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Abstract
Cross-lingual word embeddings (CLEs) facili-
tate cross-lingual transfer of NLP models. De-
spite their ubiquitous downstream usage, in-
creasingly popular projection-based CLE mod-
els are almost exclusively evaluated on bilin-
gual lexicon induction (BLI). Even the BLI
evaluations vary greatly, hindering our ability
to correctly interpret performance and prop-
erties of different CLE models. In this work,
we take the first step towards a comprehensive
evaluation of CLE models: we thoroughly eval-
uate both supervised and unsupervised CLE
models, for a large number of language pairs,
on BLI and three downstream tasks, providing
new insights concerning the ability of cutting-
edge CLE models to support cross-lingual
NLP. We empirically demonstrate that the per-
formance of CLE models largely depends on
the task at hand and that optimizing CLE mod-
els for BLI may hurt downstream performance.
We indicate the most robust supervised and
unsupervised CLE models and emphasize the
need to reassess simple baselines, which still
display competitive performance across the
board. We hope our work catalyzes further re-
search on CLE evaluation and model analysis.

1 Introduction and Motivation

Following the ubiquitous use of word embeddings
in monolingual NLP tasks, research in word repre-
sentation quickly broadened towards cross-lingual
word embeddings (CLEs). CLE models learn vec-
tors of words in two or more languages and rep-
resent them in a shared cross-lingual word vector
space where words with similar meanings obtain
similar vectors, irrespective of their language. Ow-
ing to this property, CLEs hold promise to support
cross-lingual NLP by enabling multilingual model-
ing of meaning and facilitating cross-lingual trans-
fer for downstream NLP tasks and under-resourced

?Sebastian is now affiliated with DeepMind.

languages. CLEs are used as (cross-lingual) knowl-
edge sources in range of tasks, such as bilingual
lexicon induction (Mikolov et al., 2013), docu-
ment classification (Klementiev et al., 2012), infor-
mation retrieval (Vulić and Moens, 2015), depen-
dency parsing (Guo et al., 2015), sequence labeling
(Zhang et al., 2016; Mayhew et al., 2017), and ma-
chine translation (Artetxe et al., 2018c; Lample
et al., 2018), among others.

Earlier work typically induces CLEs by leverag-
ing bilingual supervision from multilingual corpora
aligned at the level of sentences (Zou et al., 2013;
Hermann and Blunsom, 2014; Luong et al., 2015,
inter alia) and documents (Søgaard et al., 2015;
Vulić and Moens, 2016; Levy et al., 2017, inter
alia). A recent trend are the so-called projection-
based CLE models1, which post-hoc align pre-
trained monolingual embeddings. Their popular-
ity stems from competitive performance coupled
with a conceptually simple design, requiring only
cheap bilingual supervision (Ruder et al., 2018b):
they demand word-level supervision from seed
translation dictionaries, spanning at most several
thousand word pairs (Mikolov et al., 2013; Huang
et al., 2015), but it has also been shown that reli-
able projections can be bootstrapped from small
dictionaries of 50–100 pairs (Vulić and Korhonen,
2016; Zhang et al., 2016), identical strings and cog-
nates (Smith et al., 2017; Søgaard et al., 2018), and
shared numerals (Artetxe et al., 2017).

Moreover, recent work has leveraged topological
similarities between monolingual vector spaces to
introduce fully unsupervised projection-based CLE
models, not demanding any bilingual supervision
(Conneau et al., 2018a; Artetxe et al., 2018b, inter
alia). Being conceptually attractive, such weakly
supervised and unsupervised CLEs have recently
taken the field by storm (Grave et al., 2018; Dou

1In the literature the methods are sometimes referred to
as mapping-based CLE approaches or offline approaches.
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et al., 2018; Doval et al., 2018; Hoshen and Wolf,
2018; Ruder et al., 2018a; Kim et al., 2018; Chen
and Cardie, 2018; Mukherjee et al., 2018; Nakas-
hole, 2018; Xu et al., 2018; Alaux et al., 2019).

Producing the same end result—a shared cross-
lingual vector space—all CLE models are directly
comparable, regardless of modelling assumptions
and supervision requirements. Therefore, they can
support exactly the same groups of tasks. Yet, a
comprehensive evaluation of recent CLE models is
missing. Limited evaluations impede comparative
analyses and may lead to inadequate conclusions,
as models are commonly trained to perform well
on a single task. While early CLE models (Kle-
mentiev et al., 2012; Hermann and Blunsom, 2014)
were evaluated on downstream tasks like text clas-
sification, a large body of recent work is judged
exclusively on the task of bilingual lexicon induc-
tion (BLI). This limits our understanding of CLE
methodology as: 1) BLI is an intrinsic task, and
agreement between BLI and downstream perfor-
mance has been challenged (Ammar et al., 2016;
Bakarov et al., 2018); 2) BLI is not the main motiva-
tion for inducing cross-lingual embedding spaces—
rather, we seek to exploit CLEs to tackle multilin-
guality and downstream language transfer (Ruder
et al., 2018b). In other words, previous research
does not evaluate the true capacity of projection-
based CLE models to support cross-lingual NLP. It
is unclear whether and to which extent BLI perfor-
mance of (projection-based) CLE models correlates
with various downstream tasks of different types.

At the moment, it is virtually impossible to di-
rectly compare all recent projection-based CLE
models on BLI due to the lack of a common evalu-
ation protocol: different papers consider different
language pairs and employ different training and
evaluation dictionaries. Furthermore, there is a sur-
prising lack of testing of BLI results for statistical
significance. The mismatches in evaluation yield
partial conclusions and inconsistencies: on the one
hand, some unsupervised models (Artetxe et al.,
2018b; Hoshen and Wolf, 2018) reportedly outper-
form competitive supervised CLE models (Artetxe
et al., 2017; Smith et al., 2017). On the other hand,
the most recent supervised approaches (Doval et al.,
2018; Joulin et al., 2018) report performances sur-
passing the best unsupervised models.

Supervised projection-based CLEs require
merely small-sized translation dictionaries (up to a
few thousand word pairs) and such bilingual signal

is easily obtainable for most language pairs.2 There-
fore, despite the attractive zero-supervision setup,
we see unsupervised CLE models practically justi-
fied only if such models can, unintuitively, indeed
outperform their supervised competition.

Contributions. We provide a comprehensive
comparative evaluation of a wide range of state-
of-the-art—both supervised and unsupervised—
projection-based CLE models. Our benchmark en-
compasses BLI and three cross-lingual (CL) down-
stream tasks of different nature: document clas-
sification (CLDC), information retrieval (CLIR),
and natural language inference (XNLI). We unify
evaluation protocols for all models and conduct ex-
periments over 28 language pairs spanning diverse
language types.

Besides providing a unified testbed for guiding
CLE research, we aim to answer the following re-
search questions: 1) Is BLI performance a good pre-
dictor of downstream performance for projection-
based CLE models? 2) Can unsupervised CLE
models indeed outperform their supervised counter-
parts? The simplest models often outperform more
intricate competitors: we apply a simple bootstrap-
ping to the basic Procrustes model (PROC-B, see
§2.2) and show it is competitive across the board.
We find that overfitting to BLI may severely hurt
downstream performance, warranting the coupling
of BLI experiments with downstream evaluations
in order to paint a more informative picture of CLE
models’ properties.

2 Projection-Based CLEs: Methodology

In contrast to more recent unsupervised models,
CLE models typically require bilingual signal:
aligned words, sentences, or documents. CLE mod-
els based on sentence and document alignments
have been extensively studied in previous work
(Vulić and Korhonen, 2016; Upadhyay et al., 2016;
Ruder et al., 2018b). Current CLE research is al-
most exclusively focused on projection-based CLE
models; they are thus also the focus of our study.3

2We argue that, if acquiring a few thousand word transla-
tion pairs is a challenge, one probably deals with a truly under-
resourced language for which it would be difficult to obtain
reliable monolingual embeddings in the first place. Further-
more, there are initiatives in typological linguistics research
such as the ASJP database (Wichmann et al., 2018), which
offers 40-item word lists denoting the same set of concepts in
all the world’s languages: https://asjp.clld.org/.
Indirectly, such lists can offer the initial seed supervision.

3These methods a) are not bound to any particular word
embedding model (i.e., they are fully agnostic to how we

https://asjp.clld.org/
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Figure 1: A general framework for post-hoc projection-based induction of cross-lingual word embeddings.

2.1 Projection-Based Framework
The goal is to learn a projection between indepen-
dently trained monolingual embedding spaces. The
mapping is sought using a seed bilingual lexicon,
provided beforehand or extracted without super-
vision. A general post-hoc projection-based CLE
framework is depicted in Figure 1. Let XL1 and
XL2 be monolingual embedding spaces of two lan-
guages. All projection-based CLE approaches en-
compass the following steps:

Step 1: Construct the seed translation dictionary
D = {(wi

L1, w
j
L2)}Kk=1 containing K word pairs.

Supervised models use an external dictionary; unsu-
pervised models induce D automatically, assuming
approximate isomorphism between XL1 and XL2.

Step 2: Align monolingual subspaces XS =
{xi

L1}Kk=1 and XT = {xj
L2}Kk=1 using the trans-

lation dictionary D: retrieve vectors of {wi
L1}Kk=1

from XL1 and vectors of {wj
L2}Kk=1 from XL2.

Step 3: Learn to project XL1 and XL2 to the shared
cross-lingual space XCL based on the aligned ma-
trices XS and XT . In the general case, we learn
two projection matrices WL1 and WL2: XCL =
XL1WL1 ∪ XL2WL2 . Many models, however,
learn to directly project XL1 to XL2, i.e., WL2 = I
and XCL = XL1WL1 ∪ XL2.

2.2 Projection-Based CLE Models
While supervised models employ external dictio-
naries, unsupervised models automatically induce
seed translations using diverse strategies: adver-
sarial learning (Conneau et al., 2018a), similarity-
based heuristics (Artetxe et al., 2018b), PCA
(Hoshen and Wolf, 2018), and optimal transport
(Alvarez-Melis and Jaakkola, 2018).

Canonical Correlation Analysis (CCA). Faruqui
and Dyer (2014) use CCA to project XL1 and XL2

obtain monolingual vectors) and b) they do not require any
multilingual corpora, they lend themselves to a wider spectrum
of languages than the alternatives (Ruder et al., 2018b).

Algorithm 1: Bootstrapping Procrustes (PROC-B)
XL1, XL2 ← monolingual embeddings of L1 and L2
D← initial word translation dictionary
for each of n iterations do

XS , XT ← lookups for D in XL1, XL2

WL1 ← argminW ‖XSW −XT ‖2
WL2 ← argminW ‖XTW −XS‖2
X′

L1 ← XL1WL1; X′
L2 ← XL2WL2

D1,2 ← nn(X′
L1, XL2); D2,1 ← nn(X′

L2, XL1)
D ← D ∪ (D1,2 ∩D2,1)

return: WL1 (and/or WL2)

into a shared space XCL. Projection matrices, WL1

and WL2 are obtained by applying CCA to XS and
XT . We evaluate CCA as a simple baseline that has
mostly been neglected in recent BLI evaluations.

Solving the Procrustes Problem. In their seminal
work, Mikolov et al. (2013) find WL1 by minimiz-
ing the Euclidean distance between projected XS

and XT : WL1 = arg minW‖XL1W − XL2‖2.
Xing et al. (2015) report BLI gains by impos-
ing orthogonality on WL1. If WL1 is orthogonal,
the above minimization problem becomes the Pro-
crustes problem, with the following closed-form
solution (Schönemann, 1966):

WL1 = UV>, with

UΣV> = SVD(XTXS
>). (1)

The map WL1 being the solution to the Procrustes
problem is the main baseline in our evaluation
(PROC). Furthermore, following self-learning pro-
cedures that unsupervised models use to augment
initially induced lexicons D (Artetxe et al., 2018b;
Conneau et al., 2018a), we propose a simple boot-
strapping extension of the PROC model (dubbed
PROC-B). With PROC-B we aim to boost perfor-
mance when starting with smaller but reliable ex-
ternal dictionaries. The procedure is summarized
in Algorithm 1. In each iteration, we use the trans-
lation lexicon D to learn two projections: WL1

projects XL1 to XL2 and WL2 projects XL2 to
XL1. Next we induce two word translations sets
D12 and D21 as cross-lingual nearest neighbours
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between (1) XL1WL1 and XL2 and (2) XL2WL2

and XL1. We finally augment D with mutual near-
est neighbours, i.e., D12 ∩D21.4

Discriminative Latent-Variable Model (DLV).
Ruder et al. (2018a) augment the seed supervised
lexicon through Expectation-Maximization in a
latent-variable model. The source words {wi

L1}Kk=1

and target words {wj
L2}Kk=1 are seen as a fully con-

nected bipartite weighted graph G = (E, VL1 ∪
VL2) with edges E = VL1 × VL2. By drawing
embeddings from a Gaussian distribution and nor-
malizing them, the weight of each edge (i, j) ∈ E
is shown to correspond to the cosine similarity be-
tween vectors. In the E-step, a maximal bipartite
matching is found on the sparsified graph using the
Jonker-Volgenant algorithm (Jonker and Volgenant,
1987). In the M-step, a better projection WL1 is
learned by solving the Procrustes problem.

Ranking-Based Optimization (RCSLS). In-
stead of minimizing the Euclidean distance, Joulin
et al. (2018) follow earlier work (Lazaridou et al.,
2015) and maximize a ranking-based objective,
specifically cross-domain similarity local scal-
ing (CSLS; Conneau et al., 2018a), between the
XSWL1 and XT . CSLS is an extension of cosine
similarity commonly used for BLI inference. Let
r(xk

L1W,XL2) be the average cosine similarity
of the projected source vector with its N nearest
neighbors from XL2. Inversely, let r(xk

L2,XL1W)
be the average cosine similarity of a target vector
with its N nearest neighbors from the projected
source space XL1W. By relaxing the orthogonality
constraint on WL1, maximization of relaxed CSLS
(dubbed RCSLS) becomes a convex optimization
problem:

WL1 = argmin
W

1

K

∑
xk
L1∈XS

xk
L2∈XT

−2 cos
(
xk
L1W,xk

L2

)

+ r(xk
L1W,XL2) + r(xk

L2,XL1W) (2)

By maximizing (R)CSLS, this model is explicitly
designed to induce cross-lingual embedding spaces
that perform well in word translation, i.e., BLI.

Adversarial Alignment (MUSE). MUSE (Con-
neau et al., 2018a) initializes a seed bilingual lexi-
con solely from monolingal data using Generative
Adversarial Networks (GANs; Goodfellow et al.,

4We obtain best performance with just one bootstrapping
iteration. Even when starting with D of size 1K, the first
iteration yields between 5K and 10K mutual translations. The
second iteration already produces over 20K translations, which
seem to be too noisy for further performance gains.

2014). The generator component is the linear map
WL1. MUSE improves the generator WL1 by ad-
ditionally competing with the discriminator (feed-
forward net) that needs to distinguish between true
L2 vectors from XL2 and projections from L1,
XL1WL1. MUSE then improves the GAN-induced
mapping, through a refinement step similar to the
PROC-B procedure. MUSE strongly relies on the
approximate isomorphism assumption (Søgaard
et al., 2018), which often leads to poor GAN-based
initialization, especially for distant languages.

Heuristic Alignment (VECMAP). Artetxe et al.
(2018b) assume that word translations have approx-
imately the same vectors of monolingual similarity
distribution. The seed D is the set of nearest neigh-
bors according to the similarity between mono-
lingual similarity distribution vectors. Next, they
employ a self-learning bootstrapping procedure
similar to MUSE. VECMAP owes robustness to a
number of empirically motivated enhancements.
It adopts both multi-step pre-processing: unit
length normalization, mean centering, and ZCA
whitening (Bell and Sejnowski, 1997); and mul-
tiple post-processing steps: cross-correlational re-
weighting, de-whitening, and dimensionality reduc-
tion (Artetxe et al., 2018a). Moreover, VECMAP

critically relies on stochastic dictionary induction:
elements of the similarity matrix are randomly set
to 0 (with varying probability across iterations),
allowing the model to escape poor local optima.

Iterative Closest Point Model (ICP). Hoshen
and Wolf (2018) induce the seed dictionary D by
projecting vectors of N most frequent words of
both languages to a lower-dimensional space with
PCA. They then search for an optimal alignment
between L1 words (vectors xi

1) and L2 words (vec-
tors xj

2), assuming projections W1 and W2. Let
f1(i) (vice versa f2(j)) be the L2 index (vice versa
L1 index) to which xi

1 (vice versa xj
2) is aligned.

The goal is to find projections W1 and W2 that
minimize the sum of Euclidean distances between
optimally-aligned vectors. Since both projections
and optimal alignment are unknown, they employ a
two-step Iterative Closest Point optimization algo-
rithm that first fixes projections to find the optimal
alignment and then uses that alignment to update
projections, by minimizing:∑

i

‖xi
1W1 − x

f1(i)
2 ‖+

∑
j

‖xj
2W2 − x

f2(j)
1 ‖+

λ
∑
i

‖xi
1 − xi

1W1W2‖+ λ
∑
j

‖xj
2 − xj

2W2W1‖. (3)
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The cyclical constraints in the second row force
vectors not to change by round-projection (to the
other space and back). They then employ a boot-
straping procedure similar to PROC-B and MUSE

and produce the final WL1 by solving Procrustes.

Gromov-Wasserstein Alignment Model (GWA).
Since embedding models employ metric recov-
ery algorithms, Alvarez-Melis and Jaakkola (2018)
cast dictionary induction as optimal transport prob-
lem based on the Gromov-Wasserstein distance.
They first compute intra-language costs CL1 =
cos(XL1,XL1) and CL2 = cos(XL2,XL2) and
inter-language similarities C12 = C2

L1p1>m +
1nq(C2

L2)>, with p and q as uniform distributions
over respective vocabularies. They then induce the
projections by solving the Gromov-Wasserstein op-
timal transport problem with a fast iterative algo-
rithm (Peyré et al., 2016), iteratively updating pa-
rameter vectors a and b, a = p �Kb; b = q �
K>a, where � is element-wise division and K =
exp(−ĈΓ/λ) (with ĈΓ = C12 − 2CL1ΓC>L2).
The alignment matrix Γ = diag(a)K diag(b) is
recomputed in each iteration. The final projection
WL1 is (again!) obtained by solving Procrustes
using the final alignments from Γ as supervision.

In sum, our brief overview points to the main
(dis)similarities of all projection-based CLE mod-
els: while they differ in the way the initial seed
lexicon is extracted, most models are based on
bootstrapping procedures that repeatedly solve the
Procrustes problem from Eq. (1), typically on the
trimmed vocabulary. In the final step, the fine-tuned
linear map is applied on the full vocabulary.

3 Bilingual Lexicon Induction

BLI has become the de facto standard evaluation
task for projection-based CLE models. Given a
CLE space, the task is to retrieve target language
translations for a (test) set of source language
words. A typical BLI evaluation in the recent lit-
erature reports comparisons with the well-known
MUSE model on a few language pairs, always in-
volving English as one of the languages—a com-
prehensive comparative BLI evaluation conducted
on a large set of language pairs is missing. Our
evaluation spans 28 language pairs, many of which
do not involve English.5 Furthermore, to allow for
(1) fair comparison across supervised models and

5English participates as one of the languages in all pairs
in existing BLI evaluations, with the exception of Estonian–
Finnish evaluated by Søgaard et al. (2018).

(2) direct comparisons across different language
pairs, we create training and evaluation dictionaries
that are fully aligned across all evaluated language
pairs. Finally, we also discuss other choices in ex-
isting BLI evaluations which are currently taken
for granted: e.g., (in)appropriate evaluation metrics
and lack of significance testing.

Language Pairs. Our evaluation comprises eight
languages: Croatian (HR), English (EN), Finnish
(FI), French (FR), German (DE), Italian (IT), Rus-
sian (RU), and Turkish (TR). For diversity, we se-
lected two languages from three different Indo-
European branches: Germanic (EN, DE), Romance
(FR, IT), and Slavic (HR, RU); as well as two non-
Indo-European languages (FI, TR). From these, we
create a total of 28 language pairs for evaluation.

Monolingual Embeddings. Following prior work,
we use 300-dimensional fastText embeddings (Bo-
janowski et al., 2017)6, pretrained on complete
Wikipedias of each language. We trim all vocabu-
laries to the 200K most frequent words.

Translation Dictionaries. We automatically cre-
ated translation dictionaries using Google Trans-
late, similar to prior work (Conneau et al., 2018a).
We selected the 20K most frequent English words
and automatically translated them to the other
seven languages. We retained only tuples for which
all translations were unigrams found in vocabular-
ies of respective monolingual embedding spaces,
leaving us with≈7K tuples. We reserved 5K tuples
created from the more frequent English words for
training, and the remaining 2K tuples for testing.
We also created two smaller training dictionaries,
by selecting tuples corresponding to 1K and 3K
most frequent English words.

Evaluation Measures and Significance. BLI is
generally cast as a ranking task. Existing work uses
precision at rank k (P@k, k ∈ {1, 5, 10}) as a BLI
evaluation metric. We advocate the use of mean
average precision (MAP) instead.7 While corre-
lated with P@k, MAP is more informative: unlike
MAP, P@k treats all models that rank the correct
translation below k equally.8

The limited size of BLI test sets warrants statis-
tical significance testing. Yet, most current work

6https://fasttext.cc/docs/en/
pretrained-vectors.html

7In this setup with only one correct translation for each
query, MAP is equivalent to mean reciprocal rank (MRR).

8E.g., P@5 equally penalizes two models of which one
ranks the translation at rank 6 and the other at rank 100K.

https://fasttext.cc/docs/en/pretrained-vectors.html
https://fasttext.cc/docs/en/pretrained-vectors.html
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Supervised Dict All LPs Filt. LPs Succ. LPs

CCA 1K .289 .404 28/28
CCA 3K .378 .482 28/28
CCA 5K .400 .498 28/28
PROC 1K .299 .411 28/28
PROC 3K .384 .487 28/28
PROC 5K .405 .503 28/28
PROC-B 1K .379 .485 28/28
PROC-B 3K .398 .497 28/28
DLV 1K .289 .400 28/28
DLV 3K .381 .484 28/28
DLV 5K .403 .501 28/28
RCSLS 1K .331 .441 28/28
RCSLS 3K .415 .511 28/28
RCSLS 5K .437 .527 28/28

Unsupervised

VECMAP .375 .471 28/28
MUSE .183 .458 13/28
ICP .253 .424 22/28
GWA .137 .345 15/28

Table 1: Summary of BLI performance (MAP). All
LPs: average scores over all 28 language pairs;
Filt. LP: average scores only over language pairs for
which all models in evaluation yield at least one suc-
cessful run; Succ. LPs: the number of language pairs
for which we obtained at least one successful run. A
run is considered successful if MAP ≥ 0.05.

provides no significance testing, declaring limited
numeric gains (e.g., 1% P@1) to be relevant. We
test BLI results for significance with the two-tailed
t-test with Bonferroni correction (Dror et al., 2018).

Results and Discussion. Table 1 summarizes
BLI performance over all 28 language pairs.9 RC-
SLS (Joulin et al., 2018) displays the strongest
BLI performance. This is not surprising given that
its learning objective is tailored particularly for
BLI. RCSLS outperforms other supervised mod-
els (CCA, PROC, and DLV) trained with exactly
the same dictionaries. We confirm previous find-
ings (Smith et al., 2017) suggesting that CCA and
PROC exhibit very similar performance. We con-
firm that CCA and PROC, as well as DLV, are
statistically indistinguishable in terms of BLI per-
formance (even at α = 0.1). Our bootstrapping
PROC-B approach significantly (p < 0.01) boosts
the performance of PROC when given a small trans-
lation dictionary with 1K pairs. For the same 1K
dictionary, PROC-B also significantly outperforms
RCSLS. Interestingly, training on 5K pairs does
not significantly outperform training on 3K pairs
for any of the supervised models (whereas using 3K
pairs is better than using 1K). This is in line with
prior findings (Vulić and Korhonen, 2016) that no

9We provide detailed BLI results for each of the 28 lan-
guage pairs and all models in the appendix.

significant improvements are to be expected from
training linear maps on more than 5K word pairs.

The results highlight VECMAP (Artetxe et al.,
2018b) as the most robust choice among unsu-
pervised models: besides being the only model to
produce successful runs for all language pairs, it
also significantly outperforms other unsupervised
models—both when considering all language pairs
and only the subset where other models produce
successful runs. However, VECMAP still performs
worse (p ≤ 0.0002) than PROC-B (trained on only
1K pairs) and all supervised models trained on
3K or 5K word pairs. Our findings challenge un-
intuitive claims from recent work (Artetxe et al.,
2018b; Hoshen and Wolf, 2018; Alvarez-Melis and
Jaakkola, 2018) that unsupervised CLE models per-
form on a par or even surpass supervised models.

Table 2 shows the scores for a subset of 10
language pairs using a subset of models from Ta-
ble 1.10 As expected, all models work reasonably
well for major languages—this is most likely due
to a higher quality of the respective monolingual
embeddings, which are pre-trained on much larger
corpora.11 Language proximity also plays a crit-
ical role: on average, models achieve better BLI
performance for languages from the same family
(e.g., compare the results of HR–RU vs. HR–EN).
The gap between the best-performing supervised
model (RCSLS) and the best-performing unsuper-
vised model (VECMAP) is more pronounced for
cross-family language pairs, especially those con-
sisting of one Germanic and one Slavic or non-Indo-
European language (e.g., 19 points MAP difference
for EN–RU, 14 for DE–RU and EN–FI, 10 points for
EN–TR and EN–HR, 9 points for DE–FI and EN–HR).
We suspect that this is due to heuristics based on
intra-language similarity distributions, employed
by Artetxe et al. (2018b) to induce an initial transla-
tion dictionary. This heuristic, critically relying on
the approximate isomorphism assumption, is less
effective the more distant the languages are.

4 Downstream Evaluation

Moving beyond the limiting BLI evaluation, we
evaluate CLE models on three diverse cross-lingual
downstream tasks: 1) cross-lingual transfer for nat-
ural language inference (XNLI), a language under-

10We provide full BLI results for all 28 language pairs and
all models in the appendix.

11For instance, EN Wikipedia is approximately 3 times
larger than DE and RU Wikipedias, 19 times larger than
FI Wikipedia and 46 times larger than HR Wikipedia.
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Model Dict EN–DE IT–FR HR–RU EN–HR DE–FI TR–FR RU–IT FI–HR TR–HR TR–RU

PROC 1K 0.458 0.615 0.269 0.225 0.264 0.215 0.360 0.187 0.148 0.168
PROC 5K 0.544 0.669 0.372 0.336 0.359 0.338 0.474 0.294 0.259 0.290
PROC-B 1K 0.521 0.665 0.348 0.296 0.354 0.305 0.466 0.263 0.210 0.230
RCSLS 1K 0.501 0.637 0.291 0.267 0.288 0.247 0.383 0.214 0.170 0.191
RCSLS 5K 0.580 0.682 0.404 0.375 0.395 0.375 0.491 0.321 0.285 0.324

VECMAP – 0.521 0.667 0.376 0.268 0.302 0.341 0.463 0.280 0.223 0.200

Average – 0.520 0.656 0.343 0.294 0.327 0.304 0.440 0.260 0.216 0.234

Table 2: BLI performance (MAP) with a selection of models on a subset of evaluated language pairs.

standing task; 2) cross-lingual document classifica-
tion (CLDC), a task commonly requiring shallow
n-gram-level modelling, and 3) cross-lingual infor-
mation retrieval (CLIR), an unsupervised ranking
task relying on coarser semantic relatedness.

4.1 Natural Language Inference

Large training corpora for NLI exist only in En-
glish (Bowman et al., 2015; Williams et al., 2018).
Recently, Conneau et al. (2018b) released a mul-
tilingual XNLI corpus created by translating the
development and test portions of the MultiNLI cor-
pus (Williams et al., 2018) to 15 other languages.

Evaluation Setup. XNLI covers 5 out of 8 lan-
guages from our BLI evaluation: EN, DE, FR, RU,
and TR. Our setup is straightforward: we train a
well-known robust neural NLI model, Enhanced
Sequential Inference Model (ESIM; Chen et al.,
2017)12 on the large English MultiNLI corpus, us-
ing EN word embeddings from a shared EN–L2 (L2
∈ {DE, FR, RU, TR }) embedding space. We then
evaluate the model on the L2 portion of the XNLI
by feeding L2 vectors from the shared space. 13

Results and Discussion. XNLI accuracy scores
are summarized in Table 3. The mismatch between
BLI and XNLI performance is most obvious for
RCSLS. While RCSLS is the best-performing
model on BLI, it shows subpar performance on
XNLI across the board. This suggests that special-
izing CLE spaces for word translation can seriously
hurt cross-lingual transfer for language understand-
ing tasks. As the second indication of the mismatch,
the unsupervised VECMAP model, outperformed
by supervised models on BLI, performs on par
with PROC and PROC-B on XNLI. Finally, there

12Since our aim is to compare different bilingual spaces—
input vectors for ESIM, kept fixed during training—we simply
use the default ESIM hyper-parameter configuration.

13Our goal is not to compete with current state-of-the-art
systems for (X)NLI (Artetxe and Schwenk, 2018; Lample
and Conneau, 2019), but rather to provide means to analyze
properties and relative performance of diverse CLE models in
a downstream language understanding task.

Supervised Dict EN–DE EN–FR EN–TR EN–RU Avg

PROC 1K 0.561 0.504 0.534 0.544 0.536
PROC 5K 0.607 0.534 0.568 0.585 0.574
PROC-B 1K 0.613 0.543 0.568 0.593 0.579
PROC-B 3K 0.615 0.532 0.573 0.599 0.580
DLV 5K 0.614 0.556 0.536 0.579 0.571
RCSLS 1K 0.376 0.357 0.387 0.378 0.374
RCSLS 5K 0.390 0.363 0.387 0.399 0.385

Unsupervised

VECMAP 0.604 0.613 0.534 0.574 0.581
MUSE 0.611 0.536 0.359* 0.363* 0.467
ICP 0.580 0.510 0.400* 0.572 0.516
GWA 0.427* 0.383* 0.359* 0.376* 0.386

Table 3: XNLI performance (test set accuracy). Bold:
highest scores, with mutually insignificant differences
according to the non-parametric shuffling test (Yeh,
2000). Asterisks denote language pairs for which CLE
models could not yield successful runs in the BLI task.

are significant differences between BLI and XNLI
performance across language pairs—while we ob-
serve much better BLI performance for EN–DE and
EN–FR compared to EN–RU and especially EN–TR,
XNLI performance of most models for EN–RU and
EN–TR surpasses that for EN–FR and is close to
that for EN–DE. While this can be an artifact of
the XNLI dataset creation, we support these ob-
servations for invidivual language pairs by measur-
ing an overall Spearman correlation of only 0.13
between BLI and XNLI over individual language
pairs scores (for all models).

The PROC model performs significantly better
on XNLI when trained on 5K pairs than with 1K
pairs, and this is consistent with BLI results. How-
ever, we show that we can reach the same per-
formance level using 1K pairs and the proposed
PROC-B bootstrapping scheme. VECMAP is again
the most robust and most effective unsupervised
model, but it is outperformed by the PROC-B model
on more distant language pairs, EN–TR and EN–RU.

4.2 Document Classification
Evaluation Setup. Our next evaluation task is
cross-lingual document classification (CLDC). We
use the TED CLDC corpus (Hermann and Blun-
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Supervised Dict DE FR IT RU TR Avg

PROC 1K .250 .107 .158 .127 .309 .190
PROC 5K .345 .239 .310 .251 .190 .267
PROC-B 1K .374 .182 .205 .243 .254 .251
PROC-B 3K .352 .210 .218 .186 .310 .255
DLV 5K .299 .175 .234 .375 .208 .258
RCSLS 1K .557 .550 .516 .466 .419 .501
RCSLS 5K .588 .540 .451 .527 .447 .510

Unsupervised

VECMAP .433 .316 .333 .504 .439 .405
MUSE .288 .223 .198 .226* .264* .240
ICP .492 .254 .457 .362 .175* .348
GWA .180* .209* .206* .151* .173* .184

Table 4: CLDC performance (micro-averaged F1

scores); cross-lingual transfer EN–X. Numbers in bold
denote the best scores in the model group. Asterisks
denote language pairs for which CLE models did not
yield successful runs in the BLI task.

som, 2014), covering 15 topics and 12 language
pairs (EN is one of the languages in all pairs). A
binary classifier is trained and evaluated for each
topic and each language pair, using predefined train
and test splits. Intersecting TED and BLI languages
results in five CLDC evaluation pairs: EN–DE, EN–
FR, EN–IT, EN–RU, and EN–TR. Since we seek to
compare different CLEs and analyse their contri-
bution and not to match state-of-the-art on TED,
for the sake of simplicity we employ a light-weight
CNN-based classifier in CLDC experiments.14

Results and Discussion. The CLDC results (F1

micro-averaged over 12 classes) are shown in Ta-
ble 4. In contrast to XNLI, RCSLS, the best-
performing model on BLI, obtains peak scores on
CLDC as well, with a wide margin w.r.t. other mod-
els. It significantly outperforms the unsupervised
VECMAP model, which in turn significantly outper-
forms all other supervised models. Surprisingly, su-
pervised Procrustes-based models (PROC, PROC-B,
and DLV) that performed strongly on both BLI and
XNLI display very weak performance on CLDC:
this calls for further analyses.

4.3 Information Retrieval

Finally, we analyse behaviour of CLE models in
cross-lingual information retrieval. Unlike XNLI
and CLDC, we perform CLIR in an unsupervised
fashion by comparing aggregate semantic represen-
tations of queries in L1 with aggregate semantic
representations of documents in L2. Retrieval ar-

14We implement a CNN with a single 1-D convolutional
layer (8 filters for sizes 2–5) and a 1-max pooling layer, cou-
pled with a softmax classifier. We minimize the negative log-
likelihood using the Adam algorithm (Kingma and Ba, 2014).

guably requires more language understanding than
CLDC (where we capture n-grams) and less than
XNLI (modeling subtle meaning nuances).

Evaluation Setup. We employ a simple and ef-
fective unsupervised CLIR model from (Litschko
et al., 2018)15 that (1) builds query and document
representations as weighted averages of word vec-
tors from the CLE space and (2) computes the rele-
vance score as the cosine similarity between aggre-
gate query and document vectors. We evaluate CLE
models on the standard test collections from the
CLEF 2000-2003 ad-hoc retrieval Test Suite.16 We
obtain 9 language pairs by intersecting languages
from CLEF and our BLI evaluation.

Results and Discussion. CLIR performance
(MAP scores for all 9 language pairs) is shown
in Table 5. The supervised Procrustes-based meth-
ods (PROC, PROC-B, DLV) appear to have an edge
in CLIR, with the bootstrapping PROC-B model
outperforming all other CLE methods.17 Contrary
to other downstream tasks, VECMAP is not the
best-performing unsupervised model on CLIR—
ICP performs best considering all nine language
pairs (All LPs) and MUSE is best on LPs for which
all models produced meaningful spaces (Filt. LPs).
RCSLS, the best-performing BLI model, displays
only mediocre CLIR performance.

4.4 Further Discussion
At first glance, BLI performance shows a weak and
inconsistent correlation with results in downstream
tasks. The behaviour of RCSLS is especially pe-
culiar: it is the best-performing BLI model and
it achieves the best results on CLDC by a wide
margin, but it is not at all competitive on XNLI
and falls short of other supervised models in CLIR.
Downstream results of other models seem, with a
few exceptions, to correspond to BLI trends.

To further investigate this, in Table 6 we measure
correlations (in terms of Pearson’s ρ) between ag-
gregate task performances on BLI and each down-
stream task by considering (1) all models and (2)
all models except RCSLS.18 Without RCSLS,

15The model is dubbed BWE-AGG in the original paper.
16http://catalog.elra.info/en-us/

repository/browse/ELRA-E0008/
17Similarly to the BLI evaluation, we test the significance

by applying a Student’s t-test on two lists of ranks of relevant
documents (concatenated across all test collections), produced
by two models under comparison. Even with Bonferroni cor-
rection for multiple tests, PROC-B significantly outperforms
all other CLE models at α = 0.05.

18For measuring correlation between BLI and each down-

http://catalog.elra.info/en-us/repository/browse/ELRA-E0008/
http://catalog.elra.info/en-us/repository/browse/ELRA-E0008/
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Model Dict DE-FI DE-IT DE-RU EN-DE EN-FI EN-IT EN-RU FI-IT FI-RU Avg

Supervised

PROC 1K 0.147 0.155 0.098 0.175 0.101 0.210 0.104 0.113 0.096 0.133
PROC 5K 0.255 0.212 0.152 0.261 0.200 0.240 0.152 0.149 0.146 0.196
PROC-B 1K 0.294 0.230 0.155 0.288 0.258 0.265 0.166 0.151 0.136 0.216
PROC-B 3K 0.305 0.232 0.143 0.238 0.267 0.269 0.150 0.163 0.170 0.215
DLV 5K 0.255 0.210 0.155 0.260 0.206 0.240 0.151 0.147 0.147 0.197
RCSLS 1K 0.114 0.133 0.077 0.163 0.063 0.163 0.106 0.074 0.069 0.107
RCSLS 5K 0.196 0.189 0.122 0.237 0.127 0.210 0.133 0.130 0.113 0.162

Unupervised

VECMAP – 0.240 0.129 0.162 0.200 0.150 0.201 0.104 0.096 0.109 0.155
MUSE – 0.001* 0.210 0.195 0.280 0.000* 0.272 0.002* 0.002* 0.001* 0.107
ICP – 0.252 0.170 0.167 0.230 0.230 0.231 0.119 0.117 0.124 0.182
GWA – 0.218 0.139 0.149 0.013 0.005* 0.007* 0.005* 0.058 0.052 0.072

Table 5: CLIR performance (MAP) of CLE models (the first language in each column is the query language, the
second is the language of the document collection). Numbers in bold denote the best scores in the model group.
Asterisks denote language pairs for which CLE models did not yield successful runs in BLI evaluation.

Models XNLI CLDC CLIR

All models 0.269 0.390 0.764
All w/o RCSLS 0.951 0.266 0.910

Table 6: Correlations of model-level results between
BLI and each of the three downstream tasks.

BLI results correlate strongly with XNLI and CLIR
results and weakly with CLDC results.

But why does RCSLS diverge from other mod-
els? All other models induce an orthogonal pro-
jection (using given or induced dictionaries), mini-
mizing the post-projection Euclidean distances be-
tween aligned words. In contrast, by maximizing
CSLS, RCSLS relaxes the orthogonality condition
imposed on the projection. This allows for distor-
tions of the source embedding space after projec-
tion. The exact nature of these distortions and their
impact on downstream performance of RCSLS
require further investigation. However, these find-
ings indicate that downstream evaluation is even
more important for CLE models that learn non-
orthogonal projections. For CLE models with or-
thogonal projections, downstream results seem to
be more in line with BLI performance.

This brief task correlation analysis is based on
coarse-grained model-level aggregation. The ac-
tual selection of the strongest baseline models re-
quires finer-grained tuning at the level of partic-
ular language pairs and evaluation tasks of inter-
est. Nonetheless, our experiments detect two ro-
bust baselines that should be included as indicative
reference points in future CLE research: PROC-B
(supervised) and VECMAP (unsupervised).

stream task T, we average model’s BLI performance only over
the language pairs included in the task T.

5 Conclusion

Rapid development of cross-lingual word embed-
ding (CLE) methods is not met with adequate
progress in their fair and systematic evaluation.
CLE models are commonaly evaluated only in
bilingual lexicon induction (BLI), and even the
BLI task includes a variety of evaluation setups
which are not directly comparable, hindering our
ability to correctly interpret the key results. In this
work, we have made the first step towards a com-
prehensive evaluation of CLEs. By systematically
evaluating CLE models for many language pairs
on BLI and three downstream tasks, we shed new
light on the ability of current cutting-edge CLE
models to support cross-lingual NLP. In particu-
lar, we have empirically proven that the quality
of CLE models is largely task-dependent and that
overfitting the models to the BLI task can result
in deteriorated performance in downstream tasks.
We have highlighted the most robust supervised
and unsupervised CLE models and have exposed
the need for reassessing existing baselines, as well
as for unified and comprehensive evaluation pro-
tocols. We hope that this study will encourage fu-
ture work on CLE evaluation and analysis and help
guide the development of new CLE models. . We
make the code and resources available at: https:
//github.com/codogogo/xling-eval.
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On the limitations of unsupervised bilingual dictio-
nary induction. In Proceedings of ACL, pages 778–
788.

Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and
Dan Roth. 2016. Cross-lingual models of word em-
beddings: An empirical comparison. In Proceedings
of ACL, pages 1661–1670.
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Ivan Vulić and Marie-Francine Moens. 2016. Bilingual
distributed word representations from document-
aligned comparable data. Journal of Artificial Intel-
ligence Research, 55:953–994.

Søren Wichmann, André Müller, Viveka Velupillai, Ce-
cil H Brown, Eric W Holman, Pamela Brown, Sebas-
tian Sauppe, Oleg Belyaev, Matthias Urban, Zarina
Molochieva, et al. 2018. The asjp database (version
18).

https://link.springer.com/article/10.1007/BF02278710
https://link.springer.com/article/10.1007/BF02278710
https://link.springer.com/article/10.1007/BF02278710
http://aclweb.org/anthology/D18-1330
http://aclweb.org/anthology/D18-1330
http://aclweb.org/anthology/D18-1330
http://aclweb.org/anthology/D18-1101
http://aclweb.org/anthology/D18-1101
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://aclweb.org/anthology/C12-1089
http://aclweb.org/anthology/C12-1089
https://arxiv.org/abs/1901.07291
https://arxiv.org/abs/1901.07291
http://aclweb.org/anthology/D18-1549
http://aclweb.org/anthology/D18-1549
https://www.aclweb.org/anthology/P15-1027
https://www.aclweb.org/anthology/P15-1027
http://aclweb.org/anthology/E17-1072
http://aclweb.org/anthology/E17-1072
https://arxiv.org/abs/1805.00879
https://arxiv.org/abs/1805.00879
https://arxiv.org/abs/1805.00879
http://aclweb.org/anthology/W15-1521
http://aclweb.org/anthology/W15-1521
http://aclweb.org/anthology/D17-1269
http://aclweb.org/anthology/D17-1269
https://arxiv.org/abs/1309.4168
https://arxiv.org/abs/1309.4168
http://aclweb.org/anthology/D18-1063
http://aclweb.org/anthology/D18-1063
http://aclweb.org/anthology/D18-1047
http://aclweb.org/anthology/D18-1047
http://proceedings.mlr.press/v48/peyre16.pdf
http://proceedings.mlr.press/v48/peyre16.pdf
http://aclweb.org/anthology/D18-1042
http://aclweb.org/anthology/D18-1042
http://aclweb.org/anthology/D18-1042
http://arxiv.org/abs/1706.04902
http://arxiv.org/abs/1706.04902
https://link.springer.com/article/10.1007/BF02289451
https://link.springer.com/article/10.1007/BF02289451
https://arxiv.org/abs/1702.03859
https://arxiv.org/abs/1702.03859
https://arxiv.org/abs/1702.03859
http://aclweb.org/anthology/P15-1165
http://aclweb.org/anthology/P15-1165
http://aclweb.org/anthology/P18-1072
http://aclweb.org/anthology/P18-1072
http://aclweb.org/anthology/P16-1157
http://aclweb.org/anthology/P16-1157
http://aclweb.org/anthology/P16-1024
http://aclweb.org/anthology/P16-1024
https://dl.acm.org/citation.cfm?id=2767752
https://dl.acm.org/citation.cfm?id=2767752
https://dl.acm.org/citation.cfm?id=2767752
https://dl.acm.org/citation.cfm?id=3013583
https://dl.acm.org/citation.cfm?id=3013583
https://dl.acm.org/citation.cfm?id=3013583
https://asjp.clld.org/
https://asjp.clld.org/


721

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Pro-
ceedings of NAACL-HLT, pages 1112–1122.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015.
Normalized word embedding and orthogonal trans-
form for bilingual word translation. In Proceedings
of NAACL-HLT, pages 1006–1011.

Ruochen Xu, Yiming Yang, Naoki Otani, and Yuexin
Wu. 2018. Unsupervised cross-lingual transfer of
word embedding spaces. In Proceedings of EMNLP,
pages 2465–2474.

Alexander Yeh. 2000. More accurate tests for the sta-
tistical significance of result differences. In Proceed-
ings of COLING, pages 947–953.

Yuan Zhang, David Gaddy, Regina Barzilay, and
Tommi Jaakkola. 2016. Ten pairs to tag – Multi-
lingual POS tagging via coarse mapping between
embeddings. In Proceedings of NAACL-HLT, pages
1307–1317.

Will Y. Zou, Richard Socher, Daniel Cer, and Christo-
pher D. Manning. 2013. Bilingual word embeddings
for phrase-based machine translation. In Proceed-
ings of EMNLP, pages 1393–1398.

http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N15-1104
http://aclweb.org/anthology/N15-1104
http://aclweb.org/anthology/D18-1268
http://aclweb.org/anthology/D18-1268
http://aclweb.org/anthology/C00-2137
http://aclweb.org/anthology/C00-2137
http://aclweb.org/anthology/N16-1156
http://aclweb.org/anthology/N16-1156
http://aclweb.org/anthology/N16-1156
http://aclweb.org/anthology/D13-1141
http://aclweb.org/anthology/D13-1141

