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Abstract

Negative medical findings are prevalent in
clinical reports, yet discriminating them from
positive findings remains a challenging task
for information extraction. Most of the ex-
isting systems treat this task as a pipeline of
two separate tasks, i.e., named entity recog-
nition (NER) and rule-based negation detec-
tion. We consider this as a multi-task problem
and present a novel end-to-end neural model to
jointly extract entities and negations. We ex-
tend a standard hierarchical encoder-decoder
NER model and first adopt a shared encoder
followed by separate decoders for the two
tasks. This architecture performs considerably
better than the previous rule-based and ma-
chine learning-based systems. To overcome
the problem of increased parameter size es-
pecially for low-resource settings, we propose
the Conditional Softmax Shared Decoder ar-
chitecture which achieves state-of-art results
for NER and negation detection on the 2010
i2b2/VA challenge dataset and a proprietary
de-identified clinical dataset.

1 Introduction

In recent years, natural language processing (NLP)
techniques have demonstrated increasing effec-
tiveness in clinical text mining. Electronic health
record (EHR) narratives, e.g., discharge sum-
maries and progress notes contain a wealth of
medically relevant information such as diagno-
sis information and adverse drug events. Auto-
matic extraction of such information and represen-
tation of clinical knowledge in standardized for-
mats (Singh and Bhatia, 2019) could be employed
for a variety of purposes such as clinical event
surveillance, decision support (Jin et al., 2018),
pharmacovigilance, and drug efficacy studies.
Although many NLP applications that success-
fully extract findings from medical reports have
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Discontinue Abraxane, patient denies taking
Tyleno 325 mg and is not taking calcium
carbonate. Patient also stopped taking
colecalciferol 1,000 units PO.

Figure 1: Negated medications (highlighted in red) and
negation cues (highlighted in purple) in clinical text. Our
model does not explicitly label the cues.

been developed in recent years, identifying asser-
tions such as positive (present), negative (absent),
and hypothetical remains a challenging task, es-
pecially to generalize (Wu et al., 2014). How-
ever, identifying assertions is critical since nega-
tive and uncertain findings are frequent in clinical
notes (Figure 1), and information extraction algo-
rithms that do not distinguish between them will
not paint a clear picture of the patient.

In this paper, we focus on identifying the
negated findings in a multi-task setting (Bhatia
et al., 2018). Most of the existing systems treat
this task as a pipeline of two separate tasks, i.e.,
named entity recognition (NER) and negation de-
tection. Previous efforts in this area include both
rule-based and machine-learning approaches.

Rule-based systems rely on negation keywords
and rules to determine the cue of negation. NegEx
(Chapman et al., 2001) is a widely used algorithm
that consists of ontology lookup to index find-
ings, and negation regular expression search in a
fixed scope. ConText (Harkema et al., 2009) ex-
tends NegEx to other attributes like hypothetical
and make scope variable by searching for a ter-
mination term. NegBio (Peng et al., 2018) uses a
universal dependency graph for scope detection.
Another similar work by Gkotsis et al. (2016)
utilizes a constituency-based parse tree to prune
out the parts outside the scope. However, these
approaches use rules and regular expressions for
cue detection which rely solely on surface text
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and thus are limited when attempting to capture
complex syntactic constructions such as long noun
phrases.

Kernel-based approaches are also very com-
mon, especially in the 2010 i2b2/VA task of pre-
dicting assertions. The state-of-the-art in that chal-
lenge applies support vector machines (SVM) to
assertion prediction as a separate step after con-
cept extraction (de Bruijn et al., 2011). They
train classifiers to predict assertions of each con-
cept word, and a separate classifier to predict the
assertion of the whole concept. Shivade et al.
(2015) propose an Augmented Bag of Words Ker-
nel (ABoW), which generates features based on
NegEx rules along with bag-of-words features.
Cheng et al. (2017) use CREF for classification of
cues and scope detection. These machine learning
based approaches often suffer in generalizability,
the ability to perform well on unseen text.

Recently, neural network models by Fancellu et
al. (2016) and Rumeng et al. (2017) have been
proposed. Most relevant to our work is that of
Rumeng et al. (2017) where gated recurrent units
(GRU) are used to represent the clinical events and
their context, along with an attention mechanism.
Given a text annotated with events, it classifies the
presence and period of the events. However, this
approach is not end-to-end as it does not predict
the events. Additionally, these models generally
require large annotated corpus, which is necessary
for good performance. Unfortunately, such clini-
cal text data is not easily available.

Multi-task learning (MTL) is one of the most
effective solutions for knowledge transfer across
tasks. In the context of neural network archi-
tectures, we perform MTL by sharing parameters
across models, such as pretraining using word em-
beddings (Bhatia et al., 2016; Bojanowski et al.,
2016), a popular approach for most NLP tasks. In
this paper, we propose an MTL approach to nega-
tion detection that overcomes some of the limita-
tions in the existing models such as data accessi-
bility. MTL leverages overlapping representation
across sub-tasks and it is one of the most effec-
tive solutions for knowledge transfer across tasks.
In the context of neural network architectures, we
perform MTL by sharing parameters across tasks.

To the best of our knowledge, this is the first
work to jointly model named entity and negation
in an end-to-end system. Our main contributions
are summarized below:
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e An end-to-end hierarchical neural model con-
sisting of a shared encoder and different de-
coding schemes to jointly extract entities and
negations. Using our proposed model, we ob-
tain substantial improvement over prior mod-
els for both entities and negations on the 2010
i2b2/VA challenge task as well as a propri-
etary de-identified clinical note dataset for
medical conditions.

e A Conditional softmax shared decoder model
to overcome low resource settings (datasets
with limited amounts of training data), which
achieves state of art results across different
corpora.

e A thorough empirical analysis of parameter
sharings for low resource setting highlighting
the significance of the shared decoder.

2 Methodology

We first present a standard neural framework for
named entity recognition. To facilitate multi-task
learning, we expand on that architecture by build-
ing a two decoder model. Then, to overcome the
issues of the two decoder model we propose a sin-
gle shared decoder model. Finally, we introduce
the Conditional softmax shared decoder.

2.1 Named Entity Recognition Architecture

NER is a sequence tagging problem which maxi-
mizes a conditional probability of tags y given an
input sequence x, parameterized by 6.

T

P(y[x;0) = [[ Pilze.y<:0) (1)
t=1

Here T' is the length of the sequence, and y¢
represents tags for all previous time-steps. We
focus on an established hierarchical architecture
(Lample et al., 2016; Yang et al., 2016; Chiu and
Nichols, 2016) consisting of encoders (at both
word and character levels) and a tagger for output
generation.

2.1.1 Encoders

Input to the model, x € N7, represents token
ids of the input vocabulary. This sequence is en-
coded first at the character level and additionally
at the word level. Character level representation
consists of using a bi-directional Long Short-Term
Memory (BiLSTM) (Hochreiter and Schmidhu-
ber, 1997; Graves et al., 2013) unit to encode each
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Figure 2: Two decoder model, upper decoder for NER and
the lower decoder for negation, where common encoder

word independently. For each word we subse-

<_
quently have sequences @ and hg, where [ rep-

resents the length of the word. We concatenate the
last time-step of each of these sequences to obtain

a vector representation, hY = [hl(t tht)]. The
final input to the word level encoder is a combi-
nation of a pre-trained word embedding (Penning-
ton et al., 2014) and the character representation,
my = [hgt) ||lembyorq(z¢)]. For the word level en-
coder we make use of another BiLSTM.

2.1.2 Tagger

The tagger consists of a uni-directional LSTM
which takes as input the latent word representa-
tion given by the word level encoder, as well as
the label embedding of the previously generated
tag. During training we feed ground truth labels
by way of teacher forcing (Williams and Zipser,
1989), while at test time we use the generated se-
quence directly. This system is trained using a
standard cross-entropy objective.

2.2 Two Decoder Model

To facilitate the MTL setting, we begin with a two
decoder model consisting of decoders which use
the shared encoder representation to jointly predict
entities and negation attribute (Figure 2). This is a
standard architecture used for MTL which consists
of different LSTM’s for decoders followed by cor-
responding softmaxes. This model mitigates the
issues associated with rule-based models that rely
solely on surface text, and thus are limited when
attempting to capture complex syntactic construc-
tions. With shared contextual encoder representa-
tion consisting of character and word embedding
based models, the proposed architecture provides
an effective solution for knowledge transfer across
tasks, thus consolidating the ability to perform
well on unseen text. However, this proposed ar-
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Figure 3: Shared decoder model

chitecture is not scalable, the number of decoders
scales linearly with the number of attributes. An-
other problem we realized with this architecture
is the performance degradation when working in
an extremely low resource setting, where more
parameters prevent the model from generalizing
well.

2.3 Shared Decoder Model

To overcome the limitations of the two decoder
model we propose a shared decoder model (Figure
3). We share the encoder and decoder of the two
tasks and the common output from the decoder is
fed into two different softmax for entity and nega-
tions.
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Figure 4: Conditional softmax decoder model

2.3.1 Conditional Softmax Decoder Model

While the single decoder model is more scalable,
we found that this model did not perform as well
for negation as the two decoder model. It can
be attributed to the fact that negation occurs less
frequently than the entities, thus the decoder pri-
marily focuses on making entity extraction pre-
dictions. To mitigate this issue and provide more
context to negation attributes, we add an additional
input, which is the softmax output from entity ex-
traction (Figure 4). Thus, the model learns more
about the input as well as the label distribution
from entity extraction prediction. As an exam-
ple, we use negation only for PROBLEM entity in the



2010 i2b2/VA | Proprietary Med. Cond.

Model P R Fy ‘ P R Fy
LSTM:CRF (R. Chalapathy and Piccardi, 2016)  0.844 0.834 0.839 | 0.820 0.840 0.830
. Independent NER (Lample et al., 2016) 0.857 0.841 0.848 | 0.880 0.848 0.863
f-g Two Decoder (this paper) 0.849 0.855 0.851 | 0.876 0.861 0.868
Shared Decoder (this paper) 0.852 0.821 0.834 | 0.864 0.841 0.85
Conditional (this paper) 0.854 0.858 0.855 | 0.878 0.872 0.874
Negex (Chapman et al., 2001) 0.896 0.799 0.845 | 0403 0.932 0.563
(ZJ ABoW Kernel (Shivade et al., 2015) 0.899  0.900 0.900 - - -
5 Independent Negation (Lample et al., 2016) 0.810 0.850 0.820 | 0.840  0.820 0.83
9 Two Decoder (this paper) 0.894 0908 0.899 | 0931 0.865 0.897
Zz. Shared Decoder (this paper) 0.870 0902 0.882 | 0921 0.850 0.878
Conditional (this paper) 0919 0.891 0905 | 0928 0.874 0.899

Table 1: Test set performance during multi-task training. The table displays precision, recall and macro averaged F1. The

baseline is the current state-of-the art optimized architecture.

i2b2 dataset. Providing the entity prediction dis-
tribution helps the negation model to make better
predictions. The negation model learns that if the
prediction probability is not inclined towards PROB-
LEM, then it should not predict negation irrespective
of the word representation.

3£ SoftOut;” ™ = Softmax™™ (W0, + b°)
G179 = Softmax™ ¢ (WN°Eo,

SoftOut{™"] 4 b*)

where, SoftOut”™

entity at time step ¢.

is the softmax output of the

3 Experiments

3.1 Dataset

We evaluated our model on two datasets. First is
the 2010 i12b2/VA challenge dataset for “test, treat-
ment, problem” (TTP) entity extraction and asser-
tion detection (i2b2 dataset). Unfortunately, only
part of this dataset was made public after the chal-
lenge, therefore we cannot directly compare with
NegEx and ABoW results. We followed the orig-
inal data split from R. Chalapathy and Piccardi
(2016) of 170 notes for training and 256 for test-
ing. The second dataset is proprietary and consists
of 4,200 de-identified, annotated clinical notes
with medical conditions (proprietary dataset).

3.2 Model settings

Word, character and tag embeddings are 100, 25,
and 50 dimensions, respectively. For word embed-
dings we use GloVe (Peng et al., 2018) and fine
tune during training, while character and tag em-
beddings are randomly initialized. Character and
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Figure 5: Conditional softmax decoder is more robust in ex-
treme low resource setting than its two decoder counterpart.

word encoders have 50, and 100 hidden units, re-
spectively, while the tagger LSTM has a hidden
size of 50. Dropout is used after every RNN, as
well as for word embedding input. We use Adam
(Kingma and Ba, 2014) as an optimizer. Hyper-
parameters are tuned using Bayesian Optimization
(Snoek et al., 2012).

4 Results

Since there is no prior work which has solved
the two tasks as a joint model, we report the
best results for both the individual tasks (Table
1). We observe that the baseline model for NER
(Indepedent NER) presented in the methodology
section outperforms the best model (R. Chalapa-
thy and Piccardi, 2016) on the i2b2 challenge. The
Two decoder and the conditional softmax decoder
(Conditional decoder) model achieve even better
results for NER than our baseline model, where
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the conditional decoder model achieved new state-
of-art for 2010 i2b2/VA challenge task. Shared
decoder underperformed the other two models.
That can be attributed to a single decoder which
primarily focuses on making entity extraction pre-
dictions which are more frequent than negations.
The conditional decoder outperformed the base-
line model on the negation prediction task and
achieved an improvement of about 8% in F; score
compared to the baseline model, which suggests
that modeling named entity and negation tasks to-
gether helps in achieving better results than each
of the tasks done independently.

We compare our models for negation detec-
tion against NegEx, and ABoW which has best
results for the negation detection task on i2b2
dataset. Conditional decoder model outperforms
both NegEx and ABoW (Table 1). Low perfor-
mance of NegEx and ABoW is mainly attributed
to the fact that they use ontology lookup to index
findings and negation regular expression search
within a fixed scope. A similar trend was observed
in the medication condition dataset. The impor-
tant thing to note is the low F; score for NegEx.
This can primarily be attributed to abbreviations
and misspellings in clinical notes which can not
be handled well by rule-based systems.

To understand the advantage of conditional de-
coder, we evaluated our model in extreme low data
settings where we used a sample of our training
data. We observed that the conditional decoder
outperforms the two decoder model and achieved
an improvement of 6% in Fy score in those settings
(Figure 5). As we increase the data size, their per-
formance gap narrows in demonstrating that the
conditional decoder is robust in low resource set-
tings.

5 Conclusion

In this paper we have shown that named entity
and negation assertion can be modeled in a multi-
task setting. Joint learning with shared parame-
ters provides better contextual representation and
helps in alleviating problems associated with using
neural networks for negation detection, thereby
achieving better results than the rule-based sys-
tems. Our proposed conditional softmax decoder
achieves best results across both tasks and is ro-
bust to work well in extreme low data settings. For
future work, we plan to investigate the model on
other related tasks such as relation extraction, nor-
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malization as well as the use of advanced condi-
tional models.
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