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Abstract

Distantly supervised relation extraction is
widely used to extract relational facts from
text, but suffers from noisy labels. Current re-
lation extraction methods try to alleviate the
noise by multi-instance learning and by pro-
viding supporting linguistic and contextual in-
formation to more efficiently guide the relation
classification. While achieving state-of-the-art
results, we observed these models to be biased
towards recognizing a limited set of relations
with high precision, while ignoring those in
the long tail. To address this gap, we utilize a
pre-trained language model, the OpenAl Gen-
erative Pre-trained Transformer (GPT) (Rad-
ford et al., 2018). The GPT and similar mod-
els have been shown to capture semantic and
syntactic features, and also a notable amount
of “common-sense”” knowledge, which we hy-
pothesize are important features for recogniz-
ing a more diverse set of relations. By extend-
ing the GPT to the distantly supervised set-
ting, and fine-tuning it on the NYT10 dataset,
we show that it predicts a larger set of distinct
relation types with high confidence. Manual
and automated evaluation of our model shows
that it achieves a state-of-the-art AUC score of
0.422 on the NYT10 dataset, and performs es-
pecially well at higher recall levels.

1 Introduction

Relation extraction (RE), defined as the task
of identifying the relationship between concepts
mentioned in text, is a key component of many
natural language processing applications, such
as knowledge base population (Ji and Grishman,
2011) and question answering (Yu et al., 2017).
Distant supervision (Mintz et al., 2009; Hoffmann
et al., 2011) is a popular approach to heuristically
generate labeled data for training RE systems by
aligning entity tuples in text with known relation
instances from a knowledge base, but suffers from

You could say that only the dead, and Jonathan Lethem, know
Brooklyn.

“Nonconnectivity becomes a commaodity , something to cherish, "
Text said Jonathan Lethem, a Brooklyn novelist and a new MacArthur
fellow.

In Brooklyn, they ask when you're going on Charlie Rose and if you
know Jonathan Lethem.

Figure 1: Distant supervision generates noisily labeled
relation mentions by aligning entity tuples in a text cor-
pus with relation instances from a knowledge base.

noisy labels and incomplete knowledge base in-
formation (Min et al., 2013; Fan et al., 2014). Fig-
ure 1 shows an example of three sentences labeled
with an existing KB relation, two of which are
false positives and do not actually express the re-
lation.

Current state-of-the-art RE methods try to ad-
dress these challenges by applying multi-instance
learning methods (Mintz et al., 2009; Surdeanu
et al.,, 2012; Lin et al., 2016) and guiding the
model by explicitly provided semantic and syn-
tactic knowledge, e.g. part-of-speech tags (Zeng
et al.,, 2014) and dependency parse informa-
tion (Surdeanu et al., 2012; Zhang et al., 2018b).
Recent methods also utilize side information,
e.g. paraphrases, relation aliases, and entity
types (Vashishth et al., 2018). However, we ob-
serve that these models are often biased towards
recognizing a limited set of relations with high
precision, while ignoring those in the long tail (see
Section 5.2).

Deep language representations, e.g. those
learned by the Transformer (Vaswani et al., 2017)
via language modeling (Radford et al., 2018),
have been shown to implicitly capture useful se-
mantic and syntactic properties of text solely by
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unsupervised pre-training (Peters et al., 2018),
as demonstrated by state-of-the-art performance
on a wide range of natural language processing
tasks (Vaswani et al., 2017; Peters et al., 2018;
Radford et al., 2018; Devlin et al., 2018), in-
cluding supervised relation extraction (Alt et al.,
2019). Radford et al. (2019) even found lan-
guage models to perform fairly well on answer-
ing open-domain questions without being trained
on the actual task, suggesting they capture a lim-
ited amount of “common-sense” knowledge. We
hypothesize that pre-trained language models pro-
vide a stronger signal for distant supervision, bet-
ter guiding relation extraction based on the knowl-
edge acquired during unsupervised pre-training.
Replacing explicit linguistic and side-information
with implicit features improves domain and lan-
guage independence and could increase the diver-
sity of the recognized relations.

In this paper, we introduce a Distantly Super-
vised Transformer for Relation Extraction (DIS-
TRE). We extend the standard Transformer archi-
tecture by a selective attention mechanism to han-
dle multi-instance learning and prediction, which
allows us to fine-tune the pre-trained Transformer
language model directly on the distantly super-
vised RE task. This minimizes explicit feature
extraction and reduces the risk of error accumu-
lation. In addition, the self-attentive architec-
ture allows the model to efficiently capture long-
range dependencies and the language model to
utilize knowledge about the relation between en-
tities and concepts acquired during unsupervised
pre-training. Our model achieves a state-of-the-art
AUC score of 0.422 on the NYT10 dataset, and
performs especially well at higher recall levels,
when compared to competitive baseline models.

We selected the GPT as our language model be-
cause of its fine-tuning efficiency and reasonable
hardware requirements, compared to e.g. LSTM-
based language models (Ruder and Howard, 2018;
Peters et al., 2018) or BERT (Devlin et al., 2018).
The contributions of this paper can be summarized
as follows:

e We extend the GPT to handle bag-level,
multi-instance training and prediction for dis-
tantly supervised datasets, by aggregating
sentence-level information with selective at-
tention to produce bag-level predictions (§ 3).

e We evaluate our fine-tuned language model
on the NYTI10 dataset and show that it

achieves a state-of-the-art AUC compared
to RESIDE (Vashishth et al., 2018) and
PCNN+ATT (Lin et al., 2016) in held-out
evaluation (§ 4, § 5.1).

e We follow up on these results with a manual
evaluation of ranked predictions, demonstrat-
ing that our model predicts a more diverse set
of relations and performs especially well at
higher recall levels (§ 5.2).

e We make our code publicly available
at https://github.com/DFKI-NLP/
DISTRE.

2 Transformer Language Model

This section reviews the Transformer language
model as introduced by Radford et al. (2018). We
first define the Transformer-Decoder (Section 2.1),
followed by an introduction on how contextual-
ized representations are learned with a language
modeling objective (Section 2.2).

2.1 Transformer-Decoder

The Transformer-Decoder (Liu et al., 2018a),
shown in Figure 2, is a decoder-only variant of the
original Transformer (Vaswani et al., 2017). Like
the original Transformer, the model repeatedly en-
codes the given input representations over mul-
tiple layers (i.e., Transformer blocks), consisting
of masked multi-head self-attention followed by
a position-wise feedforward operation. In contrast
to the original decoder blocks this version contains
no form of unmasked self-attention since there are
no encoder blocks. This is formalized as follows:

ho = TW, + W,

hy = tf block(hi_1) Y1 € [1,L] (D

Where T is a matrix of one-hot row vectors of the
token indices in the sentence, W, is the token em-
bedding matrix, W), is the positional embedding
matrix, L is the number of Transformer blocks,
and h; is the state at layer [. Since the Trans-
former has no implicit notion of token positions,
the first layer adds a learned positional embedding
ep € R? to each token embedding €} € R? at po-
sition p in the input sequence. The self-attentive
architecture allows an output state h‘; of a block to
be informed by all input states h;_1, which is key
to efficiently model long-range dependencies. For
language modeling, however, self-attention must
be constrained (masked) not to attend to positions
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Figure 2: Transformer-Block architecture and training
objectives. A Transformer-Block is applied at each of
the L layers to produce states h; to hy. After encoding
each sentence in a bag into its representation s, selec-
tive attention informs the relation classifier with a rep-
resentation aggregated over all sentences [s1, . . ., Sp].

ahead of the current token. For a more exhaus-
tive description of the architecture, we refer read-
ers to Vaswani et al. (2017) and the excellent guide
“The Annotated Transformer”.!

2.2 Unsupervised Pre-training of Language
Representations

Given a corpus C = {c1,...,c,} of tokens ¢;, the
language modeling objective maximizes the like-
lihood

Li(C) = log P(cilci1, ..., cig;0), (2)

where k is the context window considered for pre-
dicting the next token ¢; via the conditional proba-
bility P. The distribution over the target tokens is
modeled using the previously defined Transformer
model as follows:

P(c) = softmaxz(hyWT), 3)

where hj, is the sequence of states after the final
layer L, W, is the embedding matrix, and 6 are the
model parameters that are optimized by stochastic
gradient descent. This results in a probability dis-
tribution for each token in the input sequence.

3 Multi-Instance Learning with the
Transformer

This section introduces our extension to the orig-
inal transformer architecture, enabling bag-level

'http://nlp.seas.harvard.edu/2018/04/
03/attention.html

multi-instance learning on distantly supervised
datasets (Section 3.1), followed by a description
of our task-specific input representation for rela-
tion extraction (Section 3.2).

3.1 Distantly Supervised Fine-tuning on
Relation Extraction

After pre-training with the objective in Eq. 2,
the language model is fine-tuned on the relation
extraction task. We assume a labeled dataset
D = {(w;, head;, tail;,r;)}Y,, where each ex-
ample consists of an input sequence of tokens
x; = [z!,..., 2™, the positions head; and tail;
of the relation’s head and tail entity in the se-
quence of tokens, and the corresponding relation
label r;, assigned by distant supervision. Due to
its noisy annotation, label r; is an unreliable tar-
get for training. Instead, the relation classification
is applied on a bag level, representing each entity
pair (head, tail) as aset S = {x1,...,x,} con-
sisting of all sentences that contain the entity pair.
A set representation s is then derived as a weighted
sum over the individual sentence representations:

S = ZO&Z‘SZ', (4)

where «; is the weight assigned to the correspond-
ing sentence representation s;. A sentence rep-
resentation is obtained by feeding the token se-
quence z; of a sentence to the pre-trained model
and using the last state h7" of the final state repre-
sentation Ay, as its representation s;. The set rep-
resentation s is then used to inform the relation
classifier.

We use selective attention (Lin et al., 2016),
shown in Figure 2, as our approach for aggregat-
ing a bag-level representation s based on the indi-
vidual sentence representations s;. Compared to
average selection, where each sentence represen-
tation contributes equally to the bag-level repre-
sentation, selective attention learns to identify the
sentences with features most clearly expressing a
relation, while de-emphasizing those that contain
noise. The weight «; is obtained for each sentence
by comparing its representation against a learned
relation representation r:

B exp(s;r)
> =1 exp(s;r)

To compute the output distribution P(l) over re-
lation labels, a linear layer followed by a softmax

(&)
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is applied to s:
P(l)S,0) = softmazx(W,s + b), (6)

where W, is the representation matrix of relations
rand b € R% is a bias vector. During fine-tuning
we want to optimize the following objective:

|S|

Ly(D) = log P(1;|S;, 0) (7)

i=1
According to Radford et al. (2018), introducing
language modeling as an auxiliary objective dur-
ing fine-tuning improves generalization and leads
to faster convergence. Therefore, our final objec-
tive combines Eq. 2 and Eq. 7:

L(D) = A+ Li(D) + La(D), (8)

where the scalar value A is the weight of the lan-
guage model objective during fine-tuning.

3.2 Input Representation

Our input representation (see Figure 3) encodes
each sentence as a sequence of tokens. To make
use of sub-word information, we tokenize the in-
put text using byte pair encoding (BPE) (Sennrich
etal., 2016). The BPE algorithm creates a vocabu-
lary of sub-word tokens, starting with single char-
acters. Then, the algorithm iteratively merges the
most frequently co-occurring tokens into a new to-
ken until a predefined vocabulary size is reached.
For each token, we obtain its input representation
by summing over the corresponding token embed-
ding and positional embedding.

While the model is pre-trained on plain text sen-
tences, relation extraction requires a structured in-
put, namely a sentence and relation arguments. To
avoid task-specific changes to the architecture, we
adopt a traversal-style approach similar to Radford
et al. (2018). The structured, task-specific input is
converted to an ordered sequence to be directly fed
to the model without architectural changes. Fig-
ure 3 provides a visual illustration of the input for-
mat. It starts with the tokens of the head and tail
entity, separated by delimiters, followed by the to-
ken sequence of the sentence containing the en-
tity pair, and ends with a special classification to-
ken. The classification token signals the model
to generate a sentence representation for relation
classification. Since our model processes the in-
put left-to-right, we add the relation arguments to
the beginning, to bias the attention mechanism to-
wards their token representation while processing
the sentence’s token sequence.

byte pair emb. ‘ sty

positional
emb. & S

[strt] | | The

chest

key | [sep] [sep] key chest [clf] |

Figure 3: Relation extraction requires a structured input
for fine-tuning, with special delimiters to assign differ-
ent meanings to parts of the input. The input embed-
ding hy is created by summing over the positional em-
bedding and the byte pair embedding for each token.
States h; are obtained by self-attending over the states
of the previous layer h;_1.

4 Experiment Setup

In the following section we describe our ex-
perimental setup. = We run our experiments
on the distantly supervised NYT10 dataset and
use PCNN+ATTN (Lin et al.,, 2016) and RE-
SIDE (Vashishth et al., 2018) as the state-of-the-
art baselines.

The piecewise convolutional neural network
(PCNN) segments each input sentence into parts
to the left, middle, and right of the entity pair, fol-
lowed by convolutional encoding and selective at-
tention to inform the relation classifier with a bag-
level representation. RESIDE, on the other hand,
uses a bidirectional gated recurrent unit (GRU) to
encode the input sentence, followed by a graph
convolutional neural network (GCN) to encode the
explicitly provided dependency parse tree infor-
mation. This is then combined with named entity
type information to obtain a sentence representa-
tion that can be aggregated via selective attention
and forwarded to the relation classifier.

4.1 NYTI10 Dataset

The NYT10 dataset by Riedel et al. (2010) is a
standard benchmark for distantly supervised rela-
tion extraction. It was generated by aligning Free-
base relations with the New York Times corpus,
with the years 2005-2006 reserved for training
and 2007 for testing. We use the version of the
dataset pre-processed by Lin et al. (2016), which
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is openly accessible online.” The training data

contains 522,611 sentences, 281,270 entity pairs
and 18,252 relational facts. The test data contains
172,448 sentences, 96,678 entity pairs and 1,950
relational facts. There are 53 relation types, in-
cluding NA if no relation holds for a given sen-
tence and entity pair. Per convention we report
Precision@N (precision scores for the top 100, top
200, and top 300 extracted relation instances) and
a plot of the precision-recall curves. Since the test
data is also generated via distant supervision, and
can only provide an approximate measure of the
performance, we also report P@ 100, P@200, and
P@300 based on a manual evaluation.

4.2 Pre-training

Since pre-training is computationally expensive,
and our main goal is to show its effectiveness by
fine-tuning on the distantly supervised relation ex-
traction task, we reuse the language model® pub-
lished by Radford et al. (2018) for our experi-
ments. The model was trained on the BooksCor-
pus (Zhu et al., 2015), which contains around
7,000 unpublished books with a total of more than
800M words of different genres. The model con-
sists of L = 12 decoder blocks with 12 atten-
tion heads and 768 dimensional states, and a feed-
forward layer of 3072 dimensional states. We
reuse the byte-pair encoding vocabulary of this
model, but extend it with task-specific tokens (e.g.,
start, end, delimiter).

4.3 Hyperparameters

During our experiments we found the hyperpa-
rameters for fine-tuning, reported in Radford et al.
(2018), to be very effective. We used the Adam
optimization scheme (Kingma and Ba, 2015) with
51 = 0.9, By = 0.999, a batch size of 8, a learn-
ing rate of 6.25e-5, and a linear learning rate de-
cay schedule with warm-up over 0.2% of training
updates. We trained the model for 3 epochs and
applied residual and attention dropout with a rate
of 0.1, and classifier dropout with a rate of 0.2.

5 Results

This section presents our experimental results. We
compare DISTRE to other works on the NYT10
dataset, and show that it recognizes a more diverse

https://drive.google.com/file/d/
1eSGYObt—-SRLccvYCsWaHx11ldurp9eDN_

*https://github.com/openai/
finetune-transformer—1m
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Figure 4: Precision-Recall curve on the NYT dataset.
Our method (DISTRE) shows a more balanced perfor-
mance across relations, especially in the long tail. T
marks results reported by Vashishth et al. (2018). { in-
dicates results we obtained with the OpenNRE* imple-
mentation.

set of relations, while still achieving state-of-the-
art AUC. Even without explicitly provided side in-
formation and linguistic features.

5.1 Held-out Evaluation

Table 1 shows the results of our model on the
held-out dataset. DISTRE with selective atten-
tion achieves a new state-of-the-art AUC value
of 0.422. The precision-recall curve in Fig-
ure 4 shows that it outperforms RESIDE and
PCNN+ATT at higher recall levels, while preci-
sion is lower for top predicted relation instances.
The results of the PCNN+ATT model indicate that
its performance is only better in the very beginning
of the curve, but its precision drops early and only
achieves an AUC value of 0.341. Similar, RE-
SIDE performs better in the beginning but drops
in precision after a recall-level of approximately
0.25. This suggests that our method yields a more
balanced overall performance, which we believe is
important in many real-world applications.

Table 1 also shows detailed precision values
measured at different points along the P-R curve.
We again can observe that while DISTRE has
lower precision for the top 500 predicted relation
instances, it shows a state-of-the-art precision of
60.2% for the top 1000 and continues to perform
higher for the remaining, much larger part of the
predictions.

*nttps://github.com/thunlp/OpenNRE
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System AUC P@100 P@200 P@300 P@500 P@1000 P@2000
Mintz' 0.107 52.3 50.2 45.0 39.7 33.6 234
PCNN+ATT?  0.341 73.0 68.0 67.3 63.6 53.3 40.0
RESIDE' 0.415 81.8 75.4 74.3 69.7 59.3 45.0
DISTRE 0.422 68.0 67.0 65.3 65.0 60.2 47.9

Table 1: Precision evaluated automatically for the top rated relation instances. { marks results reported in the
original paper. I marks our results using the OpenNRE implementation.

5.2 Manual Evaluation and Analysis

Since automated evaluation on a distantly super-
vised, held-out dataset does not reflect the actual
performance of the models given false positive la-
bels and incomplete knowledge base information,
we also evaluate all models manually. This also
allows us to gain a better understanding of the
difference of the models in terms of their predic-
tions. To this end, three human annotators manu-
ally rated the top 300 predicted relation instances
for each model. Annotators were asked to label a
predicted relation as correct only if it expressed a
true fact at some point in time (e.g., for a /busi-
ness/person/company relationship, a person may
have worked for a company in the past, but not
currently), and if at least one sentence clearly ex-
pressed this relation, either via a syntactic pattern
or via an indicator phrase.

Table 2 shows the P@ 100, P@200, P@300 and
average precision scores, averaged over all anno-
tators. PCNN+ATT has the highest average preci-
sion at 94.3%, 3% higher than the 91.2% of RE-
SIDE and 5% higher than our model. However,
we see that this is mainly due to PCNN+ATT’s
very high P@ 00 and P@200 scores. For P@300,
all models have very similar precision scores.
PCNN+ATT’s scores decrease considerably, re-
flecting the overall trend of its PR curve, whereas
RESIDE’s and DISTRE’s manual precision scores
remain at approximately the same level. Our
model’s precision scores for the top rated predic-
tions are around 2% lower than those of RESIDE,
confirming the results of the held-out evaluation.
Manual inspection of DISTRE’s output shows
that most errors among the top predictions arise
from wrongly labeled /location/country/capital in-
stances, which the other models do not predict
among the top 300 relations.

Table 3 shows the distribution over rela-
tion types for the top 300 predictions of the
different models. We see that DISTRE’s

top predictions encompass 10 distinct rela-
tion types, more than the other two mod-
els, with /location/location/contains and /peo-
ple/person/nationality contributing 67% of the
predictions. Compared to PCNN+ATT and RE-
SIDE, DISTRE predicts additional relation types,
such as e.g. /people/person/place_lived (e.g., ”Sen.
PER, Republican/Democrat of LOC”) and /lo-
cation/neighborhood/meighborhood of (e.g., ’the
LOC neighborhood/area of LOC”), with high con-
fidence.

RESIDE’s top 300 predictions cover a
smaller range of 7 distinct relation types,
but also focus on /location/location/contains
and /people/person/nationality (82% of the
model’s predictions). RESIDE’s top predictions
include e.g. the additional relation types /busi-
ness/company/founders (e.g., "PER, the founder
of ORG”) and /people/person/children (e.g.,
”PER, the daughter/son of PER”).

PCNN+ATT’s high-confidence predic-
tions are strongly biased towards a very
small set of only four relation types.  Of
these, /location/location/contains and /peo-
ple/person/nationality together make up 91%
of the top 300 predictions. Manual inspection
shows that for these relations, the PCNN+ATT
model picks up on entity type signals and ba-
sic syntactic patterns, such as “"LOC, LOC”
(e.g., “Berlin, Germany”) and "LOC in LOC”
(’Green Mountain College in Vermont™) for /lo-
cation/location/contains, and “PER of LOC”
(’Stephen Harper of Canada”) for /peo-
ple/person/nationality.  This suggests that the
PCNN model ranks short and simple patterns
higher than more complex patterns where the
distance between the arguments is larger. The two
other models, RESIDE and DISTRE, also identify
and utilize these syntactic patterns.

Table 4 lists some of the more challenging
sentence-level predictions that our system cor-
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System

P@100 P@200 P@300 AvgPrec

PCNN+ATT 973
RESIDE 91.3
DISTRE 88.0

94.7
91.2
89.8

90.8 94.3
91.0 91.2
89.2 89.0

Table 2: Precision evaluated manually for the top 300 relation instances, averaged across 3 human annotators.

relation DIS RES PCNN
location/contains 168 182 214
person/nationality 32 65 59
person/company 31 26 19
person/place_lived 22 - -
country/capital 17 - -
admin_div/country 13 12 6
neighborhood/nbhd_of 10 3 2
location/team 3 - -
company/founders 2 6 -
team/location 2 - -
person/children - 6 -
Table 3: Distribution over the top 300 predicted

relations for each method. DISTRE achieves per-
formance comparable to RESIDE, while predict-
ing a more diverse set of relations with high con-
fidence. © PCNN+ATT shows a strong focus on
two relations: /location/location/contains and /peo-
ple/person/nationality.

rectly classified.

6 Related Work

Relation Extraction Initial work in RE uses
statistical classifiers or kernel based methods
in combination with discrete syntactic features,
such as part-of-speech and named entities tags,
morphological features, and WordNet hyper-
nyms (Mintz et al., 2009; Hendrickx et al., 2010).
These methods have been superseded by sequence
based methods, including recurrent (Socher et al.,
2012; Zhang and Wang, 2015) and convolutional
neural networks (Zeng et al., 2014, 2015). Conse-
quently, discrete features have been replaced by
distributed representations of words and syntac-
tic features (Turian et al., 2010; Pennington et al.,
2014). Xu et al. (2015a,b) integrated shortest de-
pendency path (SDP) information into a LSTM-
based relation classification model. Considering
the SDP is useful for relation classification, be-
cause it focuses on the action and agents in a sen-
tence (Bunescu and Mooney, 2005; Socher et al.,

2014). Zhang et al. (2018b) established a new
state-of-the-art for relation extraction on the TA-
CRED dataset by applying a combination of prun-
ing and graph convolutions to the dependency
tree. Recently, Verga et al. (2018) extended the
Transformer architecture by a custom architecture
for supervised biomedical named entity and rela-
tion extraction. In comparison, we fine-tune pre-
trained language representations and only require
distantly supervised annotation labels.

Distantly Supervised Relation Extraction
Early distantly supervised approaches (Mintz
et al., 2009) use multi-instance learning (Riedel
et al, 2010) and multi-instance multi-label
learning (Surdeanu et al., 2012; Hoffmann et al.,
2011) to model the assumption that at least one
sentence per relation instance correctly expresses
the relation. = With the increasing popularity
of neural networks, PCNN (Zeng et al., 2014)
became the most widely used architecture, with
extensions for multi-instance learning (Zeng
et al., 2015), selective attention (Lin et al., 2016;
Han et al., 2018), adversarial training (Wu et al.,
2017; Qin et al.,, 2018), noise models (Luo
et al., 2017), and soft labeling (Liu et al., 2017;
Wang et al., 2018). Recent work showed graph
convolutions (Vashishth et al., 2018) and capsule
networks (Zhang et al., 2018a), previously applied
to the supervised setting (Zhang et al., 2018b),
to be also applicable in a distantly supervised
setting. In addition, linguistic and semantic
background knowledge is helpful for the task, but
the proposed systems typically rely on explicit
features, such as dependency trees, named entity
types, and relation aliases (Vashishth et al.,
2018; Yaghoobzadeh et al., 2017), or task- and
domain-specific pre-training (Liu et al., 2018b;
He et al., 2018), whereas our method only relies
on features captured by a language model during
unsupervised pre-training.

Language Representations and Transfer
Learning Deep language representations have
shown to be an effective form of unsupervised
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Sentence

Relation

Mr. Snow asked, referring to Ayatollah Ali Khamenei, Iran’s supreme

/people/person/nationality

leader, and Mahmoud Ahmadinejad, Iran’s president.

In Oklahoma, the Democratic governor, Brad Henry, vetoed legisla-

/people/person/place_lived

tion Wednesday that would ban state facilities and workers from per-
forming abortions except to save the life of the pregnant woman.

Jakarta also boasts of having one of the oldest golf courses in Asia,
Rawamangun , also known as the Jakarta Golf Club.

Cities like New York grow in their unbuilding: demolition tends to pre-

/location/location/contains

/location/location/contains

cede development, most urgently and particularly in Lower Manhat-

tan, where New York City began.

Table 4: Examples of challenging relation mentions. These examples benefit from the ability to capture more

complex features. Relation arguments are marked in bold.

pre-training.  Peters et al. (2018) introduced
embeddings from language models (ELMo), an
approach to learn contextualized word representa-
tions by training a bidirectional LSTM to optimize
a disjoint bidirectional language model objective.
Their results show that replacing static pre-trained
word vectors (Mikolov et al., 2013; Pennington
et al., 2014) with contextualized word represen-
tations significantly improves performance on
various natural language processing tasks, such
as semantic similarity, coreference resolution,
and semantic role labeling. Ruder and Howard
(2018) found language representations learned
by unsupervised language modeling to signifi-
cantly improve text classification performance,
to prevent overfitting, and to increase sample
efficiency. Radford et al. (2018) demonstrated
that general-domain pre-training and task-specific
fine-tuning, which our model is based on, achieves
state-of-the-art results on several question an-
swering, text classification, textual entailment,
and semantic similarity tasks. Devlin et al. (2018)
further extended language model pre-training by
introducing a slot-filling objective to jointly train
a bidirectional language model. Most recently
(Radford et al., 2019) found that considerably
increasing the size of language models results in
even better generalization to downstream tasks,
while still underfitting large text corpora.

7 Conclusion

We proposed DISTRE, a Transformer which we
extended with an attentive selection mechanism
for the multi-instance learning scenario, common

in distantly supervised relation extraction. While
DISTRE achieves a lower precision for the 300 top
ranked predictions, we observe a state-of-the-art
AUC and an overall more balanced performance,
especially for higher recall values. Similarly, our
approach predicts a larger set of distinct relation
types with high confidence among the top predic-
tions. In contrast to RESIDE, which uses explic-
itly provided side information and linguistic fea-
tures, our approach only utilizes features implic-
itly captured in pre-trained language representa-
tions. This allows for an increased domain and
language independence, and an additional error re-
duction because pre-processing can be omitted.

In future work, we want to further investigate
the extent of syntactic structure captured in deep
language language representations. Because of
its generic architecture, DISTRE allows for inte-
gration of additional contextual information, e.g.
background knowledge about entities and rela-
tions, which could also prove useful to further im-
prove performance.
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