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Abstract

One of the key steps in language resource
creation is the identification of the text seg-
ments to be annotated, or markables– in our
case, the (potentially nested) noun phrases
in coreference resolution (or mentions). In
this paper, we present a method for identify-
ing markables for coreference annotation that
combines high-performance automatic mark-
able detectors with checking with a Game-
With-A-Purpose (GWAP) and aggregation us-
ing a Bayesian annotation model. The method
was evaluated both on news data and data from
a variety of other genres and results in an im-
provement on F1 of mention boundaries of
over seven percentage points when compared
with a state-of-the-art, domain-independent
automatic mention detector, and almost three
points over an in-domain mention detector.
One of the key contributions of our proposal
is its applicability to the case in which mark-
ables are nested, as is the case with corefer-
ence markables; but the GWAP and several of
the proposed markable detectors are task- and
language-independent and are thus applicable
to a variety of other annotation scenarios.

1 Introduction

Developing Natural Language Processing (NLP)
systems still requires large amounts of annotated
text to train models, or as a gold standard to test
the effectiveness of such models. The approach
followed to create the most widely used data (Mar-
cus et al., 1993; Palmer et al., 2005; Pradhan et al.,
2012) is to separate the task of identifying the text
segments to be annotated–the markables–from
the annotation task proper. In our specific case,
the markables of interest are the mentions used in
coreference resolution, to be labelled as belonging
to a coreference chain or as singletons; typical ex-
amples of mentions are pronouns, named entities,
and other nominal phrases (Poesio et al., 2016).

The annotation of mentions for coreference has
similarities with the identification of the chunks
for named entity resolution (NER), but mentions
can and often are nested, as in the following ex-
ample, from the Phrase Detectives corpus (Cham-
berlain et al., 2016)), where a mention of entity i
is nested inside a mention of entity j.
[A wolf]i had been gorging on [an animal [he]i had killed]j

The methods proposed in this paper are also appli-
cable when markables are nested.

Mention identification for annotation is typi-
cally done semi-automatically, using first an auto-
matic mention detector (or extractor) (Uryupina
and Zanoli, 2016) and then checking its output by
hand. Automatic mention detectors developed for
coreference systems are generally used in the first
step. Mention detection was recognized early on
as a key step for overall coreference quality (Stoy-
anov et al., 2009; Hacioglu et al., 2005; Zhekova
and Kübler, 2010; Uryupina and Zanoli, 2016), so
a number of good quality mention detectors were
developed, such as the mention detector included
in the Stanford CORE pipeline (Manning et al.,
2014), used by many of the top-performing sys-
tems in the 2012 CONLL Shared Task (Pradhan
et al., 2012).1 But this performance can be im-
proved. The first contribution of this paper are new
fully-trainable, language-independent mention de-
tectors that outperform the Stanford CORE men-
tion detector in a variety of genres.

But even the best automatic mention detec-
tors do not achieve the accuracy required for
high-quality corpus annotation, even when run in-

1Note that in many of the most recent systems mention
detection is carried out as a joint inference task with coref-
erence resolution (Peng et al., 2015)–e.g., by the current
top performing system on the CONLL 2012 dataset, (Lee
et al., 2018). These approaches generally result in better
performance at coreference resolution, but not necessarily
at mention detection. And even end-to-end systems require
mention-annotated corpora for training and testing of course.
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domain: the difference in performance between
running coreference resolvers on gold mentions
and running them on system mentions can be of
up to 20 percentage points, and the results are even
poorer when running such systems out-of-domain,
for domains like biomedicine (Kim et al., 2011)
or for under-resourced languages (Soraluze et al.,
2012). So a manual checking step is still required
to obtain high-quality results.2

Markable checking is increasingly done using
crowdsourcing (Snow et al., 2008; Lawson et al.,
2010; Bontcheva et al., 2017). But crowdsourcing,
using microtask platforms such as Amazon Me-
chanical Turk can be too expensive for large scale
annotation. For these cases, gamification tends to
be a cheaper alternative (Poesio et al., 2013), also
providing more accurate results and better contrib-
utor engagement (Lee et al., 2013).

The second contribution of this paper is an ap-
proach to mention detection for large-scale coref-
erence annotation projects in which the output
of mention detectors is corrected using a Game-
with-a-Purpose (GWAP) (Von Ahn and Dabbish,
2008). A Game-With-A-Purpose is a game in
which players label data as a by-effect of play-
ing. GWAPs have been successful in many annota-
tion projects (Lafourcade et al., 2015). Examples
of successful GWAPs include The ESP Game, in
which players contribute image labels (Von Ahn
and Dabbish, 2004), and FoldIt, in which play-
ers solve protein-structure prediction problems
(Cooper et al., 2010). However, so far there have
not been any truly successful GWAPs for NLP.
It has proven difficult to go from simple gamifi-
cation of a labelling task to developing a proper
game: e.g., in one of the best-known GWAPs for
NLP, Phrase Detectives (Poesio et al., 2013), the
labelling remains the core of the game dynamics.
Yet, games such as Puzzle Racer have shown that
engaging GWAPs producing annotations for text
are possible. Furthermore, that the annotations
thus collected are of a quality comparable to that
obtainable using microtask crowdsourcing, and at

2One difference between the mention detectors used for
coreference resolvers and those used to preprocess data for
coreference annotation is relevant for subsequent discussion.
The former usually aim for high recall and compromise on
precision, placing more confidence/importance on the coref-
erence resolution step (Kummerfeld et al., 2011) and being
satisfied that incorrectly identified mentions will simply re-
main singletons which can be removed in post processing
(Lee et al., 2011). The latter tend to go for high F. This dif-
ference played a role in our experiments, as discussed later.

a reduced cost (Jurgens and Navigli, 2014). How-
ever, such games have yet to achieve the player
uptake or number of judgements comparable to
GWAPs in other domains. Furthermore, it is not
clear yet whether using GWAPs can result in better
performance for tasks such as mention detection,
for which good-performance systems exist.

In this work, automatically extracted mentions
are checked using a two-player GWAP, TileAt-
tack. Our previous analysis of the performance
of TileAttack using player satisfaction metrics de-
rived from the Free 2 Play literature suggests
that we are succeeding in developing an engag-
ing game (Madge et al., 2017). In this paper,
we demonstrate that using TileAttack to check
the output of our mention detector results in sub-
stantial improvement to the quality of the out-
put. The game supports any text segmentation
task, whether markables are nested or non-nested,
aligned or not aligned, and is therefore applicable
at least in principle to a variety of text annotation
tasks besides coreference, including e.g., Named
Entity Resolution (NER).

Key to this result is the use of a novel aggre-
gation method to combine the labels produced
by the mention detector with the labels collected
using the game. A number of aggregation meth-
ods applicable to text segmentation labelling have
been proposed (Dawid and Skene, 1979; Hovy
et al., 2013; Passonneau and Carpenter, 2014; Felt
et al., 2014; Rodrigues et al., 2014; Nguyen et al.,
2017; Paun et al., 2018), but they are not directly
applicable when markables can be nested. The
third contribution of this paper is a novel method
to use aggregation with potentially nested mark-
ables. We show that using this method to aggre-
gate mention detector labels and TileAttack labels
results in improved markable boundary quality.

2 Markables for coreference

Different coreference corpora adopt different defi-
nitions of markable (Poesio et al., 2016; Uryupina
and Zanoli, 2016). The definition of (candidate)
mention used in this paper is broadly speaking that
adopted in corpora based on the MATE scheme
(Poesio, 2004), such as ONTONOTES (Pradhan
et al., 2012) ARRAU (Uryupina et al., 2019) and
Phrase Detectives 1.0 (Chamberlain et al., 2016).

According to this definition, candidate mentions
include all noun phrases (NPs) and all possessive
pronouns. Non-referring NPs (like It in It is sunny
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or a policeman in John is a policeman) and sin-
gletons are considered candidate mentions as well,
possibly to be filtered during coreference annota-
tion proper.

The maximal projection of the NP is marked;
i.e., the full extent of the NP including pre-
modifiers, post-modifiers and appositions. In the
case of a coordinated NP such as Alice and Bob,
each conjunct and the coordinated NP are treated
as candidate mentions:

[[Alice]i and [Bob]j]k went to the shops. [They]k had a
coffee.

3 Two automated mention detectors

The first ingredient of our proposal is two strong
mention detectorsto serve both as baselines and as
AI opponents for TileAttack.3 The first pipeline
first parses the input sentences using a dependency
parser and then extracts mentions from the depen-
dency parse; we call this the DEP pipeline. The
second pipeline is a modified version of the neu-
ral named entity recognition system proposed by
Lample et al. (2016); we call it NN pipeline. Both
pipelines are trained on the Penn Treebank (PTB).

3.1 DEP pipeline

Our DEP pipeline first parses input sentences using
the Mate dependency parser (Bohnet and Nivre,
2012), then applies a rule based mention extrac-
tor. Our extractor follows a three steps approach.
It first extracts mention heads using heuristic pat-
terns based on part-of-speech tags and dependency
relations. The patterns are automatically extracted
from the gold annotation of the Phrase Detectives
1.0 corpus (Chamberlain et al., 2016). We extract
all the part-of-speech tags and dependency rela-
tions pairs of the mentions’ head in the corpus,
and use the most frequent patterns. The second
step finds the maximum span related to a given
mention head; for this we use the left/right-most
direct or indirect children of the mention head as
the start/end of the mention. The last step checks
if any of the mentions created by step two over-
lap with each other. Overlapping mentions are re-
placed with the union of those mentions.

3.2 NN Pipeline(s)

Our second pipeline is based one the neural named
entity recognition (NER) system proposed by

3The code is available at https://github.com/juntaoy/Dali-
preprocessing-pipeline

Configuration P R F1

OntoNotes
Stanford 40.38 89.46 55.65
DEP 36.60 83.79 50.95
NN High F1 73.53 74.01 73.77
NN High Recall 51.53 87.53 64.87
News
Stanford 71.55 67.28 69.35
DEP 86.03 72.33 78.59
NN High F1 79.33 86.16 82.60
NN High Recall 71.65 91.29 80.29
Other Domains
Stanford 77.52 80.11 78.79
DEP 84.72 81.78 83.22
NN High F1 79.92 87.48 83.53
NN High Recall 73.35 93.04 82.03

Table 1: Mention detectors comparison.

Lample et al. (2016). This takes a sentence as the
input and outputs a sequence of IOB style NER
labels. The system uses a bidirectional LSTM to
encode sentences and applies a sequential condi-
tional random layer (CRF) over the output of the
LSTM. But the CRF, effective when handling se-
quence labelling tasks such as NER, is not suit-
able for predicting mentions, as mentions can be
nested. We address this as follows. For each to-
ken we create a maximum l candidate mentions.
Let s, e be the start and end indices of the men-
tion, and xi the LSTM outputs on the ith token.
The mention is represented by [xs, xe]. We add
a mention width feature embedding (φ) and apply
a self-attention over the tokens inside a mention
([xs ... xe]) to create a weighted mention repre-
sentation wse. After creating the mention repre-
sentation [xs, xe, wse, φ], we use a feed-forward
neural network with a sigmoid activation function
on the output layer to assign each candidate men-
tion a mention score. During training we minimise
the sigmoid cross entropy loss. During prediction,
mentions with a score above the threshold (t) are
returned. The threshold can be adjusted to create
models for different purposes. In particular, in this
paper we experimented with two models: one op-
timized for high recall, the other for high F1. We
use the same network parameters as Lample et al.
(2016) except the two parameters introduced by
our system. We set maximum mention width to
30 i.e. l = 30, and set t = 0.5/0.95 for our high-
recall and high-F1 versions respectively.
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3.3 Results

We use as a baseline the Stanford deterministic
mention detector (Manning et al., 2014)–arguably,
the most widely used mention detector for coref-
erence with the CONLL dataset (Pradhan et al.,
2012). Table 1 compares our pipelines and Stan-
ford’s on a number of data sets. Both of our
pipelines consistently outperform the Stanford
pipeline by a large margin.

4 TileAttack

To check the mentions produced by the automatic
mention detectors discussed above we developed
TileAttack, a web-based, two-player blind, token
sequence-labelling game. Its visual design is in-
spired by Scrabble, with a tile-like visualisation
shown in Figure 1. In the game, players perform
a text segmentation task which involves marking
spans of tokens represented by tiles. Players are
awarded points based on player agreement.The
game is highly adaptable to different corpora, se-
quence labelling tasks and languages.

Figure 1: TileAttack screenshot

It is not easy to come up with an original game
design. Our approach was to adopt a game design
as close as possible to an existing recipe– specif-
ically, the ESP Game (Von Ahn and Dabbish,
2008), but adapted to text annotation. Like The
ESP Game, TileAttack has an “output-agreement”
format, in which two players or agents are anony-
mously paired, and must produce the same output,
for a given input (Von Ahn and Dabbish, 2008).
This provided the opportunity to test what lessons
learned from games similar to The ESP Game still
apply to text annotation, games.

4.1 Gameplay

In each round, the player is shown a single sen-
tence to annotate. Players can select a span from
the sentence by simply selecting the start and end
tokens of the item they wish to mark. A pre-
view of their selection is then shown immediately
below. To confirm this annotation, they may ei-
ther click the preview selection or click the Anno-
tate button. The annotation is then shown in the
player’s colour. When the two players match on a
selection, the tiles for the selection in agreement
are shown with a glinting effect, in the colour of
the player that first annotated the tiles and a bor-
der colour of the player that agreed. The players’
scores are shown at the top of the screen.

When players have finished, they click the Done
button, upon which they will not be able to make
any more moves, but will see their opponent’s
moves. Their opponent is also notified they have
finished and invited to click Done once they have
finished. Once both players have clicked Done,
the round is finished and both players are shown
a round summary screen. This screen shows the
moves that both players agreed on, and whether
they won or lost the round.

Clicking Continue then takes the player to a
leaderboard showing wins, losses and the current
top fifteen players. From this page they may click
the Next Game button, to start another round. On
the leaderboard, players are also offered the op-
portunity to sign up.

4.2 Opponents

Like all two-player GWAPs, TileAttack chooses an
artificial agent as opponent for a player if no hu-
man opponent is available. An artificial agents is
also used in crowdsourcing mode, as is the case
with this study. The game uses three different arti-
ficial agents as opponents, selected in the follow-
ing order of priority, descending to the next unless
the condition is met:

Silver AI replays the aggregated result of all
player games so far

Replay AI replays a recorded previous game -
if a previous game is available for that item

Pipeline AI Plays the moves from the auto-
mated pipeline

5 Aggregating Mentions

The boundaries labelled by non-experts can be
expected to be quite noisy compared to expert
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annotations; but we can also expect the quality
of the aggregated judgements to be comparable
to that obtained with experts, provided sufficient
non-experts are consulted (Snow et al., 2008). We
are not aware however of any previous proposal to
aggregate such annotations when they are nested.
In this Section we introduce the two methods we
used: a baseline on one based on taking the most
popular judgement among the annotators (major-
ity voting); and a probabilistic approach. Both
these methods require a way for clustering to-
gether the mentions to be compared; we propose
one such method in the first Section.

5.1 Head-based mention boundary clustering

To apply aggregation, it is necessary to determine
which judgements (boundary pairs) are compet-
ing. We do this by clustering all annotations shar-
ing the same nominal head.

The head of a player-generated candidate men-
tion is extracted from the dependency parse used
by the DEP pipeline after aligning the candi-
date mention with the dependency tree as follows.
Given a player-generated candidate mention, we
find first of all subtrees of the dependency tree that
completely cover all the tokens in the candidate
mention. The highest leftmost head of those sub-
trees is then considered as the head. If no nomi-
nal head is present in those subtrees, the candidate
mention is not considered for aggregation.

Consider e.g. the sentence John’s car is red.
Suppose the players proposed the candidate men-
tions John’s car, John, and the (incorrect) mention
John’s car is. Suppose also that the (automatically
computed) dependency tree is as in Figure 2:

Figure 2: Finding a head for a proposed boundary

Then John’s car can be aligned with the subtree
whose head is car; John’s can be aligned with a
subtree with head John. Both of these heads are
nominal, so the two candidate mentions are con-
sidered for clustering. John’s car is would be

aligned with the two subtrees with the roots car
and is, shown in Figure 2 by the red box. The
highest leftmost head and therefore the head that
would be used is car. Relaxing the alignment cri-
teria this way is important to allow the pipeline to
guide the clustering while not constraining newly
proposed boundaries to the pipeline’s overall in-
terpretation (which may be incorrect).

5.2 Baseline: Majority Voting

Majority Voting was used as a baseline aggrega-
tion method. Following clustering, majority vot-
ing is applied to each cluster, choosing the bound-
ary that has the highest number of votes among
all those sharing the same nominal head. Ties are
broken randomly; the process is rerun five times.

5.3 A Probabilistic Approach

The majority vote baseline implicitly assumes
equal expertise among annotators, an assumption
shown to be false in practice (Dawid and Skene,
1979; Passonneau and Carpenter, 2014). A proba-
bilistic model of annotation, on the other hand, can
capture annotators’ different levels of ability (Paun
et al., 2018). This Section describes an applica-
tion of the model proposed by (Dawid and Skene,
1979) to the boundary detection task.

Each of the clusters collected as discussed
above contains a number of candidate boundaries
supplied by the players. The goal is to identify the
correct boundary for each cluster. A multi-class
version of the Dawid&Skene model cannot be ap-
plied since the class space (the boundaries) is not
consistent (i.e., the same set) across the clusters.
However, a binary version of the model can be ap-
plied after some careful data pre-processing. Con-
cretely, for each boundary we obtain a series of bi-
nary decisions as a result of a “one vs. the others”
encoding performed at cluster-level. For example,
given a cluster whose annotations are the bound-
aries “a, b, a, a”, we have for the “a” boundary a
collection of “1, 0, 1, 1” decisions, while for the
“b” boundary we have “0, 1, 0, 0”. We then train
a Bayesian version of the binary Dawid&Skene
model on these boundary decisions. The model in-
fers for each boundary a decision indicator which
can be interpreted as whether the boundary is cor-
rect or not. After some simple post-processing, we
assign for each cluster the boundary whose poste-
rior indicator has the most mass associated with
the positive outcome.
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6 Experimental Methodology

In order to evaluate our approach, we tested the
mention boundaries obtained using the two pro-
posed pipelines and by aggregating the judge-
ments collected using TileAttack in several differ-
ent ways over datasets in different genres.

6.1 Experiment setup

As said above, our approach to human checking
of mentions produced by other players or by a
system is to treat existing annotations as artificial
agents that human players ’play against’. But we
also pointed out that the mention detectors used
for coreference resolution systems are optimised to
achieve extremely high recall–the assumption be-
ing that the extra mentions will be filtered during
coreference resolution proper–and that this opti-
misation may not be optimal when using an auto-
matic mention detector for annotation–in our case,
treating it as an agent from which the other play-
ers will derive feedback. In this context, a men-
tion detector optimised for high overall F may be
preferable, as it may provide better feedback to the
human players. We tried therefore two versions of
the NN pipeline in this experiment: one optimized
for high recall, and one for high F1. The two con-
figurations are shown in Figure 3.4

Figure 3: Experiment Setup

6.2 Participant recruitment and platform use

The regular players of TileAttack are typically ex-
perts in language or language puzzles, and many
of them are linguists or computational linguists.
As a result, the quality of the mentions they pro-
duce tends to be very high, as shown in Table 2,
which reports the aggregated results of these play-
ers on the sentences from the ‘Other Domains’
dataset when playing against the ‘High recall’

4The DEP pipeline is not optimised either way.

Aggregation
Method

High Recall Pipeline
precision recall F1

Majority Voting 90.284 87.536 88.889
Probabilistic 91.928 89.13 90.508

Table 2: Regular players accuracy on ’Other domains’

pipeline. Our players obtain an aggregated F of
90.5, which is very high.

However, collecting judgements from real play-
ers tends to be slower than using a crowdsourcing
service. Given that in this paper we were not con-
cerned with comparing the effectiveness of crowd-
sourcing platforms and GWAPs, we collected the
headline results for this experiment using judge-
ments from participants recruited through Amazon
Mechanical Turk. This was done for purely prac-
tical reasons–namely, ensuring we would collect
sufficient data in a reasonably short time.

6.3 The participants’ task
After completing the tutorial, participants are
asked to annotate 3 sentences. At the end of
each round, the participant is given feedback in
the form of a comparison of their moves to those
of the opponent. The participants are paid US $
0.4 for completing the tutorial and three sentences
on their first HIT, or five sentences on subsequent
HITs.

6.4 Datasets
Most coreference datasets consist primarily of
news text; for this reason, our first dataset, referred
to below as “News”, consists of 102 sentences
from five randomly selected documents from the
Wall Street Journal section of the Penn Treebank
(Marcus et al., 1993), annotated with coreference
as part of the ARRAU corpus (Uryupina et al.,
2019).

The second dataset, referred to below as “Other
Domains”, is 180 sentences from a collection of
our own creation consisting of documents cover-
ing different genres, from simple language learn-
ing texts and student reports, to Wikipedia pages
and fiction from Project Gutenberg. We hand la-
belled the mentions in those sentences ourselves.

7 Results

7.1 News dataset
102 sentences were annotated by 131 participants.
Each sentence was annotated at least 8 times (max-
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imum of 11). A boundary was considered correct
iff the start and end match exactly.

The results in Table 3 compare the results ob-
tained using the four pipelines or application the
two different aggregation approaches on the user
(u), our DEP pipeline (d), NN (High F1 and Re-
call configurations) and Stanford Pipeline (s). The
presence or absence of the annotations for the
users or pipelines is indicated by a preceding +
or − respectively. MV indicates application of
the majority voting aggregation method, and P the
probabilistic aggregation method.

Precision Recall F1

Stanford 72.222 71.367 71.792
DEP 85.122 75.135 79.817
NN High F1 78.090 83.151 80.541
NN High Recall 69.447 88.833 77.953
MV(+u -d -s) 80.293 70.786 75.240
MV(+u +d -s) 82.884 74.855 78.665
MV(+u +d +s) 77.542 78.794 78.163
MV(+u -d +s) 75.101 76.233 75.662
MV(+u +NN F1) 85.578 77.706 81.452
MV(+u +NN R) 83.194 75.541 79.183
P(+u -d -s) 84.737 74.704 79.405
P(+u +d +s) 80.700 81.916 81.303
P(+u +d -s) 86.770 78.364 82.353
P(+u -d +s) 78.025 79.117 78.568
P(+u +NN F1) 86.587 78.247 82.206
P(+u +NN R) 85.697 77.814 81.566

Table 3: Comparing pipeline and aggregation methods

The Table suggests, first of all, that the
domain-trained pipelines outperform the domain-
independent Stanford one, as expected. Second,
that in this genre human judgements only match
the domain-dependent pipelines when probabilis-
tic aggregation is used. Third, that by aggregating
user judgements and domain-dependent pipelines
we see an improvement in F1 of up to 2.5 percent-
age points, but only with probabilistic aggregation.

In Figures 4 and 5 we plot F1 to look at how
many non-expert annotators are required to rival
the performance of the pipelines using the respec-
tive aggregation methods. In Figure 4 only the
participants are shown. The Figure shows that in
this genre the domain-specific automated pipeline
(trained on this domain) outperforms the partici-
pants, but already at five annotators, aggregated
with the probabilistic aggregation method, we are
very close to the performance of the domain spe-

Figure 4: Human annotators F1

Figure 5: Aggregated users and pipelines (first two an-
notators are automated pipelines) F1

cific pipeline. And in Figure 5, which shows the
results aggregating participants with the pipelines
(and in which the first two participants are the
two automated pipelines), we can see that we only
need to aggregate 3 participants to the domain-
specific pipeline to exceed its performance.

7.2 Other Domains

431 participants in the High Recall Group and 120
participants in the High F1 Group labelled 180
sentences.

Table 4 shows the results for both configurations
of the pipeline (highest score marked in bold). We
can see that operating out of their original do-
mains, the automated pipelines, while still outper-
forming the Stanford pipeline by around 4 percent-
age points, do not outperform aggregated users.
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However, they do appear to serve well as agents to
train participants to perform annotations, as par-
ticipants annotate to a high level of accuracy.5

7.3 Error Analysis

We analysed the errors produced both before and
after aggregation. There were many errors to con-
sider, so we took an approximate rule driven ap-
proach to characterise as many as possible.

Before aggregation, by far the most common er-
ror (1254 cases) is participants marking individual
nouns as noun phrases (e.g., marking the [cat] in-
stead of [the cat]). This suggests a misunderstand-
ing of what a noun phrase is that may possibly be
addressed by improvements to the tutorial. Simi-
larly, in 606 cases participants mark named enti-
ties/strings of proper nouns rather than the encap-
sulating noun phrase.

The next most common error (529 cases) is an-
notators neglecting to include post-modifiers when
selecting noun phrase boundaries (e.g., marking
[the cat] in the hat instead of [the cat in the hat].
This is often the most popular judgement, and as
such, chosen by MV. A real example of this is in
Figure 6: whilst five annotators did identify the
correct boundaries (in green), matching the gold
standard (in gold), more (six), only marked the re-
duced boundaries (in red) “A consortium of pri-
vate investors”. This sequence, missing the post-
modifier, was consequently chosen by majority
voting. The probabilistic method (in silver), how-
ever, expressed more confidence in the five anno-
tators and provided a correct final judgement.

Figure 6: Example of post-modifier phrase

In the texts from “Other Domains”, one of
most common errors produced by the automated
pipelines in in cases of coordination, as in

Sammy chose ten [books and the library] said he could
borrow them for one month.

where “ten books” and “the library” should not be
coordinated.

5As pointed out, workers do not do as well as players re-
cruited to TileAttack by more organic means (Table 2).

Another common problem for automated men-
tion detectors was prepositional phrase attach-
ment. Our automated mention detectors tend to
prefer low attachment, as in
So John and Caroline filled up a [green bin with mandarins].

The example above highlights another common
error with the mention detectors, missing the de-
terminer - most commonly, quantifiers and indefi-
nite articles.

Lastly, proper nouns near the start of sentences
are often incorrectly grouped with the capitalized
first token which is incorrectly also identified as a
proper noun (e.g. [First Art] sat in the car... rather
than First [Art] sat in the car...)

8 Related Work

8.1 Gamifying all steps of a pipeline
The Groningen Meaning Bank project includes
multiple gamified interfaces as part of a platform
called Wordrobe. These gamified interfaces are
supported by prior judgements provided by an
automated NLP pipeline and the GMB Explorer
(Basile et al., 2012).

The Wordrobe suite of games (Bos et al., 2017)
includes multiple games that go on to produce
similar annotations to that of TileAttack (e.g.
Named Entity Recognition). However, all tasks
are represented by a single common multiple
choice format. targets a single yet core NLP anno-
tation task (sequence labelling) with a broad set of
applications. We do not constrain user input based
on any prior judgement beyond tokenisation.

8.2 Aggregating markable annotations
Whilst there has been a great deal of work and
evaluation on aggregating judgements from noisy
crowdsourced data, this is generally focused on
classification-based annotations (Sheshadri and
Lease, 2013) and does not generalise to sequence
labelling tasks like NER markable annotation.
Dredze et al. proposed both a “Multi-CRF” ap-
proach to aggregating noisy sequence labels, and
including judgements provided by an automated
pipeline, in a NER task (Dredze et al., 2009). Con-
fidence in annotators is not modelled. However,
it has been extended to incorporate the reliability
of the annotator with a similar method that also
combines Expectation Maximization with CRF in
an NER and NP chunking task (Rodrigues et al.,
2014). Nguyen et al. apply HMM and LSTM
methods to aggregating judgements in NER and
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High Recall Experiment High F1 Experiment
precision recall F1 precision recall F1

Stanford 77.524 80.111 78.796 77.524 80.111 78.796
MV(users Stanford) 82.152 87.065 84.537 82.260 87.065 84.595
P(users Stanford) 82.438 87.483 84.885 82.523 87.344 84.865
DEP 84.726 81.780 83.227 84.726 81.780 83.227
MV(users DEP) 88.434 87.204 87.815 87.729 86.509 87.115
P(users DEP) 87.870 86.648 87.255 87.588 86.37 86.975
NN 73.355 93.046 82.036 79.924 87.483 83.533
MV(users NN) 81.472 89.291 85.202 80.000 89.013 84.266
P(users NN) 81.807 89.430 85.449 84.363 89.291 86.757
MV(users) 87.977 85.349 86.643 86.533 84.006 85.251
P(users) 88.270 85.633 86.931 82.523 87.344 84.865

Table 4: Results on the ‘Other Domains’ dataset (rounded to 3 dp)

IE, including a crowd component in both models
representing each annotators ability for each label
class (Nguyen et al., 2017).

Whilst variations of CRF and HMM have
demonstrated a great improvement over majority
voting approaches, models to date have not taken
into account the nested nature of sequences that
occur in tasks such as markable identification.

9 Discussion and Conclusions

In this paper, we presented a hybrid mention de-
tection method combining state-of-the-art auto-
matic mention detectors with a gamified, two-
player interface to collect markable judgements.
The integration takes place by using the automatic
mention detectors as ‘players’ in the game. Data
from automatic mention detectors and players are
then aggregated using a probabilistic aggregation
method choosing the most likely interpretation in
a nominal head-centered cluster.

We showed that using this combination we can
achieve, in the news domain, an accuracy at men-
tion identification that is almost three percentage
points higher than that obtained with an automatic
domain-trained mention detector, and over seven
percentage points higher than that obtained with
a domain-independent one. We also test the ap-
proach in genres outside those in which the au-
tomatic pipelines were trained, showing that high
accuracy can be achieved in these as well. These
results suggest that it may be possible to gamify
not just the task of annotating coreference, but also
the prerequisite steps to that.

As a rule of thumb, of the two best-known forms
of crowdsourcing, microtask crowdsourcing us-

ing platforms such as Amazon Mechanical Turk is
best to label small to medium size amounts of data
in a short time, and for labelling data of no intrin-
sic interest. Whereas crowdsourcing with games-
with-a-purpose is best in cases when the objec-
tive is to collect very large amounts of labels, so
that the initial costs for setting up the game can
be offset by the reduced costs of labelling (Poe-
sio et al., 2013). One example in point is the
Phrase Detectives annotation effort. The latest re-
lease of these data (Poesio et al., 2019) contains
2.2M judgments, around 4 times the number of
judgments collected for ONTONOTES. The ap-
proach to mention detection proposed in this paper
was developed in support of games such as Phrase
Detectives, thus a GWAP or at least gamified ap-
proach as exemplified by TileAttack was deemed
more appropriate even if the judgments used in
this paper were collected using Amazon Mechan-
ical Turk for speed. About 5,000 sentences were
annotated by regular (i.e., not paid) players in this
initial development phase, but we expect the game
will be able to collect a comparable amount of
judgments as for Phrase Detectives once it’s fully
operational and properly advertised. Anda gami-
fied interface such as TileAttack can be beneficial
even for projects who just use microtask crowd-
sourcing, as it has been shown that gamified HITs
are more popular (Morschheuser et al., 2017).
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