Towards Scalable and Reliable Capsule Networks
for Challenging NLP Applications

Wei Zhao', Haiyun Peng?, Steffen Eger', Erik Cambria* and Min Yang®
T Computer Science Department, Technische Universitit Darmstadt, Germany
t School of Computer Science and Engineering, Nanyang Technological University, Singapore
® Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
www.alphes.tu-darmstadt.de

Abstract

Obstacles hindering the development of cap-
sule networks for challenging NLP applica-
tions include poor scalability to large out-
put spaces and less reliable routing processes.
In this paper, we introduce (i) an agreement
score to evaluate the performance of routing
processes at instance level; (ii) an adaptive
optimizer to enhance the reliability of rout-
ing; (iii) capsule compression and partial rout-
ing to improve the scalability of capsule net-
works. We validate our approach on two NLP
tasks, namely: multi-label text classification
and question answering. Experimental results
show that our approach considerably improves
over strong competitors on both tasks. In ad-
dition, we gain the best results in low-resource
settings with few training instances.'

1 Introduction

In recent years, deep neural networks have
achieved outstanding success in natural language
processing (NLP), computer vision and speech
recognition. However, these deep models are data-
hungry and generalize poorly from small datasets,
very much unlike humans (Lake et al., 2015).

This is an important issue in NLP since sen-
tences with different surface forms can convey the
same meaning (paraphrases) and not all of them
can be enumerated in the training set. For exam-
ple, Peter did not accept the offer and Peter turned
down the offer are semantically equivalent, but use
different surface realizations.

In image classification, progress on the gener-
alization ability of deep networks has been made
by capsule networks (Sabour et al., 2017; Hinton
et al., 2018). They are capable of generalizing to
the same object in different 3D images with vari-
ous viewpoints.

'Our code is publicly available at http://bit.ly/311Dcod

N ,s| Jerry managed to finish
£ g Extrapolation regime Jerry succeeded in
- "~._ finishing his project.
¥
A

1

Extrapolated sentenceus5 s

. Unseen sentences
05 AR - \ .
~. “_.o" Jerry is sleeping.

Observed sentences -
Jerry completed his
project.

45

—> Extrapolate operation A

2 15 -1 05 0 05 1

Figure 1: The extrapolation regime for an observed
sentence can be found during training. Then, the un-
seen sentences in this regime may be generalized suc-
cessfully.

Such generalization capability can be learned
from examples with few viewpoints by extrapo-
lation (Hinton et al., 2011). This suggests that
capsule networks can similarly abstract away from
different surface realizations in NLP applications.

Figure 1 illustrates this idea of how observed
sentences in the training set are generalized to un-
seen sentences by extrapolation. In contrast, tra-
ditional neural networks require massive amounts
of training samples for generalization. This is
especially true in the case of convolutional neu-
ral networks (CNNs), where pooling operations
wrongly discard positional information and do not
consider hierarchical relationships between local
features (Sabour et al., 2017).

Jele)

O neuron

© capsule

[ele]e

a) Pooling Connection b) Full Connection c) Routed Connection

Figure 2: Outputs attend to a) active neurons found by
pooling operations b) all neurons c) relevant capsules
found in routing processes.

1549

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1549—-1559
Florence, Italy, July 28 - August 2, 2019. (©2019 Association for Computational Linguistics

http://bit.ly/311Dcod

Capsule networks, instead, have the poten-
tial for learning hierarchical relationships be-
tween consecutive layers by using routing pro-
cesses without parameters, which are clustering-
like methods (Sabour et al., 2017) and additionally
improve the generalization capability. We contrast
such routing processes with pooling and fully con-
nected layers in Figure 2.

Despite some recent success in NLP
tasks (Wang et al.,, 2018; Xia et al., 2018;
Xiao et al., 2018; Zhang et al., 2018a; Zhao et al.,
2018), a few important obstacles still hinder the
development of capsule networks for mature NLP
applications.

For example, selecting the number of iterations
is crucial for routing processes, because they iter-
atively route low-level capsules to high-level cap-
sules in order to learn hierarchical relationships
between layers. However, existing routing algo-
rithms use the same number of iterations for all
examples, which is not reliable to judge the con-
vergence of routing. As shown in Figure 3, a rout-
ing process with five iterations on all examples
converges to a lower training loss at system level,
but on instance level for one example, convergence
has still not obtained.

Additionally, training capsule networks is more
difficult than traditional neural networks like CNN
and long short-term memory (LSTM) due to the
large number of capsules and potentially large
output spaces, which requires extensive computa-
tional resources in the routing process.

In this work, we address these issues via the fol-
lowing contributions:

e We formulate routing processes as a proxy
problem minimizing a total negative agreement
score in order to evaluate how routing processes
perform at instance level, which will be dis-
cussed more in depth later.

e We introduce an adaptive optimizer to self-
adjust the number of iterations for each example
in order to improve instance-level convergence
and enhance the reliability of routing processes.

e We present capsule compression and partial
routing to achieve better scalability of capsule
networks on datasets with large output spaces.

e Our framework outperforms strong baselines on
multi-label text classification and question an-
swering. We also demonstrate its superior gen-
eralization capability in low-resource settings.

— Siteration
3iteration
1 iteration

10.425

10.400

10.375

10.350

Training Loss

10.325

egative Agreement Score

N

—
o
W
S
S

0 5 10 15 20 25
Number of Iterations

L I BT
600 800 1000

Training Step

Figure 3: left) System-level routing evaluation on all
examples; right) Instance-level routing evaluation on
one example.

2 NLP-Capsule Framework

We have motivated the need for better capsule net-
works being capable of scaling to large output
spaces and higher reliability for routing processes
at instance level. We now build a unified cap-
sule framework, which we call NLP-Capsule. It
is shown in Figure 4 and described below.

2.1 Convolutional Layer

We use a convolutional operation to extract fea-
tures from documents by taking a sliding window
over document embeddings.

Let X € R*Y be a matrix of stacked v-
dimensional word embeddings for an input docu-
ment with [tokens. Furthermore, let W@ € R!*k
be a convolutional filter with a width k. We ap-
ply this filter to a local region X, ho1 € R**! to
generate one feature:

m; = f(W*o X[, 1)

where o denotes element-wise multiplication, and
f is a nonlinear activation function (i.e., ReLU).
For ease of exposition, we omit all bias terms.

Then, we can collect all m; into one feature map
(M1, ..., M_g41)/2) after sliding the filter over
the current document. To increase the diversity of
features extraction, we concatenate multiple fea-
ture maps extracted by three filters with different
window sizes (2,4,8) and pass them to the primary
capsule layer.

2.2 Primary Capsule Layer

In this layer, we use a group-convolution opera-
tion to transform feature maps into primary cap-
sules. As opposed to using a scalar for each ele-
ment in the feature maps, capsules use a group of
neurons to represent each element in the current
layer, which has the potential for preserving more
information.

1550

PrimCap Layer

Conv Layer

1x1

4 Congat

—>
Kernel
size

8 [

\

\ = d-dimension

Compression Aggregation Layer Representation Layer

- S,
4 \

(1

1

\ /

\ /

Figure 4: An illustration of NLP-Capsule framework.

Using 1 x 1 filters W = {wy, ..., wq} € RY, in
total d groups are used to transform each scalar m;
in feature maps to one capsule p;, a d- dimensional
vector, denoted as:

P; = 9(pi1 D pi2 ® -+ D Pia) e R?

where p;; = m; - w; € R and @ is the concatena-
tion operator. Furthermore, g is a non-linear func-
tion (i.e., squashing function). The length ||p;|| of
each capsule p; indicates the probability of it be-
ing useful for the task at hand. Hence, a capsule’s
length has to be constrained into the unit interval
[0, 1] by the squashing function g:

|z|* @
9(T) = —— o
1+ [|]|? |||

Capsule Compression One major issue in this
layer is that the number of primary capsules be-
comes large in proportion to the size of the in-
put documents, which requires extensive compu-
tational resources in routing processes (see Sec-
tion 2.3). To mitigate this issue, we condense the
large number of primary capsules into a smaller
amount. In this way, we can merge similar cap-
sules and remove outliers. Each condensed cap-
sule wu; is calculated by using a weighted sum over
all primary capsules, denoted as:

@ =Y bp; € R
J

where the parameter b; is learned by supervision.

2.3 Aggregation Layer

Pooling is the simplest aggregation function rout-
ing condensed capsules into the subsequent layer,
but it loses almost all information during aggre-
gation. Alternatively, routing processes are in-
troduced to iteratively route condensed capsules

into the next layer for learning hierarchical re-
lationships between two consecutive layers. We
now describe this iterative routing algorithm. Let
{u1,..., 4y} and {vy,...,v,} be a set of con-
densed capsules in layer ¢ and a set of high-level
capsules in layer /+ 1, respectively. The basic idea
of routing is two-fold.

First, we transform the condensed capsules into
a collection of candidates {'&ﬂl’ ces ,ﬂj|m} for
the j-th high-level capsule in layer ¢ 4+ 1. Fol-
lowing Sabour et al. (2017), each element u; is
calculated by:

’l/:l;]|l = Wcu,- € Rd
where W€ is a linear transformation matrix.

Then, we represent a high-level capsule v; by a

weighted sum over those candidates, denoted as:
m

v i = Z Cij'&'jﬁ
i=1
where ¢;; is a coupling coefficient iteratively up-
dated by a clustering-like method.

Our Routing As discussed earlier, routing algo-
rithms like dynamic routing (Sabour et al., 2017)
and EM routing (Hinton et al., 2018), which use
the same number of iterations for all samples, per-
form well according to training loss at system
level, but on instance level for individual exam-
ples, convergence has still not been reached. This
increases the risk of unreliability for routing pro-
cesses (see Figure 3).

To evaluate the performance of routing pro-
cesses at instance level, we formulate them as a
proxy problem minimizing the negative agreement
score (NAS) function:

min f(u) = — Z Cij (Vg W)
/L?]
st. Vi, j: Cij > 0, Zcij = 1.
J

1551

The basic intuition behind this is to as-
sign higher weights c¢;; to one agreeable pair
(vj,uj);) if the capsule v; and wu;); are close to
each other such that the total agreement score
>i;Cij(vj, uj;) is maximized. However, the
choice of NAS functions remains an open prob-
lem. Hinton et al. (2018) hypothesize that the
agreeable pairs in NAS functions are from Gaus-
sian distributions. Instead, we study NAS func-
tions by introducing Kernel Density Estimation
(KDE) since this yields a non-parametric density
estimator requiring no assumptions that the agree-
able pairs are drawn from parametric distributions.
Here, we formulate the NAS function in a KDE
form.

Z cijk

where d is a distance metric with /5 norm, and k is
a Epanechnikov kernel function (Wand and Jones,
1994) with:

k(:v):{l_$ z€[0,1)

0 xr>1

mln flu

(d(vy,u;;)))

The solution we used for KDE is taking Mean
Shift (Comaniciu and Meer, 2002) to minimize the
NAS function f(u):

ad(vj, u;);)

Vi) = Y ek (d(vgug) —— =
0,3

First, vT+1 can be updated while cT+1 is fixed:

T+ _ Zzg Cukl(d(ﬂj\z))uﬂz

! 22] k'(d (”; Ujli))

Then, cl-Tj+1 can be updated using standard gradient
descent:

v

T+1_ T T
cii = cj; + a- k(d(v],

Uj\z‘))

where « is the hyper-parameter to control step
size.

To address the issue of convergence not being
reached at instance level, we present an adaptive
optimizer to self-adjust the number of iterations
for individual examples according to their neg-
ative agreement scores (see Algorithm 1). Fol-
lowing Zhao et al. (2018), we replace standard
softmax with leaky-softmax, which decreases the
strength of noisy capsules.

Algorithm 1 Our Adaptive KDE Routing
: procedure ROUTING(u;, £)

1 iy
jlis
2: Initialize Vi, j : ¢;j = 1/ng4q

3: while true do

4: foreach capsule i, j in layer ¢, £ 4+ 1 do
5 ¢ij < leaky-softmax(c;;)

6: foreach capsule j in layer £ 4 1 do

. Ei Cijk,(d(vjvuj\i))ajli
T Y TS W)

8: foreach capsule ¢, j in layer ¢, / + 1 do

9: Cij < Cij + - k(d(vj,uj‘i))

10: foreach capsule j in layer £ + 1 do
11: aj < ’Uj’

122 NAS = log(z cijk(d(vj, uj|i)))
13: if [INAS — Last. NAS] < € then
14: break

15: else

16: Last_NAS < NAS
17: return v;, a;

2.4 Representation Layer

This is the top-level layer containing final cap-
sules calculated by iteratively minimizing the NAS
function (See Eq. 1), where the number of final
capsules corresponds to the entire output space.
Therefore, as long as the size of an output space
goes to a large scale (thousands of labels), the
computation of this function would become ex-
tremely expensive, which yields the bottleneck of
scalability of capsule networks.

Partial Routing As opposed to the entire out-
put space on data sets, the sub-output space cor-
responding to individual examples is rather small,
i.e., only few labels are assigned to one document
in text classification, for example. As a conse-
quence, it is redundant to route low-level capsules
to the entire output space for each example in the
training stage, which motivated us to present a
partial routing algorithm with constrained output
spaces, such that our NAS function is described
as:

min = (D cij(vj,wg)
i jeDt

A) cir vk, ug))
keD-

where DT and D~ denote the sets of real (pos-
itive) and randomly selected (negative) outputs
for each example, respectively. Both sets are

1552

far smaller than the entire output space. A\ is
the hyper-parameter to control aggregation scores
from negative outputs.

3 Experiments

The major focus of this work is to investigate the
scalability of our approach on datasets with a large
output space, and generalizability in low-resource
settings with few training examples. Therefore,
we validate our capsule-based approach on two
specific NLP tasks: (i) multi-label text classifica-
tion with a large label scale; (ii) question answer-
ing with a data imbalance issue.

3.1 Multi-label Text Classification

Multi-label text classification task refers to assign-
ing multiple relevant labels to each input docu-
ment, while the entire label set might be extremely
large. We use our approach to encode an input
document and generate the final capsules corre-
sponding to the number of labels in the represen-
tation layer. The length of final capsule for each
label indicates the probability whether the docu-
ment has this label.

‘ Dataset ‘ #Train/Test/Labels Avg-docs ‘
RCV1 23.1K/781.2K/103 729.67
EUR-Lex | 15.4K/3.8K/3.9K 15.59

Table 1: Characteristics of the datasets. Each label of
RCV1 has about 729.67 training examples, while each
label of EUR-Lex has merely about 15.59 examples.

Experimental Setup We conduct our experi-
ments on two datasets selected from the extreme
classification repository:> a regular label scale
dataset (RCV1), with 103 labels (Lewis et al.,
2004), and a large label scale dataset (EUR-Lex),
with 3,956 labels (Mencia and Fiirnkranz, 2008),
described in Table 1. The intuition behind our
datasets selection is that EUR-Lex, with 3,956 la-
bels and 15.59 examples per label, fits well with
our goal of investigating the scalability and gener-
alizability of our approach. We contrast EUR-Lex
with RCV1, a dataset with a regular label scale,
and leave the study of datasets with extremely
large labels, e.g., Wikipedia-500K with 501,069
labels, to future work.

Baselines We compare our approach to the fol-
lowing baselines: non-deep learning approaches

*https://manikvarma.github.io

using TF-IDF features of documents as inputs:
FastXML (Prabhu and Varma, 2014), and PD-
Sparse (Yen et al.,, 2016), deep learning ap-
proaches using raw text of documents as inputs:
FastText (Joulin et al., 2016), Bow-CNN (Johnson
and Zhang, 2014), CNN-Kim (Kim, 2014), XML-
CNN (Liu et al., 2017)), and a capsule-based ap-
proach Cap-Zhao (Zhao et al., 2018). For eval-
uation, we use standard rank-based measures (Liu
et al., 2017) such as Precision@k, and Normalized
Discounted Cumulative Gain (NDCG@¥k).

Implementation Details The word embeddings
are initialized as 300-dimensional GloVe vec-
tors (Pennington et al., 2014). In the convolu-
tional layer, we use a convolution operation with
three different window sizes (2,4,8) to extract fea-
tures from input documents. Each feature is trans-
formed into a primary capsule with 16 dimensions
by a group-convolution operation. All capsules in
the primary capsule layer are condensed into 256
capsules for RCV1 and 128 capsules for EUR-Lex
by a capsule compression operation.

To avoid routing low-level capsules to the entire
label space in the inference stage, we use a CNN
baseline (Kim, 2014) trained on the same dataset
with our approach, to generate 200 candidate la-
bels and take these labels as a constrained output
space for each example.

Experimental Results In Table 2, we can see a
noticeable margin brought by our capsule-based
approach over the strong baselines on EUR-Lex,
and competitive results on RCV1. These results
appear to indicate that our approach has superior
generalization ability on datasets with fewer train-
ing examples, i.e., RCV1 has 729.67 examples per
label while EUR-Lex has 15.59 examples.

In contrast to the strongest baseline XML-CNN
with 22.52M parameters and 0.08 seconds per
batch, our approach has 14.06M parameters, and
takes 0.25 seconds in an acceleration setting with
capsule compression and partial routing, and 1.7
seconds without acceleration. This demonstrates
that our approach provides competitive computa-
tional speed with fewer parameters compared to
the competitors.

Discussion on Generalization To further study
the generalization capability of our approach, we
vary the percentage of training examples from
100% to 50% on the entire training set, leading
to the number of training examples per label de-

1553

Datasets | Metrics FastXML | PD-Sparse | FastText | Bow-CNN | CNN-Kim | XML-CNN | Cap-Zhao | NLP-Cap Impv
PREC@1 94.62 95.16 95.40 96.40 93.54 96.86 96.63 97.05 +0.20%
RCV1 PREC@3 78.40 79.46 79.96 81.17 76.15 81.11 81.02 81.27 +0.20%
PREC@5 54.82 55.61 55.64 56.74 52.94 56.07 56.12 56.33 -0.72%
NDCG@1 94.62 95.16 95.40 96.40 93.54 96.38 96.63 97.05 +0.20%
NDCG@3 89.21 90.29 90.95 92.04 87.26 92.22 92.31 92.47 +0.17%
NDCG@5 90.27 91.29 91.68 92.89 88.20 92.63 92.75 93.11 +0.52%
PREC@1 68.12 72.10 71.51 64.99 68.35 75.65 - 80.20 +6.01%
EUR-Lex | PREC@3 57.93 57.74 60.37 51.68 54.45 61.81 - 65.48 +5.93%
PREC@5 48.97 47.48 50.41 42.32 44.07 50.90 - 52.83 +3.79%
NDCG@1 68.12 72.10 71.51 64.99 68.35 75.65 - 80.20 +6.01%
NDCG@3 60.66 61.33 63.32 55.03 59.81 66.71 - 71.11 +6.59%
NDCG@5 56.42 55.93 58.56 49.92 57.99 64.45 - 68.80 +6.75%

Table 2: Comparisons of our NLP-Cap approach and baselines on two text classication benchmarks, where ’-’
denotes methods that failed to scale due to memory issues.

[mmm xmL-chN]
== NLP-Cap

100%

== xmL-cnN] |
NLP-Cap

050

50% 70% 100% 50% 70%

Figure 5: Performance on EUR-Lex by varying the per-
centage of training examples (X-axis).

| Method | #Training | PREC@1 | PREC@3 | PREC@5 |
XML-CNN 100% examples 75.65 61.81 50.90
50% examples 73.69 56.62 44.36
NLP-Capsule | 60% examples 74.83 58.48 46.33
70% examples 77.26 60.90 47.73
80% examples 77.68 61.06 48.28
90% examples 79.45 63.95 50.90
100% examples 80.20 65.48 52.83
Method #Training NDCG@1 | NDCG@3 | NDCG@5
XML-CNN 100% examples 75.65 66.71 64.45
50% examples 73.69 66.65 67.36
NLP-Capsule | 60% examples 74.83 67.87 68.62
70% examples 77.26 69.79 69.65
80% examples 77.67 69.43 69.27
90% examples 79.45 71.64 71.06
100% examples 80.21 71.11 68.80

Table 3: Experimental results on different fractions of
training examples from 50% to 100% on EUR-Lex.

creasing from 15.59 to 7.77. Figure 5 shows that
our approach outperforms the strongest baseline
XML-CNN with different fractions of the training
examples.

This finding agrees with our speculation on gen-
eralization: the distance between our approach
and XML-CNN increases as fewer training data
samples are available. In Table 3, we also find
that our approach with 70% of training examples
achieves about 5% improvement over XML-CNN
with 100% of examples on 4 out of 6 metrics.

Routing Comparison We compare our routing
with (Sabour et al., 2017) and (Zhang et al.,

2018b) on EUR-Lex dataset and observe that it
performs best on all metrics (Table 4). We spec-
ulate that the improvement comes from enhanced
reliability of routing processes at instance level.

3.2 Question Answering

Question-Answering (QA) selection task refers to
selecting the best answer from candidates to each
question. For a question-answer pair (g, a), we use
our capsule-based approach to generate two final
capsules v, and v, corresponding to the respec-
tive question and answer. The relevance score of
question-answer pair can be defined as their cosine
similarity:

Vv,

8((]7 a) = COS('Uq,’Ua) = W
q a

Experiment Setup In Table 5, we conduct our
experiments on the TREC QA dataset collected
from TREC QA track 8-13 data (Wang et al.,
2007). The intuition behind this dataset selection
is that the cost of hiring human annotators to col-
lect positive answers for individual questions can
be prohibitive since positive answers can be con-
veyed in multiple different surface forms. Such is-
sue arises particularly in TREC QA with only 12%

| Method | PREC@1 | PREC@3 | PREC@S |
XML-CNN 75.65 61.81 50.90
NLP-Capsule + Sabour‘s Routing 79.14 64.33 51.85
NLP-Capsule + Zhang‘s Routing 80.20 65.48 52.83
NLP-Capsule + Our Routing 80.62 65.61 53.66 ‘

| Method NDCG@1 | NDCG@3 | NDCG@S |
XML-CNN 75.65 66.71 64.45
NLP-Capsule + Sabour‘s Routing 79.14 70.13 67.02
NLP-Capsule + Zhang‘s Routing 80.20 71.11 68.80
NLP-Capsule + Our Routing 80.62 71.34 69.57 ‘

Table 4: Performance on EUR-Lex dataset with differ-
ent routing process.

1554

‘ Dataset #QA Pairs
| Train/Dev/Test | 1229/82/100 | 53417/1148/1517 | 12% |

‘ #Questions ‘ ‘ Y%Positive ‘

Table 5: Characteristic of TREC QA dataset. %Posi-
tive denotes the percentage of positive answers.

positive answers. Therefore, we use this dataset to
investigate the generalizability of our approach.

Baselines We compare our approach to the fol-
lowing baselines: CNN + LR (Yu et al., 2014b)
using unigrams and bigrams, CNN (Severyn and
Moschitti, 2015) using additional bilinear similar-
ity features, CNTN (Qiu and Huang, 2015) using
neural tensor network, LSTM (Tay et al., 2017) us-
ing single and multi-layer, MV-LSTM (Wan et al.,
2016), NTN-LSTM and HD-LSTM (Tay et al.,
2017) using holographic dual LSTM and Capsule-
Zhao (Zhao et al., 2018) using capsule networks.
For evaluation, we use standard measures (Wang
et al., 2007) such as Mean Average Precision
(MAP) and Mean Reciprocal Rank (MRR).

Implementation Details The word embeddings
used for question answering pairs are initialized
as 300-dimensional GloVe vectors. In the con-
volutional layer, we use a convolution operation
with three different window sizes (3,4,5). All 16-
dimensional capsules in the primary capsule layer
are condensed into 256 capsules by the capsule
compression operation.

Experimental Results and Discussions In Ta-
ble 6, the best performance on MAP metric is
achieved by our approach, which verifies the ef-
fectiveness of our model. We also observe that
our approach exceeds traditional neural models
like CNN, LSTM and NTN-LSTM by a noticeable
margin.

This finding also agrees with the observation

| Method | MAP | MRR |
CNN + LR (unigram) | 54.70 | 63.29
CNN + LR (bigram) 56.93 | 66.13
CNN 66.91 | 68.80
CNTN 65.80 | 69.78
LSTM (1 layer) 62.04 | 66.85
LSTM 59.75 | 65.33
MV-LSTM 64.88 | 68.24
NTN-LSTM 63.40 | 67.72
HD-LSTM 67.44 | 75.11
Capsule-Zhao 73.63 | 70.12
NLP-Capsule 7773 | 74.16

Table 6: Experimental results on TREC QA dataset.

we found in multi-label classification: our ap-
proach has superior generalization capability in
low-resource setting with few training examples.
In contrast to the strongest baseline HD-LSTM
with 34.51M and 0.03 seconds for one batch, our
approach has 17.84M parameters and takes 0.06
seconds in an acceleration setting, and 0.12 sec-
onds without acceleration.

4 Related Work

4.1 Multi-label Text Classification

Multi-label text classification aims at assigning a
document to a subset of labels whose label set
might be extremely large. With increasing num-
bers of labels, issues of data sparsity and scalabil-
ity arise. Several methods have been proposed for
the large multi-label classification case.

Tree-based models (Agrawal et al., 2013; We-
ston et al., 2013) induce a tree structure that re-
cursively partitions the feature space with non-
leaf nodes. Then, the restricted label spaces at
leaf nodes are used for classification. Such a so-
Iution entails higher robustness because of a dy-
namic hyper-plane design and its computational
efficiency. FastXML (Prabhu and Varma, 2014)
is one such tree-based model, which learns a hi-
erarchy of training instances and optimizes an
NDCG-based objective function for nodes in the
tree structure.

Label embedding models (Balasubramanian
and Lebanon, 2012; Chen and Lin, 2012; Cisse
et al., 2013; Bi and Kwok, 2013; Ferng and Lin,
2011; Hsu et al., 2009; Ji et al., 2008; Kapoor
et al., 2012; Lewis et al., 2004; Yu et al., 2014a)
address the data sparsity issue with two steps:
compression and decompression. The compres-
sion step learns a low-dimensional label embed-
ding that is projected from original and high-
dimensional label space. When data instances
are classified to these label embeddings, they will
be projected back to the high-dimensional label
space, which is the decompression step. Re-
cent works came up with different compression
or decompression techniques, e.g., SLEEC (Bha-
tia et al., 2015).

Deep learning models: FastText (Joulin et al.,
2016) uses averaged word embeddings to clas-
sify documents, which is computationally effi-
cient but ignores word order. Various CNNs in-
spired by Kim (2014) explored MTC with dy-
namic pooling, such as Bow-CNN (Johnson and

1555

Zhang, 2014) and XML-CNN (Liu et al., 2017).
Linear classifiers: PD-Sparse (Yen et al., 2016)

introduces a Fully-Corrective Block-Coordinate

Frank-Wolfe algorithm to address data sparsity.

4.2 Question and Answering

State-of-the-art approaches to QA fall into two
categories: IR-based and knowledge-based QA.

IR-based QA firstly preprocesses the question
and employ information retrieval techniques to
retrieve a list of relevant passages to questions.
Next, reading comprehension techniques are
adopted to extract answers within the span of re-
trieved text. For answer extraction, early methods
manually designed patterns to get them (Pasca). A
recent popular trend is neural answer extraction.
Various neural network models are employed to
represent questions (Severyn and Moschitti, 2015;
Wang and Nyberg, 2015). Since the attention
mechanism naturally explores relevancy, it has
been widely used in QA models to relate the ques-
tion to candidate answers (Tan et al., 2016; Santos
et al., 2016; Sha et al., 2018). Moreover, some
researchers leveraged external large-scale knowl-
edge bases to assist answer selection (Savenkov
and Agichtein, 2017; Shen et al., 2018; Deng et al.,
2018).

Knowledge-based QA conducts semantic pars-
ing on questions and transforms parsing results
into logical forms. Those forms are adopted to
match answers from structured knowledge bases
(Yao and Van Durme, 2014; Yih et al., 2015; Bor-
des et al., 2015; Yin et al., 2016; Hao et al., 2017).
Recent developments focused on modeling the in-
teraction between question and answer pairs: Ten-
sor layers (Qiu and Huang, 2015; Wan et al., 2016)
and holographic composition (Tay et al., 2017)
have pushed the state-of-the-art.

4.3 Capsule Networks

Capsule networks were initially proposed by Hin-
ton (Hinton et al., 2011) to improve representa-
tions learned by neural networks against vanilla
CNNs. Subsequently, Sabour et al. (2017) re-
placed the scalar-output feature detectors of CNNs
with vector-output capsules and max-pooling with
routing-by-agreement.

Hinton et al. (2018) then proposed a new it-
erative routing procedure between capsule layers
based on the EM algorithm, which achieves bet-
ter accuracy on the smalINORB dataset. Zhang
et al. (2018a) applied capsule networks to relation

extraction in a multi-instance multi-label learning
framework. Xiao et al. (2018) explored capsule
networks for multi-task learning.

Xia et al. (2018) studied the zero-shot intent
detection problem with capsule networks, which
aims to detect emerging user intents in an unsu-
pervised manner. Zhao et al. (2018) investigated
capsule networks with dynamic routing for text
classification, and transferred knowledge from the
single-label to multi-label cases. Cho et al. (2019)
studied capsule networks with determinantal point
processes for extractive multi-document summa-
rization.

Our work is different from our predecessors in
the following aspects: (i) we evaluate the perfor-
mance of routing processes at instance level, and
introduce an adaptive optimizer to enhance the re-
liability of routing processes; (ii) we present cap-
sule compression and partial routing to achieve
better scalability of capsule networks on datasets
with a large output space.

5 Conclusion

Making computers perform more like humans is
a major issue in NLP and machine learning. This
not only includes making them perform on similar
levels (Hassan et al., 2018), but also requests them
to be robust to adversarial examples (Eger et al.,
2019) and generalize from few data points (Riicklé
et al., 2019). In this work, we have addressed the
latter issue.

In particular, we extended existing capsule net-
works into a new framework with advantages con-
cerning scalability, reliability and generalizability.
Our experimental results have demonstrated its ef-
fectiveness on two NLP tasks: multi-label text
classification and question answering.

Through our modifications and enhancements,
we hope to have made capsule networks more suit-
able to large-scale problems and, hence, more ma-
ture for real-world applications. In the future, we
plan to apply capsule networks to even more chal-
lenging NLP problems such as language modeling
and text generation.

6 Acknowledgments

We thank the anonymous reviewers for their com-
ments, which greatly improved the final version of
the paper. This work has been supported by the
German Research Foundation as part of the Re-
search Training Group Adaptive Preparation of In-

1556

formation from Heterogeneous Sources (AIPHES)
at the Technische Universitit Darmstadt under
grant No. GRK 1994/1.

References

Rahul Agrawal, Archit Gupta, Yashoteja Prabhu, and
Manik Varma. 2013. Multi-label learning with
millions of labels: Recommending advertiser bid
phrases for web pages. In Proceedings of the 22nd
international conference on World Wide Web, pages
13-24. ACM.

Krishnakumar Balasubramanian and Guy Lebanon.
2012. The landmark selection method for multiple
output prediction. arXiv preprint arXiv:1206.6479.

Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik
Varma, and Prateek Jain. 2015. Sparse local embed-
dings for extreme multi-label classification. In Ad-
vances in Neural Information Processing Systems,
pages 730-738.

Wei Bi and James Kwok. 2013. Efficient multi-label
classification with many labels. In International
Conference on Machine Learning, pages 405-413.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple question
answering with memory networks. arXiv preprint
arXiv:1506.02075.

Yao-Nan Chen and Hsuan-Tien Lin. 2012. Feature-
aware label space dimension reduction for multi-
label classification. In Advances in Neural Informa-
tion Processing Systems, pages 1529-1537.

Sangwoo Cho, Logan Lebanoff, Hassan Foroosh, and
Fei Liu. 2019. Improving the similarity measure of
determinantal point processes for extractive multi-
document summarization. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers).

Moustapha M Cisse, Nicolas Usunier, Thierry Artieres,
and Patrick Gallinari. 2013. Robust bloom filters for
large multilabel classification tasks. In Advances
in Neural Information Processing Systems, pages
1851-1859.

Dorin Comaniciu and Peter Meer. 2002. Mean shift:
A robust approach toward feature space analysis.

IEEE Transactions on pattern analysis and machine
intelligence, 24(5):603-619.

Yang Deng, Ying Shen, Min Yang, Yaliang Li, Nan Du,
Wei Fan, and Kai Lei. 2018. Knowledge as a bridge:
Improving cross-domain answer selection with ex-
ternal knowledge. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 3295-3305.

Steffen Eger, Gozde Giil Sahin, Andreas Riicklé, Ji-
Ung Lee, Claudia Schulz, Mohsen Mesgar, Kr-
ishnkant Swarnkar, Edwin Simpson, and Iryna

Gurevych. 2019. Text processing like humans do:
Visually attacking and shielding nlp systems. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics.

C-S Ferng and H-T Lin. 2011. Multi-label classifica-
tion with error-correcting codes. In Asian Confer-
ence on Machine Learning, pages 281-295.

Yanchao Hao, Yuanzhe Zhang, Kang Liu, Shizhu He,
Zhanyi Liu, Hua Wu, and Jun Zhao. 2017. An end-
to-end model for question answering over knowl-
edge base with cross-attention combining global
knowledge. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1, pages
221-231.

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Feder-
mann, Xuedong Huang, Marcin Junczys-Dowmunt,
William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu,
Rengian Luo, Arul Menezes, Tao Qin, Frank Seide,
Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce
Xia, Dongdong Zhang, Zhirui Zhang, and Ming
Zhou. 2018. Achieving human parity on auto-
matic chinese to english news translation. CoRR,
abs/1803.05567.

Geoffrey E Hinton, Alex Krizhevsky, and Sida D
Wang. 2011. Transforming auto-encoders. In Inter-
national Conference on Artificial Neural Networks,
pages 44-51. Springer.

Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst.
2018. Matrix capsules with em routing.

Daniel J Hsu, Sham M Kakade, John Langford, and
Tong Zhang. 2009. Multi-label prediction via com-
pressed sensing. In Advances in neural information
processing systems, pages 772—780.

Shuiwang Ji, Lei Tang, Shipeng Yu, and Jieping Ye.
2008. Extracting shared subspace for multi-label
classification. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 381-389. ACM.

Rie Johnson and Tong Zhang. 2014. Effective
use of word order for text categorization with
convolutional neural networks. arXiv preprint
arXiv:1412.1058.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Ashish Kapoor, Raajay Viswanathan, and Prateek Jain.
2012. Multilabel classification using bayesian com-
pressed sensing. In Advances in Neural Information
Processing Systems, pages 2645-2653.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

1557

http://tubiblio.ulb.tu-darmstadt.de/111643/
http://tubiblio.ulb.tu-darmstadt.de/111643/

B. M. Lake, R. Salakhutdinov, and J. B. Tenen-
baum. 2015. Human-level concept learning
through probabilistic program induction. Science,
350(6266):1332-1338.

David D Lewis, Yiming Yang, Tony G Rose, and Fan
Li. 2004. Rcvl: A new benchmark collection for
text categorization research. Journal of machine
learning research, 5(Apr):361-397.

Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and
Yiming Yang. 2017. Deep learning for extreme
multi-label text classification. In Proceedings of the
40th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 115-124. ACM.

Eneldo Loza Mencia and Johannes Fiirnkranz. 2008.
Efficient pairwise multilabel classification for large-
scale problems in the legal domain. In Joint
European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 50-65.
Springer.

Marius Pasca. Open-Domain Question Answering
from Large Text Collections, volume 29.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532—1543.

Yashoteja Prabhu and Manik Varma. 2014. Fastxml: A
fast, accurate and stable tree-classifier for extreme
multi-label learning. In Proceedings of the 20th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 263-272.
ACM.

Xipeng Qiu and Xuanjing Huang. 2015. Convolutional
neural tensor network architecture for community-
based question answering. In Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence.

Andreas Riicklé, Nafise Sadat Moosavi, and Iryna
Gurevych. 2019. Coala: A neural coverage-based
approach for long answer selection with small data.
In Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence (AAAI-19).

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton.
2017. Dynamic routing between capsules. In Ad-
vances in Neural Information Processing Systems,
pages 3856-3866.

Cicero dos Santos, Ming Tan, Bing Xiang, and Bowen
Zhou. 2016. Attentive pooling networks. arXiv
preprint arXiv:1602.03609.

Denis Savenkov and Eugene Agichtein. 2017. Evinets:
Neural networks for combining evidence signals for
factoid question answering. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), vol-
ume 2, pages 299-304.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th in-
ternational ACM SIGIR conference on research and
development in information retrieval, pages 373—
382. ACM.

Lei Sha, Xiaodong Zhang, Feng Qian, Baobao Chang,
and Zhifang Sui. 2018. A multi-view fusion neu-
ral network for answer selection. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Ying Shen, Yang Deng, Min Yang, Yaliang Li, Nan Du,
Wei Fan, and Kai Lei. 2018. Knowledge-aware at-
tentive neural network for ranking question answer
pairs. In The 41st International ACM SIGIR Con-
ference on Research & Development in Information
Retrieval, pages 901-904. ACM.

Ming Tan, Cicero Dos Santos, Bing Xiang, and Bowen
Zhou. 2016. Improved representation learning for
question answer matching. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 464-473.

Yi Tay, Minh C Phan, Luu Anh Tuan, and Siu Cheung
Hui. 2017. Learning to rank question answer pairs
with holographic dual Istm architecture. In Proceed-
ings of the 40th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 695-704. ACM.

Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu,
Liang Pang, and Xueqi Cheng. 2016. A deep ar-
chitecture for semantic matching with multiple po-
sitional sentence representations. In Thirtieth AAAI
Conference on Artificial Intelligence.

Matt P Wand and M Chris Jones. 1994. Kernel smooth-
ing. Chapman and Hall/CRC.

Di Wang and Eric Nyberg. 2015. A long short-term
memory model for answer sentence selection in
question answering. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), volume 2, pages 707-712.

Mengqiu Wang, Noah A Smith, and Teruko Mita-
mura. 2007. What is the jeopardy model? a quasi-
synchronous grammar for qa. In Proceedings of
the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL).

Mingxuan Wang, Jun Xie, Zhixing Tan, Jinsong Su,
et al. 2018. Towards linear time neural machine
translation with capsule networks. arXiv preprint
arXiv:1811.00287.

Jason Weston, Ameesh Makadia, and Hector Yee.
2013. Label partitioning for sublinear ranking.
In International Conference on Machine Learning,
pages 181-189.

1558

http://tubiblio.ulb.tu-darmstadt.de/108694/
http://tubiblio.ulb.tu-darmstadt.de/108694/

Congying Xia, Chenwei Zhang, Xiaohui Yan,
Yi Chang, and Philip S Yu. 2018. Zero-shot user
intent detection via capsule neural networks. arXiv
preprint arXiv:1809.00385.

Ligiang Xiao, Honglun Zhang, Wenqing Chen,
Yongkun Wang, and Yaohui Jin. 2018. Mcapsnet:
Capsule network for text with multi-task learning.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4565-4574.

Xuchen Yao and Benjamin Van Durme. 2014. Infor-
mation extraction over structured data: Question an-
swering with freebase. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 956-966.

Ian En-Hsu Yen, Xiangru Huang, Pradeep Raviku-
mar, Kai Zhong, and Inderjit Dhillon. 2016. Pd-
sparse: A primal and dual sparse approach to ex-
treme multiclass and multilabel classification. In In-

ternational Conference on Machine Learning, pages
3069-3077.

Scott Wen-tau Yih, Ming-Wei Chang, Xiaodong He,
and Jianfeng Gao. 2015. Semantic parsing via
staged query graph generation: Question answering
with knowledge base.

Wenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou, and
Hinrich Schiitze. 2016. Simple question answering
by attentive convolutional neural network. arXiv
preprint arXiv:1606.03391.

Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, and In-
derjit Dhillon. 2014a. Large-scale multi-label learn-
ing with missing labels. In International conference
on machine learning, pages 593-601.

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and
Stephen Pulman. 2014b. Deep learning for answer
sentence selection. arXiv preprint arXiv:1412.1632.

Ningyu Zhang, Shumin Deng, Zhanling Sun, Xi Chen,
Wei Zhang, and Huajun Chen. 2018a. Attention-
based capsule network with dynamic routing for re-
lation extraction. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 986—992.

Suofei Zhang, Wei Zhao, Xiaofu Wu, and Quan
Zhou. 2018b. Fast dynamic routing based on
weighted kernel density estimation. arXiv preprint
arXiv:1805.10807.

Wei Zhao, Jianbo Ye, Min Yang, Zeyang Lei, Suofei
Zhang, and Zhou Zhao. 2018. Investigating cap-
sule networks with dynamic routing for text classi-
fication. In Proceedings of the 2018 conference on

empirical methods in natural language processing
(EMNLP), pages 3110-3119.

1559

