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Abstract

Recent neural network models have signifi-
cantly advanced the task of coreference res-
olution. However, current neural coreference
models are typically trained with heuristic loss
functions that are computed over a sequence
of local decisions. In this paper, we introduce
an end-to-end reinforcement learning based
coreference resolution model to directly opti-
mize coreference evaluation metrics. Specif-
ically, we modify the state-of-the-art higher-
order mention ranking approach in Lee et al.
(2018) to a reinforced policy gradient model
by incorporating the reward associated with a
sequence of coreference linking actions. Fur-
thermore, we introduce maximum entropy reg-
ularization for adequate exploration to pre-
vent the model from prematurely converging
to a bad local optimum. Our proposed model
achieves new state-of-the-art performance on
the English OntoNotes v5.0 benchmark.

1 Introduction

Coreference resolution is one of the most fun-
damental tasks in natural language processing
(NLP), which has a significant impact on many
downstream applications including information
extraction (Dai et al., 2019), question answer-
ing (Weston et al., 2015), and entity linking (Ha-
jishirzi et al., 2013). Given an input text, corefer-
ence resolution aims to identify and group all the
mentions that refer to the same entity.

In recent years, deep neural network models for
coreference resolution have been prevalent (Wise-
man et al., 2016; Clark and Manning, 2016b).
These models, however, either assumed mentions
were given and only developed a coreference link-
ing model (Clark and Manning, 2016b) or built
a pipeline system to detect mention first then re-
solved coreferences (Haghighi and Klein, 2010).
In either case, they depend on hand-crafted fea-

tures and syntactic parsers that may not generalize
well or may even propagate errors.

To avoid the cascading errors of pipeline sys-
tems, recent NLP researchers have developed end-
to-end approaches (Lee et al., 2017; Luan et al.,
2018; Lee et al., 2018; Zhang et al., 2018), which
directly consider all text spans, jointly identify
entity mentions and cluster them. The core of
those end-to-end models are vector embeddings
to represent text spans in the document and scor-
ing functions to compute the mention scores for
text spans and antecedent scores for pairs of spans.
Depending on how the span embeddings are com-
puted, the end-to-end coreference models could be
further divided into first order methods (Lee et al.,
2017; Luan et al., 2018; Zhang et al., 2018) or
higher order methods (Lee et al., 2018).

Although recent end-to-end neural coreference
models have advanced the state-of-the-art perfor-
mance for coreference resolution, they are still
trained with heuristic loss functions and make a
sequence of local decisions for each pair of men-
tions. However as studied in Clark and Manning
(2016a); Yin et al. (2018), most coreference reso-
lution evaluation measures are not accessible over
local decisions, but can only be known until all
other decisions have been made. Therefore, the
next key research question is how to integrate and
directly optimize coreference evaluation metrics in
an end-to-end manner.

In this paper, we propose a goal-directed end-
to-end deep reinforcement learning framework to
resolve coreference as shown in Figure 1. Specif-
ically, we leverage the neural architecture in Lee
et al. (2018) as our policy network, which includes
learning span representation, scoring potential en-
tity mentions, and generating a probability dis-
tribution over all possible coreference linking ac-
tions from the current mention to its antecedents.
Once a sequence of linking actions are made, our
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Figure 1: The basic framework of our policy gradient model for one trajectory. The policy network is an end-to-end
neural module that can generate probability distributions over actions of coreference linking. The reward function
computes a reward given a trajectory of actions based on coreference evaluation metrics. Solid line indicates the
model exploration and (red) dashed line indicates the gradient update.

reward function is used to measure how good the
generated coreference clusters are, which is di-
rectly related to coreference evaluation metrics.
Besides, we introduce an entropy regularization
term to encourage exploration and prevent the pol-
icy from prematurely converging to a bad local op-
timum. Finally, we update the regularized policy
network parameters based on the rewards associ-
ated with sequences of sampled actions, which are
computed on the whole input document.

We evaluate our end-to-end reinforced corefer-
ence resolution model on the English OntoNotes
v5.0 benchmark. Our model achieves the new
state-of-the-art F1-score of 73.8%, which out-
performs previous best-published result (73.0%)
of Lee et al. (2018) with statistical significance.

2 Related Work

Closely related to our work are the end-to-end
coreference models developed by Lee et al. (2017)
and Lee et al. (2018). Different from previous
pipeline approaches, Lee et al. used neural net-
works to learn mention representations and cal-
culate mention and antecedent scores without us-
ing syntactic parsers. However, their models op-
timize a heuristic loss based on local decisions
rather than the actual coreference evaluation met-
rics, while our reinforcement model directly opti-
mizes the evaluation metrics based on the rewards
calculated from sequences of actions.

Our work is also inspired by Clark and Manning
(2016a) and Yin et al. (2018), which resolve coref-
erences with reinforcement learning techniques.
They view the mention-ranking model as an agent
taking a series of actions, where each action links
each mention to a candidate antecedent. They also
use pretraining for initialization. Nevertheless,
their models assume mentions are given while
our work is end-to-end. Furthermore, we add

entropy regularization to encourage more explo-
ration (Mnih et al.; Eysenbach et al., 2019) and
prevent our model from prematurely converging to
a sub-optimal (or bad) local optimum.

3 Methodology

3.1 Task definition

Given a document, the task of end-to-end corefer-
ence resolution aims to identify a set of mention
clusters, each of which refers to the same entity.
Following Lee et al. (2017), we formulate the task
as a sequence of linking decisions for each span
i to the set of its possible antecedents, denoted as
Y(i) = {ε, 1, · · · , i − 1}, a dummy antecedent ε
and all preceding spans. In particular, the use of
dummy antecedent ε for a span is to handle two
possible scenarios: (i) the span is not an entity
mention or (ii) the span is an entity mention but
it is not coreferent with any previous spans. The
final coreference clusters can be recovered with a
backtracking step on the antecedent predictions.

3.2 Our Model

Figure 2 illustrates a demonstration of our itera-
tive coreference resolution model on a document.
Given a document, our model first identifies top
scored mentions, and then conducts a sequence
of actions a1:T = {a1, a2, · · · , aT } over them,
where T is the number of mentions and each ac-
tion at assigns mention t to a candidate antecedent
yt in Yt = {ε, 1, · · · , t − 1}. The state at time t
is defined as St = {g1, · · · ,gt−1,gt}, where gi is
the mention i’s representation.

Once our model has finished all the actions, it
observes a reward R(a1:T ). The calculated gradi-
ents are then propagated to update model param-
eters. We use the average of the three metrics:
MUC (Grishman and Sundheim, 1995), B3 (Re-
casens and Hovy, 2011) and CEAFφ4 (Cai and



662

(1) (2)

(3) (4)

(5) Observe Sample

(2)

Act
(1) (2)

(3) (4)

(5)
Env 
update

(1) (2)

(3) (4)

(5)

(a) State: St (b) Policy network: pθ(at|St) (c) Action  (e) Update env and 
compute reward

(d) Execute action

Observe Sample Act
Env 
update Stop:1

Reward: r

Stop:0

(1) (2)

(3) (4)

(5)

(6)

(1) (2)

(3) (4)

(5)

(6)

(1) (2)

(3) (4)

(5)

(6)

Figure 2: A demonstration of our reinforced coreference resolution method on a document with 6 mentions. The
upper and lower rows correspond to step 5 and 6 respectively, in which the policy network selects mention (2)
as the antecedent of mention (5) and leaves mention (6) as a singleton mention. The red (gray) nodes represent
processed (current) mentions and edges between them indicate current predicted coreferential relations. The gray
rectangles around circles are span embeddings and the reward is calculated at the trajectory end.
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Figure 3: Architecture of the policy network. The com-
ponents in dashed square iteratively refine span repre-
sentations. The last layer is a masked softmax layer that
computes probability distribution only over the candi-
date antecedents for each mention. We omit the span
generation and pruning component for simplicity.

Strube, 2010) as the reward. Following Clark and
Manning (2016a), we assume actions are indepen-
dent and the next state St+1 is generated based on
the natural order of the starting position and then
the end position of mentions regardless of action
at.
Policy Network: We adopt the state-of-the-art
end-to-end neural coreferene scoring architecture
from Lee et al. (2018) and add a masked softmax
layer to compute the probability distribution over
actions, as illustrated in Figure 3. The success of
their approach lies in two aspects: (i) a coarse-to-
fine pruning to reduce the search space, and (ii)
an iterative procedure to refine the span represen-
tation with an self-attention mechanism that av-

erages over the previous round’s representations
weighted by the normalized coreference scores.

Given the state St and current network parame-
ters θ, the probability of action at choosing yt is:

pθ(at = yt|St) =
exp (s(t, yt))∑

y′∈Yt exp (s(t, y′))
(1)

where s(i, j) is the pairwise coreference score be-
tween span i and span j defined as following:

s(i, j) = sm(i) + sm(j) + sc(i, j) + sa(i, j) (2)

For the dummy antecedent, the score s(i, ε) is
fixed to 0. Here sm(.) is the mention score func-
tion, sc(., .) is a bilinear score function used to
prune antecedents, and sa(., .) is the antecedent
score function. Let gi denote the refined represen-
tation for span i after gating, the three functions
are sm(i) = θTmFFNNm(gi), sc(i, j) = gTi Θcgj ,
and sa(i, j) is:

sa(i, j) = θTa FFNNa([gi,gj ,gi ◦ gj , φ(i, j)])

where FFNN denotes a feed-forward neural net-
work and ◦ denotes the element-wise product. θm,
Θc and θa are network parameters. φ(i, j) is the
feature vector encoding speaker and genre infor-
mation from metadata.
The Reinforced Algorithm: We explore using
the policy gradient algorithm to maximize the ex-
pected reward:

J(θ) = Ea1:T∼pθ(a)R(a1:T ) (3)

Computing the exact gradient of J(θ) is infeasible
due to the expectation over all possible action se-
quences. Instead, we use Monte-Carlo methods
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Model MUC B3 CEAFφ4

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Avg. F1
Wiseman et al. (2016) 77.5 69.8 73.4 66.8 57.0 61.5 62.1 53.9 57.7 64.2
Clark and Manning (2016a) 79.2 70.4 74.6 69.9 58.0 63.4 63.5 55.5 59.2 65.7
Clark and Manning (2016b) 79.9 69.3 74.2 71.0 56.5 63.0 63.8 54.3 58.7 65.3
Lee et al. (2017) 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
Zhang et al. (2018) 79.4 73.8 76.5 69.0 62.3 65.5 64.9 58.3 61.4 67.8
Luan et al. (2018)* 78.6 77.1 77.9 66.3 65.4 65.9 66.0 63.1 64.5 69.4
Lee et al. (2018)* 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0
Our base reinforced model 79.0 76.9 77.9 66.8 64.9 65.8 66.5 63.0 64.7 69.5
+ Entropy Regularization 79.6 77.2 78.4 70.7 65.1 67.8 67.6 63.4 65.4 70.5
+ ELMo embedding* 85.4 77.9 81.4 77.9 66.4 71.7 70.6 66.3 68.4 73.8

Table 1: Experimental results with MUC, B3 and CEAFφ4 metrics on the test set of English OntoNotes. The
models marked with * utilized word embedding from deep language model ELMo (Peters et al., 2018). The F1
improvement is statistically significant under t-test with p < 0.05, compared with Lee et al. (2018).

to approximate the actual gradient by randomly
samplingNs trajectories according to pθ and com-
pute the gradient only over the sampled trajecto-
ries. Meanwhile, following Clark and Manning
(2016a), we subtract a baseline value from the re-
ward to reduce the variance of gradient estimation.
The gradient estimate is as follows:

∇θJ(θ) ≈ 1

Ns

Ns∑
i=1

T∑
t=1

∇θ log pθ(ait|Sit)(Rτi − b)

where Ns is the number of sampled trajectories,
τi = {ai1, · · · aiT } is the ith sampled trajectory
and b =

∑Ns
i=1R(τi)/Ns is the baseline reward.

The Entropy Regularization: To prevent our
model from being stuck in highly-peaked polices
towards a few actions, an entropy regularization
term is added to encourage exploration. The final
regularized policy gradient estimate is as follows:

∇θJ(θ) ≈ 1

Ns

Ns∑
i=1

T∑
t=1

∇θ
[

log pθ(ait|Sit) + λexpr

pθ(ait|Sit) log pθ(ait|Sit)
]
(Rτi − b)

where λexpr ≥ 0 is the regularization parameter
that controls how diverse our model can explore.
The larger the λexpr is, the more diverse our model
can explore. If λexpr → ∞, all actions will be
sampled uniformly regardless of current policies.
To the contrary, if λexpr = 0, all actions will be
sampled based on current polices.

Pretraining: We pretrain the policy network pa-
rameterized by θ using the loss function below:

L(θ) = −
N∑
i=1

∑
j∈Yi

I(i, j) log (p(j|i; θ)) (4)

where N is the number of mentions, I(i, j) = 1
if mention i and j are coreferred, and 0 otherwise.
Yi is the set of candidate antecedents of mention i.

4 Experiments

We evaluate our model on the English OntoNotes
v5.0 (Pradhan et al., 2011), which contains 2,802
training documents, 343 development documents,
and 348 test documents. We reuse the hyperpa-
rameters and evaluation metrics from Lee et al.
(2018) with a few exceptions. First, we pretrain
our model using Eq. (4) for around 200K steps
and use the learned parameters for initialization.
Besides, we set the number of sampled trajecto-
ries Ns = 100, tune the regularization parameter
λexpr in {10−5, 10−4, 0.001, 0.01, 0.1, 1} and set
it to 10−4 based on the development set.

We use three standard metrics: MUC (Grish-
man and Sundheim, 1995), B3 (Recasens and
Hovy, 2011) and CEAFφ4 (Cai and Strube, 2010).
For each metric, we report the precision, recall and
F1 score. The final evaluation is the average F1 of
the above three metrics.

4.1 Results

In Table 1, we compare our model with the
coreference systems that have produced signifi-
cant improvement over the last 3 years on the
OntoNotes benchmark. The reported results are
either adopted from their papers or reproduced
from their code. The first section of the table lists
the pipeline models, while the second section lists
the end-to-end approaches. The third section lists
the results of our model with different variants.
Note that Luan et al. (2018)’s method contains 3
tasks: named entity recognition, relation inference
and coreference resolution and we disable the re-
lation inference task and train the other two tasks.

Built on top of the model in Lee et al. (2018) but
excluding ELMo, our base reinforced model im-
proves the average F1 score around 2 points (sta-
tistical significant t-test with p < 0.05) compared
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with Lee et al. (2017); Zhang et al. (2018). Be-
sides, it is even comparable with the end-to-end
multi-task coreference model that has ELMo sup-
port (Luan et al., 2018), which demonstrates the
power of reinforcement learning combined with
the state-of-the-art end-to-end model in Lee et al.
(2018). Regarding our model, using entropy reg-
ularization to encourage exploration can improve
the result by 1 point. Moreover, introducing the
context-dependent ELMo embedding to our base
model can further boosts the performance, which
is consistent with the results in Lee et al. (2018).
We also notice that our full model’s improvement
is mainly from higher precision scores and reason-
ably good recall scores, which indicates that our
reinforced model combined with more active ex-
ploration produces better coreference scores to re-
duce false positive coreference links.

Overall, our full model achieves the state-of-
the-art performance of 73.8% F1-score when us-
ing ELMo and entropy regularization (compared
to models marked with * in Table 1), and our ap-
proach simultaneously obtains the best F1-score of
70.5% when using fixed word embedding only.

Model Prec. Rec. F1
Our full model 89.6 82.2 85.7

Lee et al. (2018) 86.2 83.7 84.9

Table 2: The overall mention detection results on the
test set of OntoNotes. The F1 improvement is statisti-
cally significant under t-test with p < 0.05.

Since mention detection is a subtask of corefer-
ence resolution, it is worthwhile to study the per-
formance. Table 2 shows the mention detection
results on the test set. Similar to coreference link-
ing results, our model achieves higher precision
and F1 score, which indicates that our model can
significantly reduce false positive mentions while
it can still find a reasonable number of mentions.

4.2 Analysis and Discussion

Ablation Study: To understand the effect of dif-
ferent components, we conduct an ablation study
on the development set as illustrated in Table 3.
Clearly, removing entropy regularization deterio-
rates the average F1 score by 1%. Also, disabling
coarse-to-fine pruning or second-order inference
decreases 0.3/0.5 F1 score. Among all the com-
ponents, ELMo embedding makes the most con-
tribution and improves the result by 3.1%.

Model Avg. F1
Full Model 74.1
w/o entropy regularization 73.1
w/o coarse-to-fine pruning 73.8
w/o second-order inference 73.6
w/o ELMo embedding 71.0

Table 3: Ablation study on the development set.
“Coarse-to-fine pruning” and “second-order inference”
are adopted from Lee et al. (2018)

Impact of the parameter λexpr: Since the param-
eter λexpr directly controls how diverse the model
is explored during training, it is necessary to study
its effect on the model performance. Figure 4
shows the avg. F1 score on the development set
for our full model and Lee et al. (2018). We ob-
serve that λexpr does have a strong effect on the
performance and the best value is around 10−4.
Besides, our full model consistently outperforms
Lee et al. (2018) over a wide range of λexpr.
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Figure 4: Avg. F1 score on the development set with
different regularization parameter λexpr. The result of
Lee et al. (2018) is also plotted for comparison, which
is a flat line since it does not depend on λexpr.

5 Conclusion

We present the first end-to-end reinforcement
learning based coreference resolution model. Our
model transforms the supervised higher order
coreference model to a policy gradient model
that can directly optimizes coreference evaluation
metrics. Experiments on the English OntoNotes
benchmark demonstrate that our full model in-
tegrated with entropy regularization significantly
outperforms previous coreference systems.

There are several potential improvements to our
model as future work, such as incorporating men-
tion detection result as a part of the reward. An-
other interesting direction would be introducing
intermediate step rewards for each action to bet-
ter guide the behaviour of the RL agent.
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