Improving Neural Language Models by
Segmenting, Attending, and Predicting the Future

Hongyin Luo' Lan Jiang®> Yonatan Belinkov! James Glass'
'MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA
{hyluo, belinkov, glass}@mit.edu
2School of Information Sciences, University of Illinois at Urbana—Champaign
Champaign, IL 61820, USA
lanj3@illinois.edu

Abstract

Common language models typically predict
the next word given the context. In this work,
we propose a method that improves language
modeling by learning to align the given con-
text and the following phrase. The model
does not require any linguistic annotation of
phrase segmentation. Instead, we define syn-
tactic heights and phrase segmentation rules,
enabling the model to automatically induce
phrases, recognize their task-specific heads,
and generate phrase embeddings in an unsu-
pervised learning manner. Our method can
easily be applied to language models with dif-
ferent network architectures since an indepen-
dent module is used for phrase induction and
context-phrase alignment, and no change is re-
quired in the underlying language modeling
network. Experiments have shown that our
model outperformed several strong baseline
models on different data sets. We achieved a
new state-of-the-art performance of 17.4 per-
plexity on the Wikitext-103 dataset. Addi-
tionally, visualizing the outputs of the phrase
induction module showed that our model is
able to learn approximate phrase-level struc-
tural knowledge without any annotation.

1 Introduction

Neural language models are typically trained by
predicting the next word given a past context (Ben-
gio et al., 2003). However, natural sentences are
not constructed as simple linear word sequences,
as they usually contain complex syntactic infor-
mation. For example, a subsequence of words
can constitute a phrase, and two non-neighboring
words can depend on each other. These properties
make natural sentences more complex than simple
linear sequences.

Most recent work on neural language modeling
learns a model by encoding contexts and match-
ing the context embeddings to the embedding of

the next word (Bengio et al., 2003; Merity et al.,
2017; Melis et al., 2017). In this line of work, a
given context is encoded with a neural network,
for example a long short-term memory (LSTM;
Hochreiter and Schmidhuber, 1997) network, and
is represented with a distributed vector. The log-
likelihood of predicting a word is computed by
calculating the inner product between the word
embedding and the context embedding. Although
most models do not explicitly consider syntax,
they still achieve state-of-the-art performance on
different corpora. Efforts have also been made
to utilize structural information to learn better
language models. For instance, parsing-reading-
predict networks (PRPN; Shen et al., 2017) ex-
plicitly learn a constituent parsing structure of a
sentence and predict the next word considering the
internal structure of the given context with an at-
tention mechanism. Experiments have shown that
the model is able to capture some syntactic infor-
mation.

Similar to word representation learning models
that learns to match word-to-word relation matri-
ces (Mikolov et al., 2013; Pennington et al., 2014),
standard language models are trained to factor-
ize context-to-word relation matrices (Yang et al.,
2017). In such work, the context comprises all pre-
vious words observed by a model for predicting
the next word. However, we believe that context-
to-word relation matrices are not sufficient for de-
scribing how natural sentences are constructed.
We argue that natural sentences are generated at
a higher level before being decoded to words.
Hence a language model should be able to pre-
dict the following sequence of words given a con-
text. In this work, we propose a model that factor-
izes a context-to-phrase mutual information ma-
trix to learn better language models. The context-
to-phrase mutual information matrix describes the
relation among contexts and the probabilities of

1483

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1483—-1493
Florence, Italy, July 28 - August 2, 2019. (©2019 Association for Computational Linguistics

phrases following given contexts. We make the
following contributions in this paper:

e We propose a phrase prediction model that
improves the performance of state-of-the-art
word-level language models.

e Our model learns to predict approximate
phrases and headwords without any annota-
tion.

2 Related Work

Neural networks have been widely applied in
natural language modeling and generation (Ben-
gio et al., 2003; Bahdanau et al., 2014) for
both encoding and decoding. Among differ-
ent neural architectures, the most popular mod-
els are recurrent neural networks (RNNs; Mikolov
et al., 2010), long short-term memory networks
(LSTMs; Hochreiter and Schmidhuber, 1997), and
convolutional neural networks (CNNs; Bai et al.,
2018; Dauphin et al., 2017).

Many modifications of network structures have
been made based on these architectures. LSTMs
with self-attention can improve the performance of
language modeling (Tran et al., 2016; Cheng et al.,
2016). As an extension of simple self-attention,
transformers (Vaswani et al., 2017) apply multi-
head self-attention and have achieved competitive
performance compared with recurrent neural lan-
guage models. A current state-of-the-art model,
Transformer-XL (Dai et al., 2018), applied both
a recurrent architecture and a multi-head atten-
tion mechanism. To improve the quality of input
word embeddings, character-level information is
also considered (Kim et al., 2016). It has also been
shown that context encoders can learn syntactic in-
formation (Shen et al., 2017).

However, instead of introducing architectural
changes, for example a self-attention mechanism
or character-level information, previous studies
have shown that careful hyper-parameter tuning
and regularization techniques on standard LSTM
language models can obtain significant improve-
ments (Melis et al., 2017; Merity et al., 2017).
Similarly, applying more careful dropout strate-
gies can also improve the language models (Gal
and Ghahramani, 2016; Melis et al., 2018). LSTM
language models can be improved with these
approaches because LSTMs suffer from serious
over-fitting problems.

Recently, researchers have also attempted to
improve language models at the decoding phase.

Inan et al. (2016) showed that reusing the in-
put word embeddings in the decoder can reduce
the perplexity of language models. Yang et al.
(2017) showed the low-rank issue in factoriz-
ing the context-to-word mutual information ma-
trix and proposed a multi-head softmax decoder to
solve the problem. Instead of predicting the next
word by using only similarities between contexts
and words, the neural cache model (Grave et al.,
2016) can significantly improve language model-
ing by considering the global word distributions
conditioned on the same contexts in other parts of
the corpus.

To learn the grammar and syntax in natural lan-
guages, Dyer et al. (2016) proposed the recurrent
neural network grammar (RNNG) that models lan-
guage incorporating a transition parsing model.
Syntax annotations are required in this model.
To utilize the constituent structures in language
modeling without syntax annotation, parse-read-
predict networks (PRPNs; Shen et al., 2017) cal-
culate syntactic distances among words and com-
putes self-attentions. Syntactic distances have
been proved effective in constituent parsing tasks
(Shen et al., 2018a). In this work, we learn phrase
segmentation with a model based on this method
and our model does not require syntax annotation.

3 Syntactic Height and Phrase Induction

In this work, we propose a language model that not
only predicts the next word of a given context, but
also attempts to match the embedding of the next
phrase. The first step of this approach is conduct-
ing phrase induction based on syntactic heights.
In this section, we explain the definition of syntac-
tic height in our approach and describe the basics
ideas about whether a word can be included in an
induced phrase.

Intuitively, the syntactic height of a word aims
to capture its distance to the root node in a depen-
dency tree. In Figure 1, the syntactic heights are
represented by the red bars. A word has high syn-
tactic height if it has low distance to the root node.

A similar idea, named syntactic distance, is pro-
posed by Shen et al. (2017) for constructing con-
stituent parsing trees. We apply the method for
calculating syntactic distance to calculate syntac-
tic height. Given a sequence of embeddings of in-
put words [x1, xo, - - -, 2], we calculate their syn-
tactic heights with a temporal convolutional net-

1484

work (TCN) (Bai et al., 2018).
di = Wy [Ticn, Ticps1, 2] +bg (1)

hi = Wy, - ReLU(d;) + by,)

where h; stands for the syntactic height of word z;.
The syntactic height h; for each word is a scalar,
and W, is a 1 x D matrix, where D is the di-
mensionality of d;. These heights are learned and
not imposed by external syntactic supervision. In
Shen et al. (2017), the syntactic heights are used to
generate context embeddings. In our work, we use
the syntactic heights to predict induced phrases
and calculate their embeddings.

We define the phrase induced by a word based
on the syntactic heights. Consider two words x;
and xy. xi belongs to the phrase induced by zx; if
and only if for any j € (i, k), hj < max(h;, hy).
For example, in Figure 1, the phrase induced by
the red marked word the is “the morning flights”,
since the syntactic height of the word morning,
Pmorning < N fiights- However, the word “to” does
not belong to the phrase because h fy;gp, is higher
than both hy,e and hy,. The induced phrase and
the inducing dependency connection are labeled in
blue in the figure.

Note that this definition of an induced phrase
does not necessarily correspond to a phrase in
the syntactic constituency sense. For instance,
the words “to Houston” would be included in the
phrase “the morning flights to Houston” in a tra-
ditional syntactic tree. Given the definition of
induced phrases, we propose phrase segmenting
conditions (PSCs) to find the last word of an in-
duced phrase. Considering the induced phrase of
the i-th word, s; = [x;, 41, -+, x;]. If ; is not
the last word of a given sentence, there are two
conditions that x; should satisfy:

1. (PSC-1) The syntactic height of x; must be
higher than the height of x;, that is

hj—hi>0 3)

2. (PSC-2) The syntactic height of ;1 should
be lower that z;.

hj — hj+1 >0)

Given the PSCs, we can decide the induced
phrases for the sentence shown in Figure 1. The
last word of the phrase induced by “United” is

root

AT

United canceled morning flights to Houston

DDDDDED>

Figure 1: Groundtruth dependency tree and syntactic
heights of each word.

“canceled”, and the last word of the phrase in-
duced by “flights” is “Houston”. For the word
assigned the highest syntactic height, its induced
phrase is all remaining words in the sentence.

4 Model

In this work, we formulate multi-layer neural lan-
guage models as a two-part framework. For exam-
ple, in a two-layer LSTM language model (Merity
et al., 2017), we use the first layer as phrase gen-
erator and the last layer as a word generator:

[c1,¢,-+,cr] = RNNY([21, 29, -+, 27]) (5)

1,2, yr] = RNN?([e1,¢2,- -+, er]) (6)

For a L-layer network, we can regard the first
Ly layers as the phrase generator and the next
Ly = L — Ly layers as the word generator. Note
that we use y; to represent the hidden state out-
put by the second layer instead of h;, since h;
in our work is defined as the syntactic height of
z;. In the traditional setting, the first layer does
not explicitly learn the semantics of the following
phrase because there is no extra objective function
for phrase learning.

In this work, we force the first layer to out-
put context embeddings c¢; for phrase prediction
with three steps. Firstly, we predict the induced
phrase for each word according to the PSCs pro-
posed in Section 3. Secondly, we calculate the em-
bedding of each phrase with a head-finding atten-
tion. Lastly, we align the context embedding and
phrase embedding with negative sampling. The
word generation is trained in the same way as stan-
dard language models. The diagram of the model
is shown in Figure 2. The three steps are described
next.

1485

United

canceled Phrase Generator

g4y

J4l
UL
G4l

morning

flights

to
Houston I:‘

Step 1. Syntactic height
and phrase induction

morning flights

|

D:DD DDD

Step2. Phrase embedding
with headword attention

—>]
m— —

Word Generator

morning flights

—>

Context-word
alignment

Context-phrase
alignment

Objective
Function

Phrase
Embedding:

Step 3. Phrase and word prediction

Figure 2: The 3-step diagram of our approach. The current target word is “the”, the induced phrase is “morning
flights”, and the next word is “morning”. The context-phrase and context-word alignments are jointly trained.

4.1 Phrase Segmentation

We calculate the syntactic height and predict the
induced phrase for each word:

hi = TCN([IEZ_n, Li—m+1y° " 'CCZ]) (7)

where TC'N(-) stands for the TCN model de-
scribed in Equations (1) and (2), and n is the width
of the convolution window.

Based on the proposed phrase segmenting con-
ditions (PSCs) described in the previous section,
we predict the probability of a word being the first
word outside a induced phrase. Firstly, we decide
if each word, z;_1, j € (i+ 1, n], satisfies the two
phrase segmenting conditions, PSC-1 and PSC-2.
The probability that x; satisfies PSC-1 is

1
Ppse(T;) = 3 (F7(hy —h)+1) (8
Similarly, the probability that x; satisfies PSC-2 is
1
Ppsc(@s) = 5 - (F1(hy = b)) +1))

where fg7 stands for the HardTanh function with
a temperature a:

8
ISl
IN
Q=

7 (@)

Vo EI=IA
Q\»—A/\

—1
a-x —
1

8

This approach is inspired by the context attention
method proposed in the PRPN model (Shen et al.,
2017).
Then we can infer the probability of whether a
word belongs to the induced phrase of x; with
. J
p"ay) = [T blaw)

k=1

(10)

where pi"¢(x;) stands for the probability that z;

belongs to the induced phrase, and

o) 1 k<i+1
e 1= ppoc(@h—1) - Proc(Th1) k>i+1

Note that the factorization in Equation 10 assumes
that words are independently likely to be included
in the induced phrase of x;.

4.2 Phrase Embedding with Attention

Given induced phrases, we can calculate their em-
beddings based on syntactic heights. To calculate
the embedding of phrase s = [x1,x9, -, zy], we
calculate an attention distribution over the phrase:

hi - p"(a) + ¢
o = 4
CX e p () +c
where h; stands for the syntactic height for word
x; and c is a constant real number for smoothing

the attention distribution. Then we generate the
phrase embedding with a linear transformation:

s=W- E Q5 - €4
i

(1)

(12)

where e; is the word embedding of ;. In training,
we apply a dropout layer on s.

4.3 Phrase and Word Prediction

A traditional language model learns the probabil-
ity of a sequence of words:

p(a1, 22, xn) = pla1) - [[plzipa|z}) (13)

where 7} stands for x1, 9, - -, x;, which is the
context used for predicting the next word, z;41.
In most related studies, the probability p(z;11|x})

1486

is calculated with the output of the top layer of
a neural network y; and the word representations
e;+1 learned by the decoding layer:

(14)

p(wiy1) = SOftma:E(eiT_H i)

The state-of-the-art neural language models
contain multiple layers. The outputs of different
hidden layers capture different level of semantics
of the context. In this work, we force one of the
hidden layers to align its output with the embed-
dings of induced phrases s;. We apply an em-
bedding model similar to Mikolov et al. (2013)
to train the hidden output and phrase embedding
alignment. We define the context-phrase align-
ment model as follows.

We first define the probability that a phrase ph;

can be induced by context [z, ..., x;].
p(philar) = o(cf - s) (15)
where o(x) = H% and ¢; stands for the con-

text embedding of z1,xs, - - -, x; output by a hid-
den layer, defined in Equation 5. s; is the gener-
ated embedding of an induced phrase. The proba-
bility that a phrase ph; cannot be induced by con-
text [z1, ..., ;] is 1 — p(ph;|z}). This approach
follows the method for learning word embeddings
proposed in Mikolov et al. (2013).

We use an extra objective function and the neg-
ative sampling strategy to align context represen-
tations and the embeddings of induced phrases.
Given the context embedding c;, the induced
phrase embedding s;, and random sampled neg-
ative phrase embeddings s;“/, we train the neu-
ral network to maximize the likelihood of true in-
duced phrases and minimize the likelihood of neg-
ative samples. we define the following objective
function for context i:

liCPA —1-o

Z . neg (16)

where n stands for the number of negative sam-
ples. With this loss function, the model learns
to maximize the similarity between the context
and true induced phrase embeddings, and mini-
mize the similarity between the context and neg-
ative samples randomly selected from the induced
phrases of other words. In practice, this loss func-
tion is used as a regularization term with a coeffi-

cient y:
[=M 4~ ePA (17)

It worth noting that our approach is model-
agnostic and and can be applied to various ar-
chitectures. The TCN network for calculating
the syntactic heights and phrase inducing is an
independent module. In context-phrase align-
ment training with negative sampling, the objec-
tive function provides phrase-aware gradients and
does not change the word-by-word generation pro-
cess of the language model.

5 Experiments

We evaluate our model with word-level language
modeling tasks on Penn Treebank (PTB; Mikolov
et al., 2010), Wikitext-2 (WT2; Bradbury et al.,
2016), and Wikitext-103 (WT103; Merity et al.,
2016) corpora.

The PTB dataset has a vocabulary size of 10,000
unique words. The entire corpus includes roughly
40,000 sentences in the training set, and more than
3,000 sentences in both valid and test set.

The WT?2 data is about two times larger the the
PTB dataset. The dataset consists of Wikipedia
articles. The corpus includes 30,000 unique words
in its vocabulary and is not cleaned as heavily as
the PTB corpus.

The WT103 corpus contains a larger vocabulary
and more articles than WT2. It consists of 28k
articles and more than 100M words in the training
set. WT2 and WT103 corpora can evaluate the
ability of capturing long-term dependencies (Dai
etal., 2018).

In each corpus, we apply our approach to
publicly-available, state-of-the-art models. This
demonstrates that our approach can improve dif-
ferent existing architectures. Our trained models
will be published for downloading. The imple-
mentation of our models is publicly available.'

5.1 Penn Treebank

We train a 3-layer AWD-LSTM language model
(Merity et al., 2017) on PTB data set. We use
1,150 as the number of hidden neurons and 400
as the size of word embeddings. We also apply the
word embedding tying strategy (Inan et al., 2016).
We apply variational dropout for hidden states
(Gal and Ghahramani, 2016) and the dropout rate
is 0.25. We also apply weight dropout (Merity
etal., 2017) and set weight dropout rate as 0.5. We
apply stochastic gradient descent (SGD) and av-
eraged SGD (ASGD; Polyak and Juditsky, 1992)

"https://github.com/luochongyin/PILM

1487

https://github.com/luohongyin/PILM

Model #Params Dev PPL Test PPL
Inan et al. (2016) — Tied Variational LSTM 24M 75.7 73.2
Zilly et al. (2017) — Recurrent Highway Networks 23M 67.9 65.7
Shen et al. (2017) — PRPN - - 62.0
Pham et al. (2018) — Efficient NAS 24M 60.8 58.6
Melis et al. (2017) — 4-layer skip LSTM (tied) 24M 60.9 58.3
Shen et al. (2018b) — ON-LSTM 25M 58.3 56.2
Liu et al. (2018) — Differentiable NAS 23M 58.3 56.1
Merity et al. (2017) - AWD-LSTM 24M 60.7 58.8
Merity et al. (2017) — AWD-LSTM + finetuning 24M 60.0 57.3
Ours — AWD-LSTM + Phrase Induction - NS 24M 61.0 58.6
Ours — AWD-LSTM + Phrase Induction - Attention 24M 60.2 58.0
Ours — AWD-LSTM + Phrase Induction 24M 59.6 57.5
Ours — AWD-LSTM + Phrase Induction + finetuning 24M 57.8 55.7
Dai et al. (2018) — Transformer-XL 24M 56.7 54.5
Yang et al. (2017) - AWD-LSTM-MoS + finetuning 22M 56.5 54.4

Table 1: Experimental results on Penn Treebank dataset. Compared with the AWD-LSTM baseline models, our

method reduced the perplexity on test set by 1.6.

Model #Params Dev PPL Test PPL
Inan et al. (2016) — Variational LSTM (tied) 28M 92.3 87.7
Inan et al. (2016) — VLSTM + augmented loss 28M 91.5 87.0
Grave et al. (2016) — LSTM - - 99.3
Grave et al. (2016) — LSTM + Neural cache - - 68.9
Melis et al. (2017) — 1-Layer LSTM 24M 69.3 69.9
Melis et al. (2017) — 2-Layer Skip Conn. LSTM 24M 69.1 65.9
Merity et al. (2017) — AWD-LSTM + finetuning 33M 68.6 65.8
Ours — AWD-LSTM + Phrase Induction 33M 68.4 65.2
Ours — AWD-LSTM + Phrase Induction + finetuning 33M 66.9 64.1

Table 2: Experimental results on Wikitext-2 dataset.

for training. The learning rate is 30 and we clip
the gradients with a norm of 0.25. For the phrase
induction model, we randomly sample 1 negative
sample for each context, and the context-phrase
alignment loss is given a coefficient of 0.5. The
output of the second layer of the neural network
is used for learning context-phrase alignment, and
the final layer is used for word generation.

We compare the word-level perplexity of our
model with other state-of-the-art models and our
baseline is AWD-LSTM (Merity et al., 2017). The
experimental results are shown in Table 1. Al-
though not as good as the Transformer-XL model
(Dai et al., 2018) and the mixture of softmax
model (Yang et al., 2017), our model significantly

improved the AWD-LSTM, reducing 2.2 points of
perplexity on the validation set and 1.6 points of
perplexity on the test set. Note that the “finetun-
ing” process stands for further training the lan-
guage models with ASGD algorithm (Merity et al.,
2017).

We also did an ablation study without either
headword attention or negative sampling (NS).
The results are listed in Table 1. By simply av-
eraging word vectors in the induced phrase With-
out the attention mechanism, the model performs
worse than the full model by 0.5 perplexity, but
is still better than our baseline, the AWD-LSTM
model. In the experiment without negative sam-
pling, we only use the embedding of true induced

1488

Model #Params Test PPL
Grave et al. (2016) - LSTM - 48.7
Bai et al. (2018) — TCN - 45.2
Dauphin et al. (2017) — GCNN-8 - 44.9
Grave et al. (2016) — LSTM + Neural cache - 40.8
Dauphin et al. (2017) — GCNN-14 - 37.2
Merity et al. (2018) — 4-layer QRNN 151M 33.0
Rae et al. (2018) — LSTM + Hebbian + Cache - 29.9
Dai et al. (2018) — Transformer-XL Standard 151M 24.0
Baevski and Auli (2018) — Adaptive input 247TM 20.5
Dai et al. (2018) — Transformer-XL Large 257TM 18.3
Ours — Transformer-XL Large + Phrase Induction 257TM 17.4

Table 3: Experimental results on Wikitext-103 dataset.

phrases to align with the context embedding. It
is also indicated that the negative sampling strat-
egy can improve the performance by 1.1 perplex-
ity. Hence we just test the full model in the fol-
lowing experiments.

5.2 Wikitext-2

We also trained a 3-layer AWD-LSTM language
model on the WT?2 dataset. The network has the
same input size, output size, and hidden size as the
model we applied on PTB dataset, following the
experiments done by Merity et al. (2017). Some
hyper-parameters are different from the PTB lan-
guage model. We use a batch size of 60. The
embedding dropout rate is 0.65 and the dropout
rate of hidden outputs is set to 0.2. Other hyper-
parameters are the same as we set in training on
the PTB dataset.

The experimental results are shown in Table 2.
Our model improves the AWD-LSTM model by
reducing 1.7 points of perplexity on both the val-
idation and test sets, while we did not make any
change to the architecture of the AWD-LSTM lan-
guage model.

5.3 Wikitext-103

The current state-of-the-art language model
trained on Wikitext-103 dataset is the
Transformer-XL (Dai et al., 2018). We apply our
method on the state-of-the-art Transformer-XL
Large model, which has 18 layers and 257M
parameters. The input size and hidden size are
1024. 16 attention heads are used. We regard the
first 14 layers as the phrase generator and the last
4 layers as the word generator. In other words,

the context-phrase alignment is trained with the
outputs of the 14th layer.

The model is trained on 4 Titan X Pascal GPUs,
each of which has 12G memory. Because of the
limitation of computational resources, we use our
approach to fine-tune the officially released pre-
trained Transformer-XL Large model for 1 epoch.
The experimental results are shown in Table 3.
Our approach got 17.4 perplexity with the offi-
cially released evaluation scripts, significantly out-
performing all baselines and achieving new state-

of-the-art performance?.

6 Discussion

In this section, we show what is learned by training
language models with the context-phrase align-
ment objective function by visualizing the syn-
tactic heights output by the TCN model and the
phrases induced by each target word in a sentence.
We also visualize the headword attentions over the
induced phrase.

The first example is the sentence showed in Fig-
ure 1. The sentence came from Jurafsky and Mar-
tin (2014) and did not appear in our training set.
Figure 1 shows the syntactic heights and the in-
duced phrase of “the” according to the ground-
truth dependency information. Our model is not
given such high-quality inputs in either training or
evaluation.

Figure 3 visualizes the structure learned by our
phrase induction model. The inferred syntactic
heights are shown in Figure 3a. Heights assigned

>We did not show Dev PPLs in Table 3 since only the
correct approach to reproduce the test PPL was provided with
the pretrained Transformer-XL model.

1489

D Predictions D Groundtruth

united
canceledH
the-

morning

flights

ol . :

(b) Induced phrases and headword attentions.

(a) Syntactic heights of each word.

Figure 3: Examples of induced phrases and corresponding headword attention for generating the phrase embed-
ding. The word of each row stands for the target word as the current input of the language model, and the values
in each row in the matrices stands for the words consisting the induced phrase and their weights.

programs

we |

wanted
to

K \b(;zé\&& "Z\(«Q"@b%\g &9\{&6\0 O

¢ é\’o ,\o& Y
(a)

we
are
trying 4
to 1
create A
quality A
and A

& 7
\ﬁo
©
&
(©
but
a
majority
of
the
<unk>
council
did I
n't
buy
those
& A'Z;\\V* OK.&%% (\0\5\‘\" ?o\?‘(\\oé’;(\‘@
&’b\ L°g° "Q
'D‘Q

(e)

several 1
fund

managers

expect

a
rough

market

this]

morning

before
prices

<
(b)
thef‘.
measure
also
includes 4 I
spending
cuts A
and+ .
increases A
in -
federalf““‘l““
@6\,@,&916@”&0 (&’é\b&" \géb‘@e?
NN & @
&R N
(d)
at{ M
least+
they+ I
both A
speak
with
strong I
<unk> A
as
do+ i

<unk>+
and
7

Figure 4: Examples of phrase inducing and headword attentions.

to words “the” and “to” are significantly lower
than others, while the verb “canceled” is assigned
the highest in the sentence. Induced phrases are
shown in Figure 3b. The words at the beginning
of each row stand for the target word of each step.
Values in the matrix stand for attention weights
for calculating phrase embedding. The weights
are calculated with the phrase segmenting condi-
tions (PSC) and the syntactic heights described in
Equations 8 to 11. For the target word “united”,
hunited < Peanceled a0d heanceled > Nine, hence
the induced phrase of “united” is a single word
“canceled”, and the headword attention of ‘“can-
celed” is 1, which is indicated in the first row of
Figure 3b. The phrase induced by “canceled” is
the entire following sequence, “the morning flights
to houston”, since no following word has a higher
syntactic height than the target word. It is also
shown that the headword of the induced phrase of
“canceled” is “flights”, which agrees with the de-
pendency structure indicated in Figure 1.

More examples are shown in Figure 4. Figures
4a to 4d show random examples without any un-
known word, while the examples shown in Figures
4e and 4f are randomly selected from sentences
with unknown words, which are marked with the
UNK symbol. The examples show that the phrase
induction model does not always predict the exact
structure represented by the dependency tree. For
example, in Figure 4b, the TCN model assigned
the highest syntactic height to the word “market”
and induced the phrase “expect a rough market”
for the context “the fund managers”. However, in
a ground-truth dependency tree, the verb “expect”
is the word directly connected to the root node and
therefore has the highest syntactic height.

Although not exactly matching linguistic de-
pendency structures, the phrase-level structure
predictions are reasonable. The segmentation is
interpretable and the predicted headwords are ap-
propriate. In Figure 4c, the headwords are “try-
ing”, “quality”, and “involvement”. The model is
also robust with unknown words. In Figure 4e,
“the <unk> council” is segmented as the induced
phrase of “but a majority of”. In this case, the
model recognized that the unknown word is de-
pendent on “council”.

The sentence in Figure 4f includes even more
unknown words. However, the model still cor-
rectly predicted the root word, the verb “speak”.
For the target word “with”, the induced phrase is

“strong <unk>”. Two unknown words are lo-
cated in the last few words of the sentence. The
model failed to induce the phrase “<unk> and
<unk>" for the word “do”, but still successfully
split “<unk>" and “and”. Meanwhile, the atten-
tions over the phrases induced by “speak”, “do”,
and the first “<unk>" are not quite informative,
suggesting that unknown words made some diffi-
culties for headword prediction in this example.
However, the unknown words are assigned sig-
nificantly higher syntactic heights than the word
“and”.

7 Conclusion

In this work, we improved state-of-the-art lan-
guage models by aligning context and induced
phrases. We defined syntactic heights and phrase
segmentation rules. The model generates phrase
embeddings with headword attentions. We im-
proved the AWD-LSTM and Transformer-XL lan-
guage models on different data sets and achieved
state-of-the-art performance on the Wikitext-103
corpus. Experiments showed that our model suc-
cessfully learned approximate phrase-level knowl-
edge, including segmentation and headwords,
without any annotation. In future work, we aim to
capture better structural information and possible
connections to unsupervised grammar induction.

References

Alexei Baevski and Michael Auli. 2018. Adaptive in-
put representations for neural language modeling.
arXiv preprint arXiv:1809.10853.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun.
2018. An empirical evaluation of generic convolu-
tional and recurrent networks for sequence model-
ing. arXiv preprint arXiv:1803.01271.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137-1155.

James Bradbury, Stephen Merity, Caiming Xiong, and
Richard Socher. 2016. Quasi-recurrent neural net-
works. arXiv preprint arXiv:1611.01576.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long short-term memory-networks for machine
reading. arXiv preprint arXiv:1601.06733.

1491

Zihang Dai, Zhilin Yang, Yiming Yang, William W
Cohen, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. 2018. Transformer-xl: Language
modeling with longer-term dependency.

Yann N Dauphin, Angela Fan, Michael Auli, and David
Grangier. 2017. Language modeling with gated con-
volutional networks. In Proceedings of the 34th
International Conference on Machine Learning-
Volume 70, pages 933-941. JMLR. org.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A Smith. 2016. Recurrent neural network
grammars. arXiv preprint arXiv:1602.07776.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in neural information
processing systems, pages 1019-1027.

Edouard Grave, Armand Joulin, and Nicolas
Usunier. 2016. Improving neural language
models with a continuous cache. arXiv preprint
arXiv:1612.04426.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2016. Tying word vectors and word classifiers:
A loss framework for language modeling. arXiv
preprint arXiv:1611.01462.

Dan Jurafsky and James H Martin. 2014. Speech and
language processing, volume 3. Pearson London.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI Conference on Artificial
Intelligence.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
2018. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055.

Gédbor Melis, Charles Blundell, TomdaS Kocisky,
Karl Moritz Hermann, Chris Dyer, and Phil Blun-
som. 2018. Pushing the bounds of dropout. arXiv
preprint arXiv:1805.09208.

Gabor Melis, Chris Dyer, and Phil Blunsom. 2017. On
the state of the art of evaluation in neural language
models. arXiv preprint arXiv:1707.05589.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and optimizing Istm lan-
guage models. arXiv preprint arXiv:1708.02182.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. An analysis of neural language

modeling at multiple scales. arXiv preprint
arXiv:1803.08240.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843.

Tomas Mikolov, Martin Karafiat, LukaS Burget, Jan
éernocky, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Eleventh
annual conference of the international speech com-
munication association.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111-3119.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532—1543.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V
Le, and Jeff Dean. 2018. Efficient neural architec-
ture search via parameter sharing. arXiv preprint
arXiv:1802.03268.

Boris T Polyak and Anatoli B Juditsky. 1992. Ac-
celeration of stochastic approximation by averag-
ing. SIAM Journal on Control and Optimization,
30(4):838-855.

Jack W Rae, Chris Dyer, Peter Dayan, and Tim-
othy P Lillicrap. 2018. Fast parametric learn-
ing with activation memorization. arXiv preprint
arXiv:1803.10049.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and
Aaron Courville. 2017. Neural language model-
ing by jointly learning syntax and lexicon. arXiv
preprint arXiv:1711.02013.

Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessan-
dro Sordoni, Aaron Courville, and Yoshua Bengio.
2018a. Straight to the tree: Constituency pars-
ing with neural syntactic distance. arXiv preprint
arXiv:1806.04168.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron Courville. 2018b. Ordered neurons: Integrat-
ing tree structures into recurrent neural networks.
arXiv preprint arXiv:1810.09536.

Ke Tran, Arianna Bisazza, and Christof Monz. 2016.
Recurrent memory networks for language modeling.
arXiv preprint arXiv:1601.01272.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998-6008.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W Cohen. 2017. Breaking the softmax bot-
tleneck: A high-rank rnn language model. arXiv
preprint arXiv:1711.03953.

1492

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan
Koutnik, and Jiirgen Schmidhuber. 2017. Recurrent
highway networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume
70, pages 4189-4198. IMLR. org.

1493

