helpful to the ro-
bustness of the model.

Model % Success
BiLSTM 0.843

BiLSTM+MTL 0.786
CASE (w/o selective) 0.657
CASE (w selective) 0.634

Table 5: Attack success rates over Chinese adversarial
example for the text classification task.

3https://github.com/nesl/nlp adversarial examples

6 Related Work

Transfer Learning: Transfer learning enables ef-
fective knowledge transfer from the source to the
target task. Early works mainly focused on the
shared representation methods (Liu et al., 2017;
Tong et al., 2018; Lin et al., 2018), using a single
shared encoder between all tasks while keeping
several task-dependent output layers. However,
the sparseness of the shared space, when shared
by K tasks, was observed (Sachan and Neubig,
2018). In this paper, we study a soft-coding ap-
proach to overcome sparsity, leading to perfor-
mance gains in MTL and CLL tasks. Closely re-
lated work is MMoE (Ma et al., 2018), which ex-
plicitly learns the task relationship by modeling a
gating network for each task. Such work does not
consider which combination of networks to use for
a new task, while we differentiate by deciding such
combination for a new task based on its similarity
to the source tasks.

Adversarial Example: Despite the success of
deep neural networks, neural models are still brit-
tle to adversarial examples (Goodfellow et al.,
2015). Recently, adversarial examples are widely
incorporated into training to improve the gen-
eralization and robustness of the model using
back-translated paraphrases (Iyyer et al., 2018),
machine-generated rules (Ribeiro et al., 2018),
black-box (Alzantot et al., 2018) and white-
box (Ebrahimi et al., 2018). Inspired, we study
pseudo-adversarial example in latent space to im-
prove the robustness of the model. To the best of
our knowledge, we are the first proposing pseudo-
adversarial training in latent space for transfer
learning.

7 Conclusion

In this paper, we study the limitations of hard-
parameter sharing in sparse transfer learning. We
propose soft-code approaches to avoid the sparse-
ness observed in MTL and CLL. We have demon-
strated the effectiveness and flexibility of our soft-
code approaches in extensive evaluations over
MTL and CLL scenarios.
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