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Abstract

Simultaneous machine translation begins to
translate each source sentence before the
source speaker is finished speaking, with ap-
plications to live and streaming scenarios. Si-
multaneous systems must carefully schedule
their reading of the source sentence to bal-
ance quality against latency. We present the
first simultaneous translation system to learn
an adaptive schedule jointly with a neural ma-
chine translation (NMT) model that attends
over all source tokens read thus far. We do so
by introducing Monotonic Infinite Lookback
(MILK) attention, which maintains both a hard,
monotonic attention head to schedule the read-
ing of the source sentence, and a soft attention
head that extends from the monotonic head
back to the beginning of the source. We show
that MILk’s adaptive schedule allows it to ar-
rive at latency-quality trade-offs that are fa-
vorable to those of a recently proposed wait-%
strategy for many latency values.

1 Introduction

Simultaneous machine translation (MT) addresses
the problem of how to begin translating a source
sentence before the source speaker has finished
speaking. This capability is crucial for live or
streaming translation scenarios, such as speech-to-
speech translation, where waiting for one speaker
to complete their sentence before beginning the
translation would introduce an intolerable delay.
In these scenarios, the MT engine must balance
latency against quality: if it acts before the nec-
essary source content arrives, translation quality
degrades; but waiting for too much source con-
tent can introduce unnecessary delays. We refer
to the strategy an MT engine uses to balance read-
ing source tokens against writing target tokens as
its schedule.

*Equal contributions.

Recent work in simultaneous machine transla-
tion tends to fall into one of two bins:

o The schedule is learned and/or adaptive to the
current context, but assumes a fixed MT sys-
tem trained on complete source sentences, as
typified by wait-if-* (Cho and Esipova, 2016)
and reinforcement learning approaches (Gris-
som I et al., 2014; Gu et al., 2017).

e The schedule is simple and fixed and can thus
be easily integrated into MT training, as typi-
fied by wait-k approaches (Dalvi et al., 2018;
Ma et al., 2018).

Neither scenario is optimal. A fixed schedule may
introduce too much delay for some sentences, and
not enough for others. Meanwhile, a fixed MT sys-
tem that was trained to expect complete sentences
may impose a low ceiling on any adaptive sched-
ule that uses it. Therefore, we propose to train an
adaptive schedule jointly with the underlying neu-
ral machine translation (NMT) system.
Monotonic attention mechanisms (Raffel et al.,
2017; Chiu and Raffel, 2018) are designed for in-
tegrated training in streaming scenarios and pro-
vide our starting point. They encourage streaming
by confining the scope of attention to the most re-
cently read tokens. This restriction, however, may
hamper long-distance reorderings that can occur
in MT. We develop an approach that removes this
limitation while preserving the ability to stream.
We use their hard, monotonic attention head
to determine how much of the source sentence is
available. Before writing each target token, our
learned model advances this head zero or more
times based on the current context, with each ad-
vancement revealing an additional token of the
source sentence. A secondary, soft attention head
can then attend to any source words at or be-
fore that point, resulting in Monotonic Infinite
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Lookback (MILK) attention. This, however, re-
moves the memory constraint that was encourag-
ing the model to stream. To restore streaming be-
haviour, we propose to jointly minimize a latency
loss. The entire system can efficiently be trained
in expectation, as a drop-in replacement for the fa-
miliar soft attention.
Our contributions are as follows:

1. We present MILk attention, which allows us
to build the first simultanecous MT system
to learn an adaptive schedule jointly with an
NMT model that attends over all source to-
kens read thus far.

2. We extend the recently-proposed Average
Lagging latency metric (Ma et al., 2018),
making it differentiable and calculable in ex-
pectation, which allows it to be used as a
training objective.

3. We demonstrate favorable trade-offs to those
of wait-k strategies at many latency values,
and provide evidence that MILk’s advantage
extends from its ability to adapt based on
source content.

2 Background

Much of the earlier work on simultaneous MT
took the form of strategies to chunk the source
sentence into partial segments that can be trans-
lated safely. These segments could be triggered
by prosody (Fiigen et al., 2007; Bangalore et al.,
2012) or lexical cues (Rangarajan Sridhar et al.,
2013), or optimized directly for translation qual-
ity (Oda et al., 2014). Segmentation decisions are
surrogates for the core problem, which is decid-
ing whether enough source content has been read
to write the next target word correctly (Grissom II
etal., 2014). However, since doing so involves dis-
crete decisions, learning via back-propagation is
obstructed. Previous work on simultaneous NMT
has thus far side-stepped this problem by making
restrictive simplifications, either on the underlying
NMT model or on the flexibility of the schedule.
Cho and Esipova (2016) apply heuristics mea-
sures to estimate and then threshold the confidence
of an NMT model trained on full sentences to
adapt it at inference time to the streaming scenario.
Several others use reinforcement learning (RL) to
develop an agent to predict read and write deci-
sions (Satija and Pineau, 2016; Gu et al., 2017;

Alinejad et al., 2018). However, due to compu-
tational challenges, they pre-train an NMT model
on full sentences and then train an agent that sees
the fixed NMT model as part of its environment.

Dalvi et al. (2018) and Ma et al. (2018) use fixed
schedules and train their NMT systems accord-
ingly. In particular, Ma et al. (2018) advocate for
a wait-k strategy, wherein the system always waits
for exactly k tokens before beginning to translate,
and then alternates between reading and writing
at a constant pre-specified emission rate. Due to
the deterministic nature of their schedule, they can
easily train the NMT system with the schedule in
place. This can allow the NMT system to learn to
anticipate missing content using its inherent lan-
guage modeling capabilities. On the downside,
with a fixed schedule the model cannot speed up
or slow down appropriately for particular inputs.

Press and Smith (2018) recently developed an
attention-free model that aims to reduce compu-
tational and memory requirements. They achieve
this by maintaining a single running context vec-
tor, and eagerly emitting target tokens based on
it whenever possible. Their method is adaptive
and uses integrated training, but the schedule itself
is trained with external supervision provided by
word alignments, while ours is latent and learned
in service to the MT task.

3 Methods

In sequence-to-sequence modeling, the goal is to
transform an input sequence x = {z1,...,T|x(}
into an output sequence y = {y1,...,yy}. A
sequence-to-sequence model consists of an en-
coder which maps the input sequence to a se-
quence of hidden states and a decoder which con-
ditions on the encoder output and autoregressively
produces the output sequence. In this work, we
consider sequence-to-sequence models where the
encoder and decoder are both recurrent neural net-
works (RNNs) and are updated as follows:

hj = EncoderRNN(z, hj_1) (D)
s; = DecoderRNN(y;_1, $i—1,¢;) 2)
y; = Output(s;, ¢;) 3)

where h; is the encoder state at input timestep j, s;
is the decoder state at output timestep ¢, and c; is
a context vector. The context vector is computed
based on the encoder hidden states through the
use of an attention mechanism (Bahdanau et al.,
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(a) Soft attention.

(b) Monotonic attention.

(c) MILK attention.

Figure 1: Simplified diagrams of the attention mechanisms discussed in Sections 3.1 and 3.2. The shading of each
node indicates the amount of attention weight the model assigns to a given encoder state (horizontal axis) at a given

output timestep (vertical axis).

2014). The function Output(-) produces a distri-
bution over output tokens y; given the current state
s; and context vector ¢;. In standard soft attention,
the context vector is computed as follows:

ei; = Energy(hj, si—1) @)
exp(e; ;)
i j = softmax(e;.); = ——— 2l (5)
>k expleq k)
x|
= 2l ©)
7j=1

where Energy() is a multi-layer perceptron.

One issue with standard soft attention is that it
computes ¢; based on the entire input sequence for
all output timesteps; this prevents attention from
being used in streaming settings since the entire
input sequence needs to be ingested before gener-
ating any output. To enable streaming, we require
a schedule in which the output at timestep ¢ is gen-
erated using just the first ¢; input tokens, where
1 < ti < ’X|

3.1 Monotonic Attention

Raffel et al. (2017) proposed a monotonic atten-
tion mechanism that modifies standard soft at-
tention to provide such a schedule of interleaved
reads and writes, while also integrating training
with the rest of the NMT model. Monotonic at-
tention explicitly processes the input sequence in a
left-to-right order and makes a hard assignment of
c; to one particular encoder state denoted hy;. For
output timestep ¢, the mechanism begins scanning
the encoder states starting at j = t;_;. For each
encoder state, it produces a Bernoulli selection
probability p; ;, which corresponds to the proba-
bility of either stopping and setting ¢; = j, or else
moving on to the next input timestep, 7 + 1, which

represents reading one more source token. This se-
lection probability is computed through the use of
an energy function that is passed through a logis-
tic sigmoid to parameterize the Bernoulli random
variable:

e; ; = MonotonicEnergy(s;—1,h;)  (7)

pij = o(€i;) ®)
z; j ~ Bernoulli(p; ;) )

If z;; = 0, j is incremented and these steps are
repeated; if z; ; = 1, ¢; is set to j and ¢; is set to
hti-

This approach involves sampling a discrete ran-
dom variable and a hard assignment of ¢; = hy,,
which precludes backpropagation. Raffel et al.
(2017) instead compute the probability that
¢; = h; and use this to compute the expected value
of ¢;, which can be used as a drop-in replacement
for standard soft attention, and which allows for
training with backpropagation. The probability
that the attention mechanism attends to state /; at
output timestep ¢ is computed as

Qij = Dij ((1 —pijor) =Ly ai—l,j) (10)
Pij—1
There is a solution to this recurrence relation
which allows «; ; to be computed for all j in paral-
lel using cumulative sum and cumulative product
operations; see Raffel et al. (2017) for details.
Note that when p; ; is either 0 or 1, the soft
and hard approaches are the same. To encourage
this, Raffel et al. (2017) use the common approach
of adding zero-mean Gaussian noise to the logis-
tic sigmoid function’s activations. Equation 8 be-
comes:

pij =0 (ei,j + N(O, n)) (11D
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One can control the extent to which p; ; is drawn
toward discrete values by adjusting the noise vari-
ance n. At run time, we forgo sampling in favor of
simply setting z; ; = 1(e; ; > 0).

While the monotonic attention mechanism al-
lows for streaming attention, it requires that the
decoder attend only to a single encoder state,
h¢;. To address this issue, Chiu and Raffel
(2018) proposed monotonic chunkwise attention
(MoChA), which allows the model to perform
soft attention over a small fixed-length chunk pre-
ceding ¢;, i.e. over all available encoder states,
N, —cs+1, ht;—cs+2, - - -, g, for some fixed chunk
size cs.

3.2 Monotonic Infinite Lookback Attention

In this work, we take MoChA one step further, by
allowing the model to perform soft attention over
the encoder states hy, ho, ..., hy,. This gives the
model “infinite lookback™ over the past seen thus
far, so we dub this technique Monotonic Infinite
Lookback (MILK) attention. The infinite lookback
provides more flexibility and should improve the
modeling of long-distance reorderings and depen-
dencies. The increased computational cost, from
linear to quadratic computation, is of little concern
as our focus on the simultaneous scenario means
that out largest source of latency will be waiting
for source context.

Concretely, we maintain a full monotonic atten-
tion mechanism and also a soft attention mech-
anism. Assuming that the monotonic attention
component chooses to stop at t;, MILk first com-
putes soft attention energies

u; , = SoftmaxEnergy (hy, si—1) (12)
for k € 1,2,...,t; where SoftmaxEnergy(-) is
an energy function similar to Equation (4). Then,
MILk computes a context ¢; by

t;
exp(u; ;)

c; = e
=2 Sl exp(uig)

J=1

h; (13)

Note that a potential issue with this approach is
that the model can set the monotonic attention
head ¢; = |x| for all 7, in which case the approach
is equivalent to standard soft attention. We address
this issue in the following subsection.

To train models using MILk, we compute the
expected value of ¢; given the monotonic attention
probabilities and soft attention energies. To do

so, we must consider every possible path through
which the model could assign attention to a given
encoder state. Specifically, we can compute the
attention distribution induced by MILk by

|x| N
Bii=)_ <a'“ ol > (14)

k
o\ S8 explusy)

The first summation reflects the fact that /; can in-
fluence c; as long as k > j, and the term inside the
summation reflects the attention probability asso-
ciated with some monotonic probability c; ; and
the soft attention distribution. This calculation can
be computed efficiently using cumulative sum op-
erations by replacing the outer summation with a
cumulative sum and the inner operation with a cu-
mulative sum after reversing u. Once we have the
f3;,; distribution, calculating the expected context

¢; Tollows a familiar formula: ¢; = Z';il Biih;.

3.3 Latency-augmented Training

By moving to an infinite lookback, we have gained
the full power of a soft attention mechanism over
any source tokens that have been revealed up to
time t;. However, while the original monotonic
attention encouraged streaming behaviour implic-
itly due to the restriction on the system’s memory,
MILKk no longer has any incentive to do this. It
can simply wait for all source tokens before writ-
ing the first target token. We address this problem
by training with an objective that interpolates log
likelihood with a latency metric.
Sequence-to-sequence models are typically
trained to minimize the negative log likelihood,
which we can easily augment with a latency cost:

L(0) = — ) logp(ylx;0) + AC(g)
(xy)

15)

where ) is a user-defined latency weight, g =
{g1,--.,9)y|} is a vector that describes the delay
incurred immediately before each target time step
(see Section 4.1), and C is a latency metric that
transforms these delays into a cost.

In the case of MILK, g; is equal to ¢;, the posi-
tion of the monotonic attention head.! Recall that
during training, we never actually make a hard de-
cision about ¢;’s location. Instead, we can use «; j,

"We introduce g; to generalize beyond methods with hard
attention heads and to unify notation with Ma et al. (2018).
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the probability that ¢; = j, to get expected delay:

x|

gi = Z Joj
=1

So long as our metric is differentiable and well-
defined over fractional delays, Equation (15) can
be used to guide MILKk to low latencies.

(16)

3.4 Preserving Monotonic Probability Mass

In the original formulations of monotonic atten-
tion (see Section 3.1), it is possible to choose not
to stop the monotonic attention head, even at the
end of the source sentence. In such cases, the at-
tention returns an all-zero context vector.

In early experiments, we found that this creates
an implicit incentive for low latencies: the MILk
attention head would stop early to avoid running
off the end of the sentence. This implicit incen-
tive grows stronger as our selection probabilities
pi,j come closer to being binary decisions. Mean-
while, we found it beneficial to have very-near-to-
binary decisions in order to get accurate latency
estimates for latency-augmented training. Taken
all together, we found that MILk either destabi-
lized, or settled into unhealthily-low-latency re-
gions. We resolve this problem by forcing MILK’s
monotonic attention head to once stop when it
reaches the EOS token, by setting p; || = 1.2

4 Measuring Latency

Our plan hinges on having a latency cost that is
worth optimizing. To that end, we describe two
candidates, and then modify the most promising
one to accommodate our training scenario.

4.1 Previous Latency Metrics

Cho and Esipova (2016) introduced Average Pro-
portion (AP), which averages the absolute delay
incurred by each target token:

]

~ x| \y\ Zg’

>While training, we perform the equivalent operation of
shifting the any residual probability mass from overshooting
the source sentence, 1 — Z‘Jx:ll a;,j, to the final source token
at position |x|. This bypasses floating point errors introduced
by the parallelized cumulative sum and cumulative product
operations (Raffel et al., 2017). This same numerical instabil-
ity helps explain why the parameterized stopping probability
pi,; does not learn to detect the end of the sentence without
intervention.

7)

where g; is delay at time ¢: the number of source
tokens read by the agent before writing the 7"
target token. This metric has some nice proper-
ties, such as being bound between 0 and 1, but it
also has some issues. Ma et al. (2018) observe
that their wait-k system with a fixed k = 1 incurs
different AP values as sequence length |x| = |y]|
ranges from 2 (AP = 0.75) to co (AP = 0.5).
Knowing that a very-low-latency wait-1 system in-
curs at best an AP of 0.5 also implies that much
of the metric’s dynamic range is wasted; in fact,
Alinejad et al. (2018) report that AP is not suf-
ficiently sensitive to detect their improvements to
simultaneous MT.

Recently, Ma et al. (2018) introduced Average
Lagging (AL), which measures the average rate by
which the MT system lags behind an ideal, com-
pletely simultaneous translator:

1 T
:T;%—

where 7 is the earliest timestep where the MT sys-
tem has consumed the entire source sequence:

(18)

19)

T = argmin,g; = |x|

and v = |y|/|x| accounts for the source and target
having different sequence lengths. This metric has
the nice property that when |x| = |y|, a wait-k
system will achieve an AL of k, which makes the
metric very interpretable. It also has no issues with
sentence length or sensitivity.

4.2 Differentiable Average Lagging

Average Proportion already works as a C func-
tion, but we prefer Average Lagging for the rea-
sons outlined above. Unfortunately, it is not dif-
ferentiable, nor is it calculable in expectation, due
to the argmin in Equation (19). We present Dif-
ferentiable Average Lagging (DAL), which elimi-
nates the argmin by making AL’s treatment of de-
lay internally consistent.

AL’s argmin is used to calculate 7, which is
used in turn to truncate AL’s average at the point
where all source tokens have been read. Why is
this necessary? We can quickly see 7’s purpose
by reasoning about a simpler version of AL where

= |y|. Table 1 shows the time-indexed lags
that are averaged to calculate AL for a wait-3 sys-
tem. The lags make the problem clear: each po-
sition beyond the point where all source tokens
have been read (g; = |x|) has its lag reduced by
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AL; 3
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2 1||AL=3|AL=225

Table 1: Comparing AL with and without its truncated
average, tracking time-indexed lag AL; = g¢; — %

when |x| = |y| = 4 for a wait-3 system.

1, pulling the average lag below k. By stopping its
average at 7 = 2, AL maintains the property that
a wait-k system receives an AL of k.

T is necessary because the only way to incur
delay is to read a source token. Once all source
tokens have been read, all target tokens appear in-
stantaneously, artificially dragging down the aver-
age lag. This is unsatisfying: the system lagged
behind the source speaker while they were speak-
ing. It should continue to do so after they finished.

AL solves this issue by truncating its average,
enforcing an implicit and poorly defined delay for
the excluded, problematic tokens. We propose in-
stead to enforce a minimum delay for writing any
target token. Specifically, we model each target to-
ken as taking at least % units of time to write, mir-
roring the speed of the ideal simultaneous transla-
tor in AL’s Equation (18). We wrap g in a g’ that
enforces our minimum delay:

1) 1=
9i max (g;, gi_1 + %) i>1

(20)
Like g;, g, represents the amount of delay incurred
just before writing the i*" target token. Intuitively,
the max enforces our minimum delay: g/ is either
equal to g;, the number of source tokens read, or
togl_,+ %, the delay incurred just before the pre-
vious token, plus the time spent writing that token.
The recurrence ensures that we never lose track of
earlier delays. With g’ in place, we can define our
Differentiable Average Lagging:

]

1 i—1
DAL= — g/ — — 1)
y; Yoy

DAL is equal to AL in many cases, in particular,
when measuring wait-k systems for sentences of
equal length, both always return a lag of k. See
Table 2 for its treatment of our wait-3 example.
Having eliminated 7, DAL is both differentiable
and calcuable in expectation. Cherry and Foster
(2019) provide further motivation and analysis for

Statistics H Scores

i1
g 3
DAL; 3

[OSTE PN )
w W W

4
6
3 || DAL=3

Table 2: DAL’s time-indexed lag DAL; = g} — %
when |x| = |y| = 4 for a wait-3 system.

DAL, alongside several examples of cases where
DAL yields more intuitive results than AL.

5 Experiments

We run our experiments on the standard WMT14
English-to-French (EnFr; 36.3M sentences) and
WMTI15 German-to-English (DeEn; 4.5M sen-
tences) tasks. For EnFr we use a combination of
newstest 2012 and newstest 2013 for development
and report results on newstest 2014. For DeEn we
validate on newstest 2013 and then report results
on newstest 2015. Translation quality is measured
using detokenized, cased BLEU (Papineni et al.,
2002). For each data set, we use BPE (Sennrich
et al.,, 2016) on the training data to construct a
32,000-type vocabulary that is shared between the
source and target languages.

5.1 Model

Our model closely follows the RNMT+ architec-
ture described by Chen et al. (2018) with modi-
fications to support streaming translation. It con-
sists of a 6 layer LSTM encoder and an 8 layer
LSTM decoder with additive attention (Bahdanau
etal., 2014). All streaming models including wait-
k, MoChA and MILK use unidirectional encoders,
while offline translation models use a bidirectional
encoder. Both encoder and decoder LSTMs have
512 hidden units, per gate layer normalization (Ba
et al., 2016), and residual skip connections after
the second layer. The models are regularized using
dropout with probability 0.2 and label smoothing
with an uncertainty of 0.1 (Szegedy et al., 2016).
Models are optimized until convergence using data
parallelism over 32 P100s, using Adam (Kingma
and Ba, 2015) with the learning rate schedule de-
scribed in Chen et al. (2018) and a batch size of
4,096 sentence-pairs per GPU. Checkpoints are
selected based on development loss. All streaming
models use greedy decoding, while offline models
use beam search with a beam size of 20.

We implement soft attention, monotonic atten-
tion, MoChA, MILk and wait-k as instantiations
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Table 4: Varying MILKk’s discreteness parameter n with 25 25,
)\ fixed at 0.2 on the DeEn development set. 2 . 2
23 %35 06 07 08 09 10 11

of an attention interface in a common code base,
allowing us to isolate their contributions. By an-
alyzing development sentence lengths, we deter-
mined that wait-k should employ a emission rate
of 1 for DeEn, and 1.1 for EnFr.

5.2 Development

We tuned MILk on our DeEn development set.
Two factors were crucial for good performance:
the preservation of monotonic mass (Section 3.4),
and the proper tuning of the noise parameter n in
Equation 11, which controls the discreteness of
monotonic attention probabilities during training.

Table 3 contrasts MILK’s best configuration be-
fore mass preservation against our final system.
Before preservation, MILk with a latency weight
A = 0 still showed a substantial reduction in la-
tency from the maximum value of 27.9, indicating
an intrinsic latency incentive. Furthermore, train-
ing quickly destabilized, resulting in very poor
trade-offs for As as low as 0.2.

After modifying MILk to preserve mass, we
then optimized noise with ) fixed at a low but rel-
evant value of 0.2, as shown in Table 4. We then
proceeded the deploy the selected value of n = 4
for testing both DeEn and EnFr.

5.3 Comparison with the state-of-the-art

We compare MILk to wait-k, the current state-
of-the-art in simultaneous NMT. We also include
MILK’s predecessors, Monotonic Attention and
MoChA, which have not previously been evalu-

0 5 10 15 20 25 30

Average Lagging Average Proportion

Figure 2: Quality-latency comparison for German-
to-English WMT15 (DeEn) with DAL (upper), AL
(lower-left), AP (lower-right).

ated with latency metrics. We plot latency-quality
curves for each system, reporting quality using
BLEU, and latency using Differentiable Average
Lagging (DAL), Average Lagging (AL) or Av-
erage Proportion (AP) (see Section 4). We fo-
cus our analysis on DAL unless stated otherwise.
MILKk curves are produced by varying the latency
loss weight \,® wait-k curves by varying k,* and
MoChA curves by varying chunk size.’> Both
MILk and wait-k have settings (A = 0 and k =
300) corresponding to full attention.

Results are shown in Figures 2 and 3.5 For
DeEn, we begin by noting that MILk has a clear
separation above its predecessors MoChA and
Monotonic Attention, indicating that the infinite
lookback is indeed a better fit for translation. Fur-
thermore, MILK is consistently above wait-k for
lags between 4 and 14 tokens. MILKk is able to re-
tain the quality of full attention (28.4 BLEU) up to
a lag of 8.5 tokens, while wait-k begins to fall off
for lags below 13.3 tokens. At the lowest compa-
rable latency (4 tokens), MILk is 1.5 BLEU points

’A=10.75,0.5,0.4,0.3,0.2,0.1,0.05,0.01, 0.0

‘k=2,4,6,8,10,12, 14, 16, 20, 24, 300

Ses =1 (Monotonic Attention), 2, 4, 8, and 16

SFull sized graphs for all latency metrics, along with the
corresponding numeric scores are available in Appendix A,
included as supplementary material.
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Figure 3: Quality-latency comparison for English-to-
French WMT14 (EnFr) with DAL (upper), AL (lower-
left), AP (lower-right).

ahead of wait-k.

EnFr is a much easier language pair: both MILk
and wait-k maintain the BLEU of full attention at
lags of 10 tokens. However, we were surprised
to see that this does not mean we can safely de-
ploy very low ks for wait-k; its quality drops
off surprisingly quickly at £ = 8 (DAL=84,
BLEU=39.8). MILk extends the flat “safe” re-
gion of the curve out to a lag of 7.2 (BLEU=40.5).
At the lowest comparable lag (4.5 tokens), MILk
once again surpasses wait-k, this time by 2.3
BLEU points.

The £k = 2 point for wait-k has been omit-
ted from all graphs to improve clarity. The omit-
ted BLEU/DAL pairs are 19.5/2.5 for DeEn and
28.9/2.9 for EnFr, both of which trade very large
losses in BLEU for small gains in lag. However,
wait-k’s ability to function at all at such low laten-
cies is notable. The configuration of MILk tested
here was unable to drop below lags of 4.

Despite MILk having been optimized for DAL,
MILK’s separation above wait-k only grows as we
move to the more established metrics AL and AP.
DAL’s minimum delay for each target token makes
it far more conservative than AL or AP. Unlike
DAL, these metrics reward MILk and its predeces-
sors for their tendency to make many consecutive
writes in the middle of a sentence.
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Figure 4: Two EnFr sentences constructed to contrast
MILK’s handling of a short noun phrase John Smith
against the longer John Smith’s lawyer. Translated by
MILk with A = 0.2.

5.4 Characterizing MILK’s schedule

We begin with a qualitative characterization of
MILK’s behavior by providing diagrams of MILK’s
attention distributions. The shade of each circle
indicates the strength of the soft alignment, while
bold outlines indicate the location of the hard at-
tention head, whose movement is tracked by con-
necting lines.

In general, the attention head seems to loosely
follow noun- and verb-phrase boundaries, reading
one or two tokens past the end of the phrase to en-
sure it is complete. This behavior and its benefits
are shown in Figure 4, which contrast the simple
noun phrase John Smith against the more complex
John Smith’s laywer. By waiting until the end of
both phrases, MILk is able to correctly re-order
avocat (lawyer).

Figure 5 shows a more complex sentence drawn
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Figure 5: An example EnFr sentence drawn from our
development set, as translated by MILk with A = 0.2.
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Figure 6: An example EnFr sentence drawn from our
development set, as translated by wait-6.

from our development set. MILk gets going after
reading just 4 tokens, writing the relatively safe,
En 2008. 1t does wait, but it saves its pauses for
tokens with likely future dependencies. A partic-
ularly interesting pause occurs before the de in de
la loi. This preposition could be either de la or du,
depending on the phrase it modifies. We can see
MILKk pause long enough to read one token after
law, allowing it to correctly choose de la to match
the feminine loi (law).

Looking at the corresponding wait-6 run in Fig-
ure 6, we can see that wait-6’s fixed schedule does
not read law before writing the same de. To its
credit, wait-6 anticipates correctly, also choosing
de la, likely due to the legal context provided by
the nearby phrase, the constitutionality.

We can also perform a quantitative analysis of

3000
2500
2000
1500
1000

500

2 4 6 8 10 12 14

Figure 7: Histogram of initial delays for MILk (A =
0.2) and wait-6 on the EnFr development set.

MILK’s adaptivity by monitoring its initial delays;
that is, how many source tokens does it read before
writing its first target token? We decode our EnFr
development set with MILk A = 0.2 as well as
wait-6 and count the initial delays for each.” The
resulting histogram is shown in Figure 7. We can
see that MILk has a lot of variance in its initial de-
lays, especially when compared to the near-static
wait-6. This is despite them having very similar
DALs: 5.8 for MILk and 6.5 for wait-6.

6 Conclusion

We have presented Monotonic Infinite Lookback
(MILK) attention, an attention mechanism that
uses a hard, monotonic head to manage the reading
of the source, and a soft traditional head to attend
over whatever has been read. This allowed us to
build a simultaneous NMT system that is trained
jointly with its adaptive schedule. Along the way,
we contributed latency-augmented training and a
differentiable latency metric. We have shown
MILKk to have favorable quality-latency trade-offs
compared to both wait-%£ and to earlier monotonic
attention mechanisms. It is particularly useful for
extending the length of the region on the latency
curve where we do not yet incur a major reduction
in BLEU.
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Supplementary Material

We have provided a separate file containing sup-
plementary material. Its Appendix A contains full-
sized graphs and numeric scores to support our
primary experimental comparison in Section 5.3.
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