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Abstract

We present methods for multi-task learning
that take advantage of natural groupings of re-
lated tasks. Task groups may be defined along
known properties of the tasks, such as task do-
main or language. Such task groups represent
supervised information at the inter-task level
and can be encoded into the model. We inves-
tigate two variants of neural network architec-
tures that accomplish this, learning different
feature spaces at the levels of individual tasks,
task groups, as well as the universe of all tasks:
(1) parallel architectures encode each input si-
multaneously into feature spaces at different
levels; (2) serial architectures encode each in-
put successively into feature spaces at different
levels in the task hierarchy. We demonstrate
the methods on natural language understand-
ing (NLU) tasks, where a grouping of tasks
into different task domains leads to improved
performance on ATIS, Snips, and a large in-
house dataset.

1 Introduction

In multi-task learning (Caruana, 1993), multiple
related tasks are learned together. Rather than
learning one task at a time, multi-task learning
uses information sharing between multiple tasks.
This technique has been shown to be effective in
multiple different areas, e.g., vision (Zhang et al.,
2014), medicine (Bickel et al., 2008), and natural
language processing (Collobert and Weston, 2008;
Luong et al., 2016; Fan et al., 2017).

The selection of tasks to be trained together in
multi-task learning can be seen as a form of super-
vision: The modeler picks tasks that are known a
priori to share some commonalities and decides to
train them together. In this paper, we consider the
case when information about the relationships of

∗This work was done while Shiva Pentyala was interning
at Amazon Alexa.

these tasks is available as well, in the form of nat-
ural groups of these tasks. Such task groups can
be available in various multi-task learning scenar-
ios: In multi-language modeling, when learning to
parse or translate multiple languages jointly, infor-
mation on language families would be available;
in multimodal modeling, e.g., when learning text
tasks and image tasks jointly, clustering the tasks
into these two groups would be natural. In multi-
domain modeling, which is the focus of this pa-
per, different tasks naturally group into different
domains.

We hypothesize that adding such inter-task su-
pervision can encourage a model to generalize
along the desired task dimensions. We introduce
neural network architectures that can encode task
groups, in two variants:

• Parallel network architectures encode each
input simultaneously into feature spaces at
different levels;

• serial network architectures encode each in-
put successively into feature spaces at differ-
ent levels in the task hierarchy.

These neural network architectures are general
and can be applied to any multi-task learning prob-
lem in which the tasks can be grouped into differ-
ent task groups.

Application Example. To illustrate our method,
we now introduce the specific scenario that we use
to evaluate our method empirically: multi-domain
natural language understanding (NLU) for virtual
assistants. Such assistants, e.g., Alexa, Cortana,
or Google Assistant, perform a range of tasks in
different domains (or, categories), such as Music,
Traffic, Calendar, etc. With the advent of frame-
works like Alexa Skills Kit, Cortana Skills Kit and
Actions on Google, third-party developers can ex-
tend the capabilities of these virtual assistants by
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developing new tasks, which we call skills, e.g.,
Uber, Lyft, Fitbit, in any given domain. Each skill
is defined by a set of intents that represents dif-
ferent functions to handle a user’s request, e.g.,
play artist or play station for a skill in
the Music domain. Each intent can be instanti-
ated with particular slots, e.g., artist or song.
An utterance like “play madonna” may be parsed
into intent and slots, resulting in a structure like
PlayArtist(artist="madonna"). Skill
developers provide their own labeled sample ut-
terances in a grammar-like format (Kumar et al.,
2017), individually choosing a label space that is
suitable for their problem.1 We learn intent classi-
fication (IC) and slot filling (SF) models for these
skills, in order to recognize user utterances spoken
to these skills that are similar but not necessarily
identical to the sample utterances given by their
skill developers.

In this paper, we apply multi-task learning to
this problem, learning the models for all skills
jointly, as the individual training data for any given
skill may be small and utterances across multiple
skills have similar characteristics, e.g., they are of-
ten short commands in spoken language. In addi-
tion, we wish to add information on task groups
(here: skill domains) into these models, as utter-
ances in different skills of the same domain may
be especially similar. For example, although the
Uber and Lyft skills are built by independent de-
velopers, end users may speak similar utterances
to them. Users may say “get me a ride” to Uber
and “I’m requesting a ride” to Lyft.

Contributions. The main contributions of this
paper are as follows:

• We introduce unified models for multi-task
learning that learn three sets of features: task,
task group, and task universe features;

• we introduce two architecture variants of
such multi-task models: parallel and serial
architectures;

• we evaluate the proposed models to perform
multi-domain joint learning of slot filling and
intent classification on both public datasets
and a real-world dataset from the Alexa vir-
tual assistant;

1They may choose to pick from a set of predefined labels
with prepopulated content, e.g., cities or first names.

• we demonstrate experimentally the superior-
ity of introducing group-level features and
learning features in both parallel and serial
ways.

2 Proposed Architectures

The goal of multi-task learning (MTL) is to uti-
lize shared information across related tasks. The
features learned in one task could be transferred
to reinforce the feature learning of other tasks,
thereby boosting the performance of all tasks via
mutual feedback within a unified MTL architec-
ture. We consider the problem of multi-domain
natural language understanding (NLU) for virtual
assistants. Recent progress has been made to build
NLU models to identify and extract structured in-
formation from user’s request by jointly learn-
ing intent classification (IC) and slot filling (SF)
(Tur et al., 2010). However, in practice, a com-
mon issue when building NLU models for every
skill is that the amount of annotated training data
varies across skills and is small for many individ-
ual skills. Motivated by the idea of learning mul-
tiple tasks jointly, the paucity of data can be re-
solved by transferring knowledge between differ-
ent tasks that can reinforce one another.

In what follows, we describe four end-to-end
MTL architectures (Sections 2.1 to 2.4). These
architectures are encoder-decoder architectures
where the encoder extracts three different sets of
features: task, task group, and task universe fea-
tures, and the decoder produces desired outputs
based on feature representations. In particular,
the first one (Figure 1) is a parallel MTL archi-
tecture where task, task group, and task universe
features are encoded in parallel and then concate-
nated to produce a composite representation. The
next three architectures (Figure 2) are serial ar-
chitectures in different variants: In the first serial
MTL architecture, group and universe features are
learned first and are then used as inputs to learn
task-specific features. The next serial architecture
is similar but introduces highway connections that
feed representations from earlier stages in the se-
ries directly into later stages. In the last archi-
tecture, the order of serially learned features is
changed, so that task-specific features are encoded
first.

In Section 2.5, we introduce an encoder-
decoder architecture to perform slot filling and in-
tent classification jointly in a multi-domain sce-
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nario for virtual assistants. Although we con-
duct experiments on multi-domain NLU systems
of virtual assistants, the architectures can easily
be applied to other tasks. Specifically, the en-
coder/decoder could be instantiated with any com-
ponents or architectures, i.e., Bi-LSTM (Hochre-
iter and Schmidhuber, 1997) for the encoder, and
classification or sequential labeling for the de-
coder.

2.1 Parallel MTL Architecture
The first architecture, shown in Figure 1, is de-
signed to learn the three sets of features at the same
stage; therefore we call it a parallel MTL architec-
ture, or PARALLEL[UNIV+GROUP+TASK]. This archi-
tecture uses three types of encoders: 1) A universe
encoder to extract the common features across all
tasks; 2) task-specific encoders to extract task-
specific features; and 3) group-specific encoders
to extract features within the same group. Fi-
nally, these three feature representations are con-
catenated and passed through the task-specific de-
coders to produce the output.

Assume we are given a MTL problem with
m groups of tasks. Each task is associ-
ated with a dataset of training examples D =
{(xi

1,y
i
1), ..., (x

i
mi
,yi

mi
)}mi=1, where xi

k and yi
k

denote input data and corresponding labels for task
k in group i. The parameters of the parallel MTL
model (and also for the other MTL models) are
trained to minimize the weighted sum of individ-
ual task-specific losses that can be computed as:

Ltasks =
m∑
i=1

mi∑
j=1

αi
j ∗ Lij , (1)

where αi
j is a static weight for task j in group i,

which could be proportional to the size of train-
ing data of the task. The loss function Lij is de-
fined based on the tasks performed by the decoder,
which will be described in Section 2.5.

To eliminate redundancy in the features learned
by three different types of encoders, we add ad-
versarial loss and orthogonality constraints cost
(Bousmalis et al., 2016; Liu et al., 2017). Adding
adversarial loss aims to prevent task-specific fea-
tures from creeping into the shared space. We
apply adversarial training to our shared encoders,
i.e., the universe and group encoders. To encour-
age task, group, and universe encoders to learn
features from different aspects of the inputs, we
add orthogonality constraints between task and

Figure 1: The PARALLEL[UNIV+GROUP+TASK] archi-
tecture, which learns universe, group, and task features.
Three tasks a, b, and c are illustrated in the figure where
a, b ∈ group1 and c ∈ group2.

universe/group representations of each domain.
The loss function defined in Equation 1 becomes:

Lall = Ltasks + λ ∗ Ladv + γ ∗ Lortho (2)

whereLadv and Lortho denote the loss function for
adversarial training and orthogonality constraints
respectively, and λ and γ are hyperparameters.

2.2 Serial MTL Architecture
The second MTL architecture, called SERIAL, has
the same set of encoders and decoders as the par-
allel MTL architecture. The differences are 1) the
order of learning features and 2) the input for in-
dividual decoders. In this serial MTL architecture,
three sets of features are learned in a sequential
way in two stages. As shown in Figure 2a, group
encoders and a universe encoder encode group-
level and fully shared universe-level features, re-
spectively, based on input data. Then, task en-
coders use that concatenated feature representa-
tion to learn task-specific features. Finally, in this
serial architecture, the individual task decoders
use their corresponding private encoder outputs
only to perform tasks. This contrasts with the par-
allel MTL architecture, which uses combinations
of three feature representations as input to their re-
spective task decoders.

2.3 Serial MTL Architecture with Highway
Connections

Decoders in the SERIAL architecture, introduced
in the previous section, do not have direct ac-
cess to group and universe feature representations.
However, directly utilizing these shared features
could be beneficial for some tasks. Therefore, we
add highway connections to incorporate universe
encoder output and corresponding group encoder
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(a) SERIAL

(b) SERIAL+HIGHWAY

(c) SERIAL+HIGHWAY+SWAP

Figure 2: Three serial MTL architectures. In each of
these architectures, individual decoders utilize all three
sets of features (task, universe, and group features) to
perform a task. Three tasks a, b, and c are illustrated in
the figures where a, b ∈ group1 and c ∈ group2.

outputs as inputs to the individual decoders in ad-
dition to task-specific encoder output; we call this
model SERIAL+HIGHWAY.

As shown in Figure 2b, input to the task-specific
encoders are the same as those in the serial MTL
architecture, i.e., the concatenation of the group
and universe features. The input to each task-
specific decoder, however, is now the concatena-
tion of the features from the group encoder, the
universe encoder, and the task-specific encoder.

2.4 Serial MTL Architecture with Highway
Connections and Feature Swapping

In both serial MTL architectures introduced in the
previous two sections, the input to the task en-
coders is the output of the more general group and
universe encoders. That output potentially under-
represents some task-specific aspects of the input.
Therefore, we introduce SERIAL+HIGHWAY+SWAP;
a variant of SERIAL+HIGHWAY, in which the two
stages of universe/group features and task-specific
features are swapped. As shown in Figure 2c, the
task-specific representations are now learned in
the first stage, and group and universe feature rep-
resentations based on the task features are learned
in the second stage. In this model, the task encoder

directly takes input data and learns task-specific
features. Then, the universe encoder and group en-
coders take the task-specific representations as in-
put and generate fully shared universe and group-
level representations, respectively. Finally, task-
specific decoders use the concatenation of all three
features – universe, group and task features, to per-
form the final tasks.

2.5 An Example of Encoder-Decoder
Architecture for a Single Task

All four MTL architectures introduced in the pre-
vious sections are general such that they could be
applied to many applications. In this section, we
use the task of joint slot filling (SF) and intent clas-
sification (IC) for natural language understanding
(NLU) systems for virtual assistants as an exam-
ple. We design an encoder-decoder architecture to
perform SF and IC as a joint task, on top of which
the four MTL architectures are built.

Given an input sequence x = (x1, . . . , xT ),
the goal is to jointly learn an equal-length tag se-
quence of slots yS = (y1, . . . , yT ) and the overall
intent label yI . By using a joint model, rather than
two separate models, for SF and IC, we exploit the
correlation of the two output spaces. For exam-
ple, if the intent of a sentence is book ride it is
likely to contain the slot types from address
and destination address, and vice versa.
The JOINT-SF-IC model architecture is shown in
Figure 3. It is a simplified version compared to
the SLOTGATED model (Goo et al., 2018), which
showed state-of-the-art results in jointly modeling
SF and IC. Our architecture uses neither slot/intent
attention nor a slot gate.

To address the issues of small amounts of train-
ing data and out-of-vocabulary (OOV) words, we
use character embeddings, learned during training,
as well as pre-trained word embeddings (Lam-
ple et al., 2016). These word and character rep-
resentations are passed as input to the encoder,
which is a bidirectional long short-term memory
(Bi-LSTM) (Hochreiter and Schmidhuber, 1997)
layer that computes forward hidden state

−→
ht and

backward hidden state
←−
ht per time step t in the in-

put sequence. We then concatenate
−→
ht and

←−
ht to

get final hidden state ht = [
−→
ht;
←−
ht] at time step t.

Slot Filling (SF): For a given sentence x =
(x1, . . . , xT ) with T words, we use their respec-
tive hidden states h = (h1, . . . ,hT ) from the en-
coder (Bi-LSTM layer) to model tagging decisions
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Figure 3: JOINT-SF-IC model.

yS = (y1, . . . , yT ) jointly using a conditional ran-
dom field (CRF) layer (Lample et al., 2016; Laf-
ferty et al., 2001):

yS = argmax
y∈YS

fS(h,x,y), (3)

where YS is the set of all possible slot sequences,
and fS is the CRF decoding function.
Intent Classification (IC): Based on the hidden
states from the encoder (Bi-LSTM layer), we use
the last forward hidden state

−→
hT and last backward

hidden state
←−
h1 to compute the moment hI =

[
−→
hT ;
←−
h1] which can be regarded as the representa-

tion of the entire input sentence. Lastly, the intent
yI of the input sentence is predicted by feeding
hI into a fully-connected layer with softmax acti-
vation function to generate the prediction for each
intent:

yI = softmax(W I
hy · hI + b), (4)

where yI is the prediction label, W I
hy is a weight

matrix and b is a bias term.
Joint Optimization: As our decoder models a
joint task of SF and IC, we define the loss L as
a weighted sum of individual losses which can be
plugged into Lij in Equation 1:

Ltask = wSF ∗ LSF + wIC ∗ LIC, (5)

where LSF is the cross-entropy loss based on the
probability of the correct tag sequence (Lample
et al., 2016), LIC is the cross-entropy loss based
on the predicted and true intent distributions (Liu
et al., 2017) and wSF, wIC are hyperparameters to
adjust the weights of the two loss components.

3 Experimental Setup

3.1 Dataset
We evaluate our proposed models for multi-
domain joint slot filling and intent classification
for spoken language understanding systems. We
use the following benchmark dataset and large-
scale Alexa dataset for evaluation, and we use
classic intent accuracy and slot F1 as in Goo et al.
(2018) as evaluation metrics.

Property ATIS Snips
Train set size 4,478 13,084
Dev set size 500 700
Test set size 893 700
#Slots 120 72
#Intents 21 7

Table 1: Statistics of the benchmark dataset.

Benchmark Dataset: We consider two widely
used datasets ATIS (Tur et al., 2010) and Snips
(Goo et al., 2018). The statistics of these datasets
are shown in Table 1. For each dataset, we use the
same train/dev/test set as Goo et al. (2018). ATIS
is a single-domain (Airline Travel) dataset while
Snips is a more complex multi-domain dataset due
to the intent diversity and large vocabulary.

For initial experiments, we use ATIS and Snips
as two tasks. For multi-domain experiments, we
split Snips into three domains – Music, Location,
and Creative based on its intents and treat each one
as an individual task. Thus for this second set of
experiments, we have four tasks (ATIS and Snips
splits). Table 2 shows the new datasets obtained
by splitting Snips. This new dataset allows us to
introduce task groups. We define ATIS and Snips-
location as one task group, and Snips-music and
Snips-creative as another.
Alexa Dataset: We use live utterances spoken to
90 Alexa skills with the highest traffic. These
are categorized into 10 domains, based on assign-
ments by the developers of the individual skills.
Each skill is a task in the MTL setting, and each

Dataset Intent

Snips-creative
search creative work
rate book

Snips-music
play music
add to playlist

Snips-location
get weather
book restaurant
search screening event

Table 2: Snips after splitting based on intent.
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Domain/Group Skill Count
Train Dev

Games, Trivia & Accessories 37 37
Smart Home 12 4
Music & Audio 8 8
Lifestyle 7 7
Education & Reference 7 7
Novelty & Humor 6 6
Health & Fitness 5 5
Food & Drink 3 3
Movies & TV 3 3
News 2 0
Total 90 80

Table 3: Statistics of the Alexa dataset.

domain acts as a task group. Due to the lim-
ited annotated datasets for skills, we do not have
validation sets for these 90 skills. Instead, we
use another 80 popular skills that fall into the
same domain groups as the 90 skills as the val-
idation set to tune model parameters. Table 3
shows the statistics of the Alexa dataset based
on domains. For training and validation sets, we
keep approximately the same number of skills per
group to make sure that hyperparameters of adver-
sarial training are unbiased. We use the valida-
tion datasets to choose the hyperparameters for the
baselines as well as our proposed models.

3.2 Baselines
We compare our proposed model with the follow-
ing three competitive architectures for single-task
joint slot filling (SF) and intent classification (IC),
which have been widely used in prior literature:

• JOINTSEQUENCE: Hakkani-Tür et al. (2016)
proposed a Bi-LSTM joint model for slot fill-
ing, intent classification, and domain classifi-
cation.

• ATTENTIONBASED: Liu and Lane (2016)
showed that incorporating an attention mech-
anism into a Bi-LSTM joint model can re-
duce errors on intent detection and slot fill-
ing.

• SLOTGATED: Goo et al. (2018) added a
slot-gated mechanism into the traditional
attention-based joint architecture, aiming to
explicitly model the relationship between in-
tent and slots, rather than implicitly modeling
it with a joint loss.

We also compare our proposed model with two
closely related multi-task learning (MTL) archi-

tectures that can be treated as simplified versions
of our parallel MTL architecture:

• PARALLEL[UNIV]: This model, proposed by
Liu et al. (2017), uses a universe encoder that
is shared across all tasks, and decoders are
task-specific.

• PARALLEL[UNIV+TASK]: This model, also pro-
posed by Liu et al. (2017), uses task-specific
encoders in addition to the shared encoder.
To ensure non-redundancy in features learned
across shared and task-specific encoders,
adversarial training and orthogonality con-
straints are incorporated.

3.3 Training Setup

All our proposed models are trained with back-
propagation, and gradient-based optimization is
performed using Adam (Kingma and Ba, 2015).
In all experiments, we set the character LSTM hid-
den size to 64 and word embedding LSTM hidden
size to 128. We use 300-dimension GloVe vec-
tors (Pennington et al., 2014) for the benchmark
datasets and in-house embeddings for the Alexa
dataset, which are trained with Wikipedia data and
live utterances spoken to Alexa. Character embed-
ding dimensions and dropout rate are set to 100
and 0.5 respectively. Minimax optimization in ad-
versarial training was implemented via the use of
a gradient reversal layer (Ganin and Lempitsky,
2015; Liu et al., 2017). The models are imple-
mented with the TensorFlow library (Abadi et al.,
2016).

For benchmark data, the models are trained us-
ing an early-stop strategy with maximum epoch
set to 50 and patience (i.e., number of epochs with
no improvement on the dev set for both SF and IC)
to 6. In addition, the benchmark dataset has varied
size vocabularies across its datasets. To give equal
importance to each of them, αj

i (see Equation 1)
is proportional to 1/n, where n is the training set
size of task j in group i. We are able to train on
CPUs, due to the low values of n.

For Alexa data, optimal hyperparameters are
determined on the 80 development skills and ap-
plied to the training and evaluation of the 90
test skills. αj

i is here set to 1 as all skills have
10, 000 training utterances sampled from the re-
spective developer-defined skill grammars (Kumar
et al., 2017). Here, training was done using GPU-
enabled EC2 instances (p2.8xlarge).
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Model
ATIS Snips

Intent Slot Intent Slot
Acc. F1 Acc. F1

JOINTSEQUENCE 92.6 94.3 96.9 87.3
ATTENTIONBASED 91.1 94.2 96.7 87.9
SLOTGATED 93.6 94.8 97.0 88.8
JOINT-SF-IC 96.1 95.4 98.0 94.8
PARALLEL[UNIV] 95.9 95.1 98.1 94.3
PARALLEL[UNIV+TASK] 96.6 95.8 97.6 94.5

Table 4: Results on benchmark datasets (ATIS and
original Snips).

Model
ATIS Snips-location

Intent Slot Intent Slot
Acc. F1 Acc. F1

JOINT-SF-IC 96.1 95.4 99.7 96.3
PARALLEL[UNIV] 96.4 95.4 99.7 95.8
PARALLEL[UNIV+TASK] 96.2 95.5 99.7 96.0
PARALLEL[UNIV+GROUP+TASK] 96.9 95.4 99.7 96.5
SERIAL 97.2 95.8 100.0 96.5
SERIAL+HIGHWAY 96.9 95.7 100.0 97.2
SERIAL+HIGHWAY+SWAP 97.5 95.6 99.7 96.0

Model
Snips-music Snips-creative

Intent Slot Intent Slot
Acc. F1 Acc. F1

JOINT-SF-IC 100.0 93.1 100.0 96.6
PARALLEL[UNIV] 100.0 92.1 100.0 95.8
PARALLEL[UNIV+TASK] 100.0 93.4 100.0 97.2
PARALLEL[UNIV+GROUP+TASK] 99.5 94.4 100.0 97.3
SERIAL 100.0 93.8 100.0 97.2
SERIAL+HIGHWAY 99.5 94.8 100.0 97.2
SERIAL+HIGHWAY+SWAP 100.0 93.9 100.0 97.8

Table 5: Results on benchmark dataset (ATIS and sub-
sets of Snips).

Our detailed training algorithm is similar to the
one used by Collobert and Weston (2008) and Liu
et al. (2016, 2017), where training is achieved in a
stochastic manner by looping over the tasks. For
example, an epoch involves these four steps: 1) se-
lect a random skill; 2) select a random batch from
the list of available batches for this skill; 3) up-
date the model parameters by taking a gradient
step w.r.t this batch; 4) update the list of avail-
able batches for this skill by removing the current
batch.

4 Experimental Results

4.1 Benchmark data
Table 4 shows the results on ATIS and the original
version of the Snips dataset (as shown in Table 1).
In the first four lines, ATIS and Snips are trained
separately. In the last two lines (PARALLEL), they
are treated as two tasks in the MTL setup. There
are no task groups in this particular experiment,
as each utterance belongs to either ATIS or Snips,
and all utterances belong to the task universe. The
JOINT-SF-IC architecture with CRF layer performs
better than all the three baseline models in terms
of all evaluation metrics on both datasets, even af-

Model
Intent Acc. Slot F1

Mean Median Mean Median
JOINT-SF-IC 93.36 95.90 79.97 85.23
PARALLEL[UNIV] 93.44 95.50 80.76 86.18
PARALLEL[UNIV+TASK] 93.78 96.35 80.49 85.81
PARALLEL[UNIV+GROUP+TASK] 93.87 96.31 80.84 86.21
SERIAL 93.83 96.24 80.84 86.14
SERIAL+HIGHWAY 93.81 96.28 80.73 85.71
SERIAL+HIGHWAY+SWAP 94.02 96.42 80.80 86.44

Table 6: Results on the Alexa dataset. Best results on
mean intent accuracy and slot F1 values, and results
that are not statistically different from the best model
are marked in bold.

ter removing the slot-gate (Goo et al., 2018) and
attention (Liu and Lane, 2016). Learning uni-
verse features across both the datasets in addition
to the task features help ATIS while performance
on Snips degrades. This might be due to the fact
that Snips is a multi-domain dataset, which in turn
motivates us to split the Snips dataset (as shown
in Table 2), so that the tasks in each domain (i.e.,
task group) may share features separately.

Table 5 shows results on ATIS and our split
version of Snips. We now have four tasks:
ATIS, Snips-location, Snips-music, and Snips-
creative. JOINT-SF-IC is our baseline that treats
these four tasks independently. All other mod-
els process the four tasks together in the MTL
setup. For the models introduced in this pa-
per, we define two task groups: ATIS and Snips-
location as one group, and Snips-music and Snips-
creative as another. Our models, which use these
groups, generally outperform the other MTL mod-
els (PARALLEL[UNIV] and PARALLEL[UNIV+TASK]);
especially the serial MTL architectures perform
well.

4.2 Alexa data
Table 6 shows the results of the single-domain
model and the MTL models on the Alexa dataset.
The trend is clearly visible in these results com-
pared to the results on the benchmark data.
As Alexa data has more domains, there might
not be many features that are common across
all the domains. Capturing those features that
are only common across a group became possi-
ble by incorporating task group encoders. SE-

RIAL+HIGHWAY+SWAP yields the best mean intent
accuracy. PARALLEL+UNIV+GROUP+TASK and SE-

RIAL+HIGHWAY show statistically indistinguishable
results. For slot filling, all MTL architectures
achieve competitive results on mean Slot F1.
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Model Education Food Games Health Lifestyle Movie Music News Novelty Smart Home
JOINT-SF-IC 95.89 90.60 96.29 92.80 93.84 67.50 93.51 90.05 95.00 89.58

PARALLEL[UNIV] 95.56 89.47 95.96 90.74 94.49 74.40 93.29 90.90 94.58 90.63
PARALLEL[UNIV+TASK] 95.99 91.10 96.50 93.60 94.46 68.40 94.45 88.60 94.93 90.66
PARALLEL[UNIV+GROUP+TASK] 96.17 91.23 96.58 93.92 94.33 68.10 94.56 87.15 95.00 91.06

SERIAL 96.11 90.77 96.44 94.04 94.63 69.07 94.59 87.30 94.92 90.89
SERIAL+HIGHWAY 96.04 91.70 96.45 94.10 92.71 68.67 94.86 87.90 95.03 91.41
SERIAL+HIGHWAY+SWAP 96.20 91.80 96.49 94.16 94.37 68.37 94.94 88.35 95.08 91.64

Table 7: Intent accuracy on different groups of the Alexa dataset.

Model Education Food Games Health Lifestyle Movie Music News Novelty Smart Home
JOINT-SF-IC 83.83 71.29 85.29 74.18 73.68 70.45 78.37 71.15 74.12 76.07

PARALLEL[UNIV] 84.75 76.54 86.43 74.50 71.85 72.32 78.46 70.53 75.22 76.48
PARALLEL[UNIV+TASK] 84.59 73.22 85.80 69.60 76.76 75.43 78.38 70.67 74.60 76.97
PARALLEL[UNIV+GROUP+TASK] 84.41 76.43 85.68 70.81 78.24 76.74 78.63 72.33 74.52 77.22

SERIAL 84.74 71.79 85.42 73.02 72.17 73.56 79.30 71.90 74.37 77.56
SERIAL+HIGHWAY 85.20 74.13 85.78 71.58 73.43 74.29 80.12 71.40 74.23 77.75
SERIAL+HIGHWAY+SWAP 84.93 74.87 86.35 72.38 72.02 72.09 78.86 72.12 74.49 77.69

Table 8: Slot F1 on different groups of the Alexa dataset.

Overall, on both benchmark data and Alexa
data, our architectures with group encoders show
better results than others. Specifically, the serial
architecture with highway connections achieves
the best mean Slot F1 of 94.8 and 97.2 on Snips-
music and Snips-location respectively and median
Slot F1 of 81.99 on the Alexa dataset. Swap-
ping its feature hierarchy enhances its intent ac-
curacy to 97.5 on ATIS. It also achieves the
best/competitive mean and median values on both
SF and IC on the Alexa dataset. This supports our
argument that when we try to learn common fea-
tures across all the domains (Liu et al., 2017), we
might miss crucial features that are only present
across a group. Capturing those task group fea-
tures boosts the performance of our unified model
on SF and IC. In addition, when we attempt to
learn three sets of features – task, task universe,
and task group features – the serial architecture
for feature learning helps. Specifically, when we
have datasets from many domains, learning task
features in the first stage and common features,
i.e., task universe and task group features, in the
second stage yields the best results. This differ-
ence is more clearly visible in the results of the
large-scale Alexa data than that of the small-scale
benchmark dataset.

5 Result Analysis

To further investigate the performance of differ-
ent architectures, we present the intent accuracy
and slot F1 values on different groups of Alexa

utterances in Tables 7 and 8. For intent classifica-
tion, SERIAL+HIGHWAY+SWAP achieves the best re-
sults on six domains, and PARALLEL[UNIV] achieves
the best results on the movie and news domains.
Such a finding helps explain the reason why
PARALLEL[UNIV] is significantly indistinguishable
from SERIAL+HIGHWAY+SWAP on the Alexa dataset,
which is shown in Table 6. PARALLEL[UNIV] out-
performs MTL with group encoders when there
is more information shared across domains. Ex-
amples of similar training utterances in different
domains are “go back eight hour” and “rewind
for eighty five hour” in a News skill; “to rewind
the Netflix” in a Smart Home skill; and “rewind
nine minutes” in a Music skill. The diverse utter-
ance context in different domains could be learned
through the universe encoder, which helps to im-
prove the intent accuracy for these skills.

For the slot filling, each domain favors one
of the four MTL architectures including PAR-

ALLEL[UNIV], PARALLEL[UNIV+GROUP+TASK], SE-

RIAL+HIGHWAY, and SERIAL+HIGHWAY+SWAP. Such
a finding is consistent with the statistically indis-
tinguishable performance between different MTL
architectures shown in Table 6. Tables 9 and 10
show a few utterances from different datasets in
the Smart Home category that are correctly pre-
dicted after learning task group features. General
words like sixty, eight, alarm can have different
slot types across different datasets. Learning fea-
tures of the Smart Home category helps overcome
such conflicts. However, a word in different tasks
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in the same domain can still have different slot
types. For example, the first two utterances in Ta-
ble 11, which are picked from the Smart Home do-
main, have different slot types Name and Channel
for the word one. In such cases, there is no guar-
antee that learning group features can overcome
the conflicts. This might be due to the fact that
the groups are predefined and they do not always
represent the real task structure. To tackle this is-
sue, learning task structures with features jointly
(Zhang et al., 2017) rather than relying on pre-
defined task groups, would be a future direction.
In our experimental settings, all the universe, task,
and task group encoders are instantiated with Bi-
LSTM. An interesting area for future experimen-
tation is to streamline the encoders, e.g., adding
additional bits to the inputs to the task encoder to
indicate the task and group information, which is
similar to the idea of using a special token as a rep-
resentation of the language in a multilingual ma-
chine translation system (Johnson et al., 2017).

Utterance
turn/Other to/Other channel/Other sixty/Name eight/Name
go/Other to/Other channel/Other sixty/VolumeLevel seven/Name
turn/Other the/article alarm/device away/device

Table 9: Predictions (incorrect predictions are marked
in red) from Smart Home domain by the PARAL-
LEL[UNIV+TASK] architecture.

Utterance
turn/Other to/Other channel/Other sixty/Channel eight/Channel
go/Other to/Other channel/Other sixty/Channel seven/Channel
turn/Other the/article alarm/security system away/type

Table 10: Predictions (correct predictions are marked
in green) from Smart Home domain by the SE-
RIAL+HIGHWAY+SWAP architecture.

Utterance
tune/Other to/Other the/Other bbc/Name one/Name station/Other
change/Other to/Other channel/Other one/Channel
score/Other sixty/Number one/Number
four/Answer one/Answer

Table 11: Training samples from different domains
with different slot types for the word one (highlighted
in blue).

6 Related Work

Multi-task learning (MTL) aims to learn multiple
related tasks from data simultaneously to improve

the predictive performance compared with learn-
ing independent models. Various MTL models
have been developed based on the assumption that
all tasks are related (Argyriou et al., 2007; Negah-
ban and Wainwright, 2008; Jalali et al., 2010). To
tackle the problem that task structure is usually un-
clear, Evgeniou and Pontil (2004) extended sup-
port vector machines for single-task learning in a
multi-task scenario by penalizing models if they
are too far from a mean model. Xue et al. (2007)
introduced a Dirichlet process prior to automati-
cally identify subgroups of related tasks. Passos
et al. (2012) developed a nonparametric Bayesian
model to learn task subspaces and features jointly.

On the other hand, with the advent of deep
learning, MTL with deep neural networks has
been successfully applied to different applications
(Zhang et al., 2018; Masumura et al., 2018; Fares
et al., 2018; Guo et al., 2018). Recent work
on multi-task learning considers different shar-
ing structures, e.g., only sharing at lower layers
(Søgaard and Goldberg, 2016) and introduces pri-
vate and shared subspaces (Liu et al., 2016, 2017).
Liu et al. (2017) incorporated adversarial loss and
orthogonality constraints into the overall training
object, which helps in learning task-specific and
task-invariant features in a non-redundant way.
However, they do not explore task structures,
which can contain crucial features only present
within groups of tasks. Our work encodes task
structure information in deep neural architectures.

7 Conclusions

We proposed a series of end-to-end multi-task
learning architectures, in which task, task group
and task universe features are learned non-
redundantly. We further explored learning these
features in parallel and serial MTL architectures.
Our MTL models obtain state-of-the-art perfor-
mance on the ATIS and Snips datasets for intent
classification and slot filling. Experimental results
on a large-scale Alexa dataset show the effective-
ness of adding task group encoders into both par-
allel and serial MTL networks.
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