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{{zhuhao15,linyk14}@mails,{liuzy, sms}@}tsinghua.edu.cn

jie.fu@polymtl.ca,chuats@comp.nus.edu.sg

Abstract

In this paper, we propose a novel graph neu-
ral network with generated parameters (GP-
GNNs). The parameters in the propagation
module, i.e. the transition matrices used in
message passing procedure, are produced by
a generator taking natural language sentences
as inputs. We verify GP-GNNs in relation ex-
traction from text, both on bag- and instance-
settings. Experimental results on a human-
annotated dataset and two distantly supervised
datasets show that multi-hop reasoning mecha-
nism yields significant improvements. We also
perform a qualitative analysis to demonstrate
that our model could discover more accu-
rate relations by multi-hop relational reason-
ing. Codes and data are released at https:
//github.com/thunlp/gp-gnn.

1 Introduction

In recent years, graph neural networks (GNNs)
have been applied to various fields of ma-
chine learning, including node classification
(Kipf and Welling, 2016), relation classification
(Schlichtkrull et al., 2017), molecular property
prediction (Gilmer et al., 2017), few-shot learning
(Garcia and Bruna, 2018), and achieved promising
results on these tasks. These works have demon-
strated GNNs’ strong power to process relational
reasoning on graphs.

Relational reasoning aims to abstractly reason
about entities/objects and their relations, which
is an important part of human intelligence. Be-
sides graphs, relational reasoning is also of great
importance in many natural language processing
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tasks such as question answering, relation extrac-
tion, summarization, etc. Consider the example
shown in Fig. 1, existing relation extraction mod-
els could easily extract the facts that Luc Besson
directed a film Léon: The Professional and that
the film is in English, but fail to infer the rela-
tionship between Luc Besson and English with-
out multi-hop relational reasoning. By consider-
ing the reasoning patterns, one can discover that
Luc Besson could speak English following a rea-
soning logic that Luc Besson directed Léon: The
Professional and this film is in English indicates
Luc Besson could speak English. However, most
existing GNNs can only process multi-hop rela-
tional reasoning on pre-defined graphs and cannot
be directly applied in natural language relational
reasoning. Enabling multi-hop relational reason-
ing in natural languages remains an open problem.

To address this issue, in this paper, we pro-
pose graph neural networks with generated pa-
rameters (GP-GNNs), to adapt graph neural net-
works to solve the natural language relational rea-
soning task. GP-GNNs first constructs a fully-
connected graph with the entities in the sequence
of text. After that, it employs three modules
to process relational reasoning: (1) an encoding
module which enables edges to encode rich in-
formation from natural languages, (2) a propaga-
tion module which propagates relational informa-
tion among various nodes, and (3) a classification
module which makes predictions with node rep-
resentations. As compared to traditional GNNs,
GP-GNNs could learn edge parameters from natu-
ral languages, extending it from performing infer-
ence on only non-relational graphs or graphs with
a limited number of edge types to unstructured in-
puts such as texts.

In the experiments, we apply GP-GNNs to a
classic natural language relational reasoning task:

https://github.com/thunlp/gp-gnn
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Léon: The Professional is a 1996 English-language French thriller film directed by Luc Besson.

LéonEnglish Luc Besson

Language Spoken

Language Cast member

Figure 1: An example of relation extraction from plain text. Given a sentence with several entities marked, we
model the interaction between these entities by generating the weights of graph neural networks. Modeling the
relationship between “Léon” and “English” as well as “Luc Besson” helps discover the relationship between “Luc
Besson” and “English”.

relation extraction from text. We carry out experi-
ments on Wikipedia corpus aligned with Wikidata
knowledge base (Vrandečić and Krötzsch, 2014)
and build a human annotated test set as well as
two distantly labeled test sets with different lev-
els of denseness.Experiment results show that our
model outperforms other models on relation ex-
traction task by considering multi-hop relational
reasoning. We also perform a qualitative analysis
which shows that our model could discover more
relations by reasoning more robustly as compared
to baseline models.

Our main contributions are in two-fold:
(1) We extend a novel graph neural network

model with generated parameters, to enable rela-
tional message-passing with rich text information,
which could be applied to process relational rea-
soning on unstructured inputs such as natural lan-
guage.

(2) We verify our GP-GNNs on the task of re-
lation extraction from text, which demonstrates
its ability on multi-hop relational reasoning as
compared to those models which extract relation-
ships separately. Moreover, we also present three
datasets, which could help future researchers com-
pare their models in different settings.

2 Related Work

2.1 Graph Neural Networks (GNNs)
GNNs were first proposed in (Scarselli et al.,
2009) and are trained via the Almeida-Pineda al-
gorithm (Almeida, 1987). Later the authors in
Li et al. (2016) replace the Almeida-Pineda algo-
rithm with the more generic backpropagation and
demonstrate its effectiveness empirically. Gilmer
et al. (2017) propose to apply GNNs to molecu-
lar property prediction tasks. Garcia and Bruna

(2018) shows how to use GNNs to learn clas-
sifiers on image datasets in a few-shot manner.
Gilmer et al. (2017) study the effectiveness of
message-passing in quantum chemistry. Dhingra
et al. (2017) apply message-passing on a graph
constructed by coreference links to answer rela-
tional questions. There are relatively fewer pa-
pers discussing how to adapt GNNs to natural
language tasks. For example, Marcheggiani and
Titov (2017) propose to apply GNNs to semantic
role labeling and Schlichtkrull et al. (2017) ap-
ply GNNs to knowledge base completion tasks.
Zhang et al. (2018) apply GNNs to relation extrac-
tion by encoding dependency trees, and De Cao
et al. (2018) apply GNNs to multi-hop ques-
tion answering by encoding co-occurence and co-
reference relationships. Although they also con-
sider applying GNNs to natural language process-
ing tasks, they still perform message-passing on
predefined graphs. Johnson (2017) introduces a
novel neural architecture to generate a graph based
on the textual input and dynamically update the
relationship during the learning process. In sharp
contrast, this paper focuses on extracting relations
from real-world relation datasets.

2.2 Relational Reasoning

Relational reasoning has been explored in various
fields. For example, Santoro et al. (2017) propose
a simple neural network to reason the relationship
of objects in a picture, Xu et al. (2017) build up a
scene graph according to an image, and Kipf et al.
(2018) model the interaction of physical objects.

In this paper, we focus on the relational rea-
soning in the natural language domain. Existing
works (Zeng et al., 2014, 2015; Lin et al., 2016)
have demonstrated that neural networks are capa-
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ble of capturing the pair-wise relationship between
entities in certain situations. For example, Zeng
et al. (2014) is one of the earliest works that ap-
plies a simple CNN to this task, and Zeng et al.
(2015) further extends it with piece-wise max-
pooling. Nguyen and Grishman (2015) propose a
multi-window version of CNN for relation extrac-
tion. Lin et al. (2016) study an attention mech-
anism for relation extraction tasks. Peng et al.
(2017) predict n-ary relations of entities in differ-
ent sentences with Graph LSTMs. Le and Titov
(2018) treat relations as latent variables which are
capable of inducing the relations without any su-
pervision signals. Zeng et al. (2017) show that the
relation path has an important role in relation ex-
traction. Miwa and Bansal (2016) show the effec-
tiveness of LSTMs (Hochreiter and Schmidhuber,
1997) in relation extraction. Christopoulou et al.
(2018) proposed a walk-based model to do rela-
tion extraction. The most related work is Sorokin
and Gurevych (2017), where the proposed model
incorporates contextual relations with an attention
mechanism when predicting the relation of a target
entity pair. The drawback of existing approaches
is that they could not make full use of the multi-
hop inference patterns among multiple entity pairs
and their relations within the sentence.

3 Graph Neural Network with
Generated Parameters (GP-GNNs)

We first define the task of natural language rela-
tional reasoning. Given a sequence of text with
m entities, it aims to reason on both the text and
entities and make a prediction of the labels of the
entities or entity pairs.

In this section, we will introduce the general
framework of GP-GNNs. GP-GNNs first build
a fully-connected graph G = (V, E), where V
is the set of entities, and each edge (vi, vj) ∈
E , vi, vj ∈ V corresponds to a sequence s =

xi,j0 , x
i,j
1 , . . . , x

i,j
l−1 extracted from the text. After

that, GP-GNNs employ three modules including
(1) encoding module, (2) propagation module and
(3) classification module to process relational rea-
soning, as shown in Fig. 2.

3.1 Encoding Module

The encoding module converts sequences into
transition matrices corresponding to edges, i.e. the

parameters of the propagation module, by

A(n)
i,j = f(E(xi,j0 ), E(xi,j1 ), · · · , E(xi,jl−1); θ

n
e ),

(1)
where f(·) could be any model that could encode
sequential data, such as LSTMs, GRUs, CNNs,
E(·) indicates an embedding function, and θne de-
notes the parameters of the encoding module of
n-th layer.

3.2 Propagation Module

The propagation module learns representations for
nodes layer by layer. The initial embeddings of
nodes, i.e. the representations of layer 0, are
task-related, which could be embeddings that en-
code features of nodes or just one-hot embeddings.
Given representations of layer n, the representa-
tions of layer n+ 1 are calculated by

h
(n+1)
i =

∑
vj∈N (vi)

σ(A(n)
i,j h

(n)
j ), (2)

whereN (vi) denotes the neighbours of node vi in
graph G and σ(·) denotes a non-linear activation
function.

3.3 Classification Module

Generally, the classification module takes node
representations as inputs and outputs predictions.
Therefore, the loss of GP-GNNs could be calcu-
lated as

L = g(h0
0:|V|−1,h

1
0:|V|−1, . . . ,h

K
0:|V|−1, Y ; θc),

(3)
where θc denotes the parameters of the classifica-
tion module,K is the number of layers in propaga-
tion module and Y denotes the ground truth label.
The parameters in GP-GNNs are trained by gradi-
ent descent methods.

4 Relation Extraction with GP-GNNs

Relation extraction from text is a classic natu-
ral language relational reasoning task. Given a
sentence s = (x0, x1, . . . , xl−1), a set of re-
lations R and a set of entities in this sentence
Vs = {v1, v2, . . . , v|Vs|}, where each vi consists
of one or a sequence of tokens, relation extraction
from text is to identify the pairwise relationship
rvi,vj ∈ R between each entity pair (vi, vj).

In this section, we will introduce how to apply
GP-GNNs to relation extraction.
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Figure 2: Overall architecture: an encoding module takes a sequence of vector representations as inputs, and output
a transition matrix as output; a propagation module propagates the hidden states from nodes to its neighbours
with the generated transition matrix; a classification module provides task-related predictions according to nodes
representations.

4.1 Encoding Module

To encode the context of entity pairs (or edges in
the graph), we first concatenate the position em-
beddings with word embeddings in the sentence:

E(xi,jt ) = [xt;p
i,j
t ], (4)

where xt denotes the word embedding of word xt
and pi,j

t denotes the position embedding of word
position t relative to the entity pair’s position i, j
(Details of these two embeddings are introduced in
the next two paragraphs.) After that, we feed the
representations of entity pairs into encoder f(·)
which contains a bi-directional LSTM and a multi-
layer perceptron:

A(n)
i,j = [MLPn(BiLSTMn((E(xi,j0 ), E(xi,j1 ), · · · , E(xi,jl−1))],

(5)

where n denotes the index of layer 1, [·] means
reshaping a vector as a matrix, BiLSTM encodes a
sequence by concatenating tail hidden states of the
forward LSTM and head hidden states of the back-
ward LSTM together and MLP denotes a multi-
layer perceptron with non-linear activation σ.

Word Representations We first map each to-
ken xt of sentence {x0, x1, . . . , xl−1} to a k-
dimensional embedding vector xt using a word
embedding matrix We ∈ R|V |×dw , where |V | is
the size of the vocabulary. Throughout this pa-
per, we stick to 50-dimensional GloVe embed-
dings pre-trained on a 6-billion-word corpus (Pen-
nington et al., 2014).

1Adding index to neural models means their parameters
are different among layers.

Position Embedding In this work, we consider
a simple entity marking scheme2: we mark each
token in the sentence as either belonging to the
first entity vi, the second entity vj or to neither
of those. Each position marker is also mapped to
a dp-dimensional vector by a position embedding
matrix P ∈ R3×dp . We use notation pi,j

t to repre-
sent the position embedding for xt corresponding
to entity pair (vi, vj).

4.2 Propagation Module

Next, we use Eq. (2) to propagate information
among nodes where the initial embeddings of
nodes and number of layers are further specified
as follows.

The Initial Embeddings of Nodes Suppose we
are focusing on extracting the relationship be-
tween entity vi and entity vj , the initial embed-
dings of them are annotated as h

(0)
vi = asubject,

and h
(0)
vj = aobject, while the initial embeddings

of other entities are set to all zeros. We set spe-
cial values for the head and tail entity’s initial em-
beddings as a kind of “flag” messages which we
expect to be passed through propagation. Anno-
tators asubject and aobject could also carry the prior
knowledge about subject entity and object entity.
In our experiments, we generalize the idea of
Gated Graph Neural Networks (Li et al., 2016) by
setting asubject = [1;0]> and aobject = [0;1]>3.

2As pointed out by Sorokin and Gurevych (2017), other
position markers lead to no improvement in performance.

3The dimensions of 1 and 0 are the same. Hence, dr
should be positive even integers. The embedding of subject
and object could also carry the type information by changing
annotators. We leave this extension for future work.
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Number of Layers In general graphs, the num-
ber of layers K is chosen to be of the order of the
graph diameter so that all nodes obtain informa-
tion from the entire graph. In our context, how-
ever, since the graph is densely connected, the
depth is interpreted simply as giving the model
more expressive power. We treat K as a hyper-
parameter, the effectiveness of which will be dis-
cussed in detail (Sect. 5.4).

4.3 Classification Module

The output module takes the embeddings of the
target entity pair (vi, vj) as input, which are first
converted by:

rvi,vj = [[h(1)
vi �h

(1)
vj ]
>; [h(2)

vi �h
(2)
vj ]
>; . . . ; [h(K)

vi �h
(K)
vj ]>],

(6)

where � represents element-wise multiplication.
This could be used for classification:

P(rvi,vj |h, t, s) = softmax(MLP(rvi,vj )), (7)

where rvi,vj ∈ R, and MLP denotes a multi-layer
perceptron module.

We use cross entropy here as the classification
loss

L =
∑
s∈S

∑
i6=j

log P(rvi,vj |i, j, s), (8)

where rvi,vj denotes the relation label for entity
pair (vi, vj) and S denotes the whole corpus.

In practice, we stack the embeddings for every
target entity pairs together to infer the underlying
relationship between each pair of entities. We use
PyTorch (Paszke et al., 2017) to implement our
models. To make it more efficient, we avoid us-
ing loop-based, scalar-oriented code by matrix and
vector operations.

5 Experiments

Our experiments mainly aim at: (1) showing that
our best models could improve the performance
of relation extraction under a variety of settings;
(2) illustrating that how the number of layers af-
fect the performance of our model; and (3) per-
forming a qualitative investigation to highlight the
difference between our models and baseline mod-
els. In both part (1) and part (2), we do three sub-
parts of experiments: (i) we will first show that
our models could improve instance-level relation
extraction on a human annotated test set, and (ii)
then we will show that our models could also help

enhance the performance of bag-level relation ex-
traction on a distantly labeled test set 4, and (iii)
we also split a subset of distantly labeled test set,
where the number of entities and edges is large.

5.1 Experiment Settings

5.1.1 Datasets

Distantly labeled set Sorokin and Gurevych
(2017) have proposed a dataset with Wikipedia
corpora. There is a small difference between our
task and theirs: our task is to extract the relation-
ship between every pair of entities in the sentence,
whereas their task is to extract the relationship be-
tween the given entity pair and the context entity
pairs. Therefore, we need to modify their dataset:
(1) We added reversed edges if they are missing
from a given triple, e.g. if triple (Earth, part
of, Solar System) exists in the sentence, we add a
reversed label, (Solar System, has a member,
Earth), to it; (2) For all of the entity pairs with no
relations, we added “NA” labels to them.5 We use
the same training set for all of the experiments.

Human annotated test set Based on the test set
provided by (Sorokin and Gurevych, 2017), 5 an-
notators6 are asked to label the dataset. They are
asked to decide whether or not the distant super-
vision is right for every pair of entities. Only the
instances accepted by all 5 annotators are incorpo-
rated into the human annotated test set. There are
350 sentences and 1,230 triples in this test set.

Dense distantly labeled test set We further split
a dense test set from the distantly labeled test set.
Our criteria are: (1) the number of entities should
be strictly larger than 2; and (2) there must be at
least one circle (with at least three entities) in the
ground-truth label of the sentence 7. This test set
could be used to test our methods’ performance on
sentences with the complex interaction between
entities. There are 1,350 sentences and more than
17,915 triples and 7,906 relational facts in this test
set.

4Bag-level relation extraction is a widely accepted
scheme for relation extraction with distant supervision, which
means the relation of an entity pair is predicted by aggregat-
ing a bag of instances.

5We also resolve entities at the same position and remove
self-loops from the previous dataset. Furthermore, we limit
the number of entities in one sentence to 9, resulting in only
0.0007 data loss.

6They are all well-educated university students.
7Every edge in the circle has a non-“NA” label.
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5.1.2 Models for Comparison
We select the following models for comparison,
the first four of which are our baseline models.

Context-Aware RE, proposed by Sorokin and
Gurevych (2017). This model utilizes attention
mechanism to encode the context relations for pre-
dicting target relations. It was the state-of-the-art
models on Wikipedia dataset. This baseline is im-
plemented by ourselves based on authors’ public
repo8.

Multi-Window CNN. Zeng et al. (2014) uti-
lize convolutional neural networks to classify rela-
tions. Different from the original version of CNN
proposed in Zeng et al. (2014), our implementa-
tion, follows Nguyen and Grishman (2015), con-
catenates features extracted by three different win-
dow sizes: 3, 5, 7.

PCNN, proposed by Zeng et al. (2015). This
model divides the whole sentence into three pieces
and applies max-pooling after convolution layer
piece-wisely. For CNN and following PCNN, the
entity markers are the same as originally proposed
in Zeng et al. (2014, 2015).

LSTM or GP-GNN with K = 1 layer. Bi-
directional LSTM (Schuster and Paliwal, 1997)
could be seen as an 1-layer variant of our model.

GP-GNN with K = 2 or K = 3 layers. These
models are capable of performing 2-hop reasoning
and 3-hop reasoning, respectively.

5.1.3 Hyper-parameters
We select the best parameters for the validation
set. We select non-linear activation functions be-
tween relu and tanh, and select dn among
{2, 4, 8, 12, 16}9. We have also tried two forms
of adjacent matrices: tied-weights (set A(n) =
A(n+1)) and untied-weights. Table 1 shows our
best hyper-parameter settings, which are used in
all of our experiments.

5.2 Evaluation Details

So far, we have only talked about the way to imple-
ment sentence-level relation extraction. To evalu-
ate our models and baseline models in bag-level,
we utilize a bag of sentences with a given entity
pair to score the relations between them. Zeng
et al. (2015) formalize the bag-level relation ex-
traction as multi-instance learning. Here, we fol-

8https://github.com/UKPLab/
emnlp2017-relation-extraction

9We set all dns to be the same as we do not see improve-
ments using different dns

Hyper-parameters Value

learning rate 0.001
batch size 50
dropout ratio 0.5
hidden state size 256
non-linear activation σ relu
embedding size for #layers = 1 8
embedding size for #layers = 2 and 3 12
adjacent matrices untied

Table 1: Hyper-parameters settings.

low their idea and define the score function of an
entity pair and its corresponding relation r as a
max-one setting:

E(r|vi, vj , S) = max
s∈S

P(rvi,vj |i, j, s). (9)

Dataset Human Annotated Test Set
Metric Acc Macro F1
Multi-Window CNN 47.3 17.5
PCNN 30.8 3.2
Context-Aware RE 68.9 44.9
GP-GNN (#layers=1) 62.9 44.1
GP-GNN (#layers=2) 69.5 44.2
GP-GNN (#layers=3) 75.3 47.9

Table 2: Results on human annotated dataset

5.3 Effectiveness of Reasoning Mechanism

From Table 2 and 3, we can see that our best
models outperform all the baseline models signif-
icantly on all three test sets. These results indicate
our model could successfully conduct reasoning
on the fully-connected graph with generated pa-
rameters from natural language. These results also
indicate that our model not only performs well
on sentence-level relation extraction but also im-
proves on bag-level relation extraction. Note that
Context-Aware RE also incorporates context in-
formation to predict the relation of the target en-
tity pair, however, we argue that Context-Aware
RE only models the co-occurrence of various re-
lations, ignoring whether the context relation par-
ticipates in the reasoning process of relation ex-
traction of the target entity pair. Context-Aware
RE may introduce more noise, for it may mis-
takenly increase the probability of a relation with
the similar topic with the context relations. We
will give samples to illustrate this issue in Sect.
5.5. Another interesting observation is that our
#layers=1 version outperforms CNN and PCNN
in these three datasets. One probable reason is
that sentences from Wikipedia are often complex,

https://github.com/UKPLab/emnlp2017-relation-extraction
https://github.com/UKPLab/emnlp2017-relation-extraction
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Dataset Distantly Labeled Test Set Dense Distantly Labeled Test Set
Metric P@5% P@10% P@15% P@20% P@5% P@10% P@15% P@20%
Multi-Window CNN 78.9 78.4 76.2 72.9 86.2 83.4 81.4 79.1
PCNN 73.0 65.4 58.1 51.2 85.3 79.1 72.4 68.1
Context-Aware RE 90.8 89.9 88.5 87.2 93.5 93.0 93.8 93.0
GP-GNN (#layers=1) 90.5 89.9 88.2 87.2 97.4 93.5 92.4 91.9
GP-GNN (#layers=2) 92.5 92.0 89.3 87.1 95.0 94.6 95.2 94.2
GP-GNN (#layers=3) 94.2 92.0 89.7 88.3 98.5 97.4 96.6 96.1

Table 3: Results on distantly labeled test set

which may be hard to model for CNN and PCNN.
Similar conclusions are also reached by Zhang and
Wang (2015).
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Figure 3: The aggregated precision-recall curves of our
models with different number of layers on distantly la-
beled test set (left) and dense distantly labeled test set
(right). We also add Context Aware RE for comparison.

5.4 The Effectiveness of the Number of
Layers

The number of layers represents the reasoning
ability of our models. A K-layer version has the
ability to infer K-hop relations. To demonstrate
the effects of the number of layers, we also com-
pare our models with different numbers of lay-

ers. From Table 2 and Table 3, we could see
that on all three datasets, 3-layer version achieves
the best. We could also see from Fig. 3 that
as the number of layers grows, the curves get
higher and higher precision, indicating consider-
ing more hops in reasoning leads to better perfor-
mance. However, the improvement of the third
layer is much smaller on the overall distantly su-
pervised test set than the one on the dense subset.
This observation reveals that the reasoning mecha-
nism could help us identify relations especially on
sentences where there are more entities. We could
also see that on the human annotated test set 3-
layer version to have a greater improvement over
2-layer version as compared with 2-layer version
over 1-layer version. It is probably due to the rea-
son that bag-level relation extraction is much eas-
ier. In real applications, different variants could be
selected for different kind of sentences or we can
also ensemble the prediction from different mod-
els. We leave these explorations for future work.

5.5 Qualitative Results: Case Study

Tab. 4 shows qualitative results that compare our
GP-GNN model and the baseline models. The re-
sults show that GP-GNN has the ability to infer the
relationship between two entities with reasoning.
In the first case, GP-GNN implicitly learns a logic

rule ∃y, x ∼cast-member−−−−−−−−→ y
original language−−−−−−−−−→ z ⇒

x
language spoken−−−−−−−−−→ z to derive (Oozham, language

spoken, Malayalam) and in the second case
our model implicitly learns another logic rule

∃y, x owned-by−−−−−→ y
located in−−−−−→ z ⇒ x

located in−−−−−→ z
to find the fact (BankUnited Center, located
in, English). Note that (BankUnited Center,
located in, English) is even not in Wikidata,
but our model could identify this fact through rea-
soning. We also find that Context-Aware RE tends
to predict relations with similar topics. For ex-
ample, in the third case, share border with
and located in are both relations about ter-
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The association was 
organized in Enterprise (now 
known as Redbush) 
Johnson County, 
Kentucky in 1894 and was 
incorporated in 1955, after 
relocating to Gallipolis, 
Ohio.

Sentence GP-GNNs (#layers = 3)LSTMContext Aware
Relation Extraction

Oozham ( or Uzham ) is an 
upcoming 2016 Malayalam 
drama film written and 
directed by Jeethu Joseph 
with Prithviraj Sukumaran 
in the lead role.

Ground Truth

The third annual of the 2006 
Premios Juventud (Youth 
Awards) edition will be held 
on July 13, 2006 at the 
BankUnited Center from 
the University of Miami in 
Coral Gables, Florida .

Oozham

MalayalamJeethu Joseph

Prithviraj Sukumaran

cast member

director original language

language spoken
Oozham

MalayalamJeethu Joseph

Prithviraj Sukumaran

cast member

director original language

language spoken
Oozham

MalayalamJeethu Joseph

Prithviraj Sukumaran

cast member

director original language

Oozham

MalayalamJeethu Joseph

Prithviraj Sukumaran

cast member

director original language

BankUnited Center

University of Miami

Coral Gables, Florida

located in the admini-
strative territorial entity BankUnited Center

University of Miami

Coral Gables, Florida

located in the admini-
strative territorial entity BankUnited Center

University of Miami

Coral Gables, Florida

owned by

located in the admini-
strative territorial entityBankUnited Center

University of Miami

Coral Gables, Florida

owned by

located in the admini-
strative territorial entity

located in the admini-
strative territorial entity

Redbush

Johnson County

KentuckyOhio

located in the admini-
strative territorial entity

located in the admini-
strative territorial entity

Redbush

Johnson County

KentuckyOhio

located in the admini-
strative territorial entity

located in the admini-
strative territorial entity

Redbush

Johnson County

KentuckyOhio

located in the admini-
strative territorial entity

located in the admini-
strative territorial entity

Redbush

Johnson County

KentuckyOhio

located in the admini-
strative territorial entity

located in the admini-
strative territorial entity

share 
border with

Table 4: Sample predictions from the baseline models and our GP-GNN model. Ground truth graphs are the
subgraph in Wikidata knowledge graph induced by the sets of entities in the sentences. The models take sentences
and entity markers as input and produce a graph containing entities (colored and bold) and relations between them.
Although “No Relation” is also be seen as a type of relation, we only show other relation types in the graphs.

ritory issues. Consequently, Context-Aware RE
makes a mistake by predicting (Kentucky, share
boarder with, Ohio). As we have discussed
before, this is due to its mechanism to model co-
occurrence of multiple relations. However, in our
model, since Ohio and Johnson County have no
relationship, this wrong relation is not predicted.

6 Conclusion and Future Work

We addressed the problem of utilizing GNNs
to perform relational reasoning with natural lan-
guages. Our proposed model, GP-GNN, solves the
relational message-passing task by encoding natu-
ral language as parameters and performing propa-
gation from layer to layer. Our model can also be
considered as a more generic framework for graph
generation problem with unstructured input other
than text, e.g. image, video, audio. In this work,
we demonstrate its effectiveness in predicting the
relationship between entities in natural language
and bag-level and show that by considering more
hops in reasoning the performance of relation ex-
traction could be significantly improved.
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