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Abstract
Zero-shot learning in Language & Vision is the
task of correctly labelling (or naming) objects
of novel categories. Another strand of work in
L&V aims at pragmatically informative rather
than “correct” object descriptions, e.g. in ref-
erence games. We combine these lines of re-
search and model zero-shot reference games,
where a speaker needs to successfully refer to
a novel object in an image. Inspired by models
of “rational speech acts”, we extend a neural
generator to become a pragmatic speaker rea-
soning about uncertain object categories. As
a result of this reasoning, the generator pro-
duces fewer nouns and names of distractor cat-
egories as compared to a literal speaker. We
show that this conversational strategy for deal-
ing with novel objects often improves commu-
nicative success, in terms of resolution accu-
racy of an automatic listener.

1 Introduction

It is commonly agreed that even massive resources
for language & vision (Deng et al., 2009; Chen
et al., 2015; Krishna et al., 2017) will never fully
cover the huge range of objects to be found “in
the wild”. This motivates research in zero-shot
learning (Lampert et al., 2009; Socher et al., 2013;
Hendricks et al., 2016), which aims at predicting
correct labels or names for objects of novel cat-
egories, typically via external lexical knowledge
such as, e.g., word embeddings.

More generally, however, uncertain knowledge
of the world that surrounds us, including novel ob-
jects, is not only a machine learning challenge: it
is simply a very common aspect of human com-
munication, as speakers rarely have perfect rep-
resentations of their environment. Precisely the
richness of verbal interaction allows us to com-
municate these uncertainties and to collaborate to-
wards communicative success (Clark and Wilkes-
Gibbs, 1986). Figure 1 illustrates this general

refexp: right thingy refexp: left blue

Figure 1: RefCOCO expressions referring to diffi-
cult/unknown objects

point with two examples from the RefCOCO cor-
pus (Yu et al., 2016), providing descriptions of vi-
sual objects from an interactive reference game.
Here, the use of the unspecific thingy and the
omission of a noun in left blue can be seen as prag-
matically plausible strategies that avoid confusing
the listener with potentially inaccurate names for
difficult-to-name objects. While there has been a
lot of recent and traditional research on pragmat-
ically informative object descriptions in reference
games (Mao et al., 2016; Yu et al., 2017; Cohn-
Gordon et al., 2018; Dale and Reiter, 1995; Frank
and Goodman, 2012), conversational strategies for
dealing with uncertainties like novel categories are
largely understudied in computational pragmatics,
though see, e.g., work by Fang et al. (2014).

In this paper, we frame zero-shot learning as
a challenge for pragmatic modeling and explore
zero-shot reference games, where a speaker needs
to describe a novel-category object in an image to
an addressee who may or may not know the cat-
egory. In contrast to standard reference games,
this game explicitly targets a situation where rela-
tively common words like object names are likely
to be more inaccurate than other words like e.g. at-
tributes. We hypothesize that Bayesian reasoning
in the style of Rational Speech Acts, RSA (Frank
and Goodman, 2012), can extend a neural gener-
ation model trained to refer to objects of known
categories, towards zero-shot learning. We im-
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plement a Bayesian decoder reasoning about cat-
egorical uncertainty and show that, solely as a re-
sult of pragmatic decoding, our model produces
fewer misleading object names when being uncer-
tain about the category (just as the speakers did in
Figure 1). Furthermore, we show that this strategy
often improves reference resolution accuracies of
an automatic listener.

2 Background

We investigate referring expression generation
(REG henceforth), where the goal is to compute an
utterance u that identifies a target referent r among
other referents R in a visual scene. Research on
REG has a long tradition in natural language gen-
eration (Krahmer and Van Deemter, 2012), and
has recently been re-discovered in the area of Lan-
guage & Vision (Mao et al., 2016; Yu et al., 2016;
Zarrieß and Schlangen, 2018). These latter models
for REG essentially implement variants of a stan-
dard neural image captioning architecture (Vinyals
et al., 2015), combining a CNN and an LSTM to
generate an utterance directly from objects marked
via bounding boxes in real-world images.

Our approach combines such a neural REG
model with a reasoning component that is inspired
by theory-driven Bayesian pragmatics and RSA
(Frank and Goodman, 2012). We will briefly
sketch this approach here. The starting point in
RSA is a model of a “literal speaker”, S0(u|r),
which generates utterances u for the target r. The
“pragmatic listener” L0 then assigns probabilities
to all referents R based on the model S0:

L0(r|u) ∝
S0(u|r) ∗ P (r)∑

ri∈R S0(u|ri) ∗ P (ri)
(1)

In turn, the “pragmatic speaker” S1 reasons
about which utterance is more discriminative and
will be resolved to the target by the pragmatic lis-
tener:

S1(u|r) ∝
L0(r|u) ∗ P (u)∑

ui∈U L0(r|ui) ∗ P (ui)
(2)

(S0 and L0 are components of the recursive rea-
soning of S1 and not in fact separate agents.)

There has been some previous work on leverag-
ing RSA-like reasoning for neural language gen-
eration. For instance, Cohn-Gordon et al. (2018)
implement the literal speaker as a neural caption-
ing model trained on non-discriminative image de-
scriptions. On top of this neural semantics, they

build a pragmatic speaker that produces more dis-
criminative captions, applying equation 2 at each
step of the inference process. They evaluate their
model in a reference game where an automatic lis-
tener (trained on a different portion of the image
data) is used to test whether the generated caption
singles out the target image among a range of dis-
tractor images. A range of related articles have
extended neural captioning models with decod-
ing procedures geared towards vocabulary expan-
sion (Anderson et al., 2017; Agrawal et al., 2018)
or contextually discriminative scene descriptions
(Andreas and Klein, 2016; Vedantam et al., 2017).

Previous work on REG commonly looks at vi-
sual scenes with multiple referents of identical or
similar categories. Here, speakers typically pro-
duce expressions composed of a head noun, which
names the category of the target, and a set of at-
tributes, which distinguish the target from distrac-
tor referents of the same category (Krahmer and
Van Deemter, 2012). Our work adds an additional
dimension of uncertainty to this picture, namely a
setting where the category of the target itself might
not be known to the model and, hence, cannot
be named with reasonable accuracy. In this set-
ting, we expect that a literal speaker (e.g. a neural
REG model trained for a restricted set object cate-
gories) generates misleading references, e.g. con-
taining incorrect head nouns, as it has no means of
“knowing” which words risk being inaccurate for
referring to novel objects. The following Section
3 describes how we modify the RSA approach for
reasoning in such a zero-shot reference game.

3 Model

Inspired by the approach in Section 2, we model
our pragmatic zero-shot speaker as a neural gener-
ator (the literal speaker) that is decoded via a prag-
matic listener. In contrast to the listener in Equa-
tion (1), however, our listener possesses an addi-
tional latent variable C, which reflects its beliefs
about the target’s category. This hidden belief dis-
tribution will, in turn, allow the pragmatic speaker
to reason about how accurate the words produced
by the literal speaker might be.

Our Bayesian listener will assign a probability
P (r|u) to a referent r conditioned on the utter-
ance u by the (literal) speaker. To do that, it needs
to calculate P (u|r), as in Equation 1. While pre-
vious work on RSA typically equates P (u|r) with
S0(u|r), we are going to modify the way this prob-
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ability is calculated. Thus, we assume that our lis-
tener has hidden beliefs about the category of the
referent, that we can marginalize over as follows:

P (u|r) =
∑
ci∈C

P (u, ci|r) =
∑
ci∈C

P (u, ci, r)

P (r)

=
∑
ci∈C

P (r) ∗ P (ci|r) ∗ P (u|ci, r)
P (r)

∝
∑
ci∈C

P (ci|r) ∗ P (u|ci)

(3)

As a simplification, we condition u only on ci,
instead of P (u|ci, r). This will allow us to esti-
mate P (u|ci) directly via maximum likelihood on
the training data, i.e. in terms of word probabilities
conditioned on categories (observed in training) .
The pragmatic listener is defined as follows:

L0(r|u) =
P (u|r) ∗ P (r)

P (u)

∝
∑
ci∈C

P (ci|r) ∗ P (u|ci)
(4)

For instance, let’s consider a game with 3 cat-
egories and two words, the less specific left with
P (u|ci) = 1

2 for all ci ∈ C and the more specific
bus with P (u|c1) = 9

10 , P (u|c2) =
1
10 , P (u|c3) =

1
10 . When the listener is uncertain and pre-
dicts P (ci|r) = 1

3 for all ci ∈ C, this yields
L0(r|left) = 0.5 and L0(r|bus) = 0.36, mean-
ing that the less specific left will be more likely re-
solved to the target r. Vice versa, when the listener
is more certain, e.g. P (c1|r) = 9

10 , P (c2|r) =
1
10 , P (c3|r) =

1
10 , more specific words will be pre-

ferred: L0(r|bus) = 0.83 and L0(r|left) = 0.55.
The definition of the pragmatic speaker is

straightforward:

S1(u|r) = S0(u|r) ∗ L0(r|u)α (5)

Intuitively, S1 guides its potentially over-
optimistic language model (S0) to be more cau-
tious in producing category-specific words, e.g.
nouns. The idea is that the degree to which a
word is category-specific and, hence, risky in a
zero-shot reference game can be determined on
descriptions for objects of known categories and
is expressed in P (u|c) . For unknown categories,
the pragmatic speaker can deliberately avoid these

category-specific words and resort to describing
other visual properties like colour or location.1

Similar to Cohn-Gordon et al. (2018), we use
incremental, word-level inference to decode the
pragmatic speaker model in a greedy fashion:

St1(w|r, ut−1) = St0(w|r, ut−1) ∗ L0(r|w)α+β
(6)

At each time step, we generate the most likely
word determined via S0 and L0. The parameters
α and β will determine the balance between the
literal speaker and the listener. While α is simply
a constant (set to 2, in our case), β is zero as long
as w does not occur in ut−1 and increases when it
does occur in ut−1 (it is then set to 2). This en-
sures that there is a dynamic tradeoff between the
speaker and the listener, i.e. for words that occur
in previously generated utterance prefix, the lan-
guage model probabilities (S0) will have compar-
itively more weight than for new words.

4 Exp. 1: Referring without naming?

Section 3 has introduced a model for referring ex-
pression generation (REG) in a zero-shot refer-
ence game. This model, and its pragmatic decod-
ing component in particular, is designed to avoid
words that are specific to categories when there is
uncertainty about the category of a target object, in
favour of words that are not specific to categories
like, e.g., colour or location attributes. In the fol-
lowing evaluation, we will test how this reasoning
component actually affects the referring behavior
of the pragmatic speaker as compared to the literal
speaker, which we implement as neural supervised
REG model along the lines of previous work (Mao
et al., 2016; Yu et al., 2016). As object names typ-
ically express category-specific information in re-
ferring expressions, we focus the comparison on
the nouns generated in the systems’ output.

4.1 Training

Data We conduct experiments on RefCOCO
(Yu et al., 2016) referring expressions to ob-
jects in MSCOCO (Lin et al., 2014) images.
As is commonly done in zero-shot learning, we
manually select a range of different categories
as targets for our zero-shot game, cf. (Hen-
dricks et al., 2016). Out of the 90 categories

1We leave it for future work to combine this approach
with a listener reasoning about distractor objects in the scene
(as in Equation 1).
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in MSCOCO, we select 6 medium-frequent cat-
egories (cat,horse,cup,bottle,bus,train), that are
similar to those in (Hendricks et al., 2016). For
each category, we divide the training set of Ref-
COCO into a new train-test split such that all im-
ages with an instance of the target zero-shot cate-
gory are moved to the test set.

Generation Model (S0) We implement a stan-
dard CNN-LSTM model for REG, trained on pairs
of image regions and referring expressions. The
architecture follows the baseline version of (Yu
et al., 2016). We crop images to the target region,
and obtain the fc features from VGG (Simonyan
and Zisserman, 2014). We set the word embedding
layer size to 512, and the hidden state to 1024.
We optimized with ADAM, set the batch size to
32 and the learning rate to 0.0004. The number
of training epochs is 5 (verified on the RefCOCO
validation set).

Uncertainty Estimation Similar to previous
work in zero-shot learning, we factor out the prob-
lem of automatically determining the model’s cer-
tainty with respect to an object’s category, cf.
(Lampert et al., 2009; Socher et al., 2013): for
computing L0(r|u), we set P (ci|r) to be a uni-
form distribution over categories, meaning that the
model is maximally uncertain about the referent’s
category. We leave exploration of a more realistic
uncertainty or novelty prediction to future work.

4.2 Evaluation

Measures We test to what extent our mod-
els produces incorrect names for novel objects.
First, for each zero-shot category, we define a
set of distractor nouns (distr-noun), which cor-
respond to the names of the remaining categories
in MSCOCO. Any choice of noun from that set
would be wrong, as the categories are pairwise dis-
junct; the exploration of other nouns (e.g. thingy,
animal) is left for future work. In Table 1, “%
distr-noun” refers to how many expressions gener-
ated for an instance of a zero-shot category con-
tain such an incorrect distractor noun. Second,
we count how many generated expressions do not
contain any noun (no-noun) at all, according to
the NLTK POS tagger.

Results Table 1 shows that the proportion of out-
put expressions containing a distractor noun de-
creases markedly from S0 to S1, whereas the pro-
portion of expression without any name increases

Model % distr-noun % no-noun

cat S0 0.606 0.107
S1 0.484 0.193

horse S0 0.683 0.085
S1 0.572 0.30

cup S0 0.627 0.079
S1 0.332 0.172

bottle S0 0.398 0.275
S1 0.166 0.562

bus S0 0.743 0.066
S1 0.612 0.247

train S0 0.759 0.166
S1 0.558 0.37

Table 1: Names and nouns contained in generation out-
put for two speakers (S0, S1)

Target (unknown cat):
left horse

S0: left person 7

S1: left black 3

Figure 2: Qualitative Example

markedly from S0 to S1. First of all, this sug-
gests that our baseline model S0 does, in many
cases, not know what it does not know, i.e. it is
not aware that it encounters a novel category and
frequently generates names of known categories
encountered during training. However, even in
this simple model, we find a certain portion of
output expressions that do not contain any name
(e.g. 27% for bottle, but only 6% for bus). The
results also confirm our hypothesis that the prag-
matic speaker S1 avoids to produce “risky” or spe-
cific words that are likely to be confused for un-
certain or unknown categories. It is worth stress-
ing here that this behaviour results entirely from
the Bayesian reasoning that S1 uses in decoding;
the model does not have explicit knowledge of lin-
guistic categories like nouns, names or other taxo-
nomic knowledge.

5 Exp. 2: Communicative success

The Experiment in Section 4 found that the prag-
matic speaker uses less category-specific vocabu-
lary when referring to objects of novel categories
as compared to a literal speaker. Now, we need
to establish whether the resulting utterances still
achieve communicative success in the zero-shot
reference game, despite using less specific vocab-
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Zero-shot category Similar category

cat dog, cow
horse dog, cow
cup bowl, bottle, wine glass
bottle vase, wine glass
bus car, train, truck
train car, bus, truck

Table 2: Target and distractor categories used for test-
ing in Exp. 2

ulary (as shown above). We test this automati-
cally using a model of a “competent” listener, that
knows the respective object categories. This is
supposed to approximate a conversation between
a system and a human that has more elaborate
knowledge of the world than the system.

The evaluation listener One pitfall of using a
trained listener model (instead of a human) for
task-oriented evaluation is that this model might
simply make the same mistakes as the speaker
model as it is trained on similar data. To avoid this
circularity, Cohn-Gordon et al. (2018) train their
listener on a different subset of the image data.
Rather than training on different data, we opt for
training the listener on better data, as we want it
to be as strict and human-like as possible. For in-
stance, we do not want our listener model to re-
solve an expression like the brown cat to a dog.
We train Seval as a neural speaker on the entire
training set and give Leval access to ground-truth
object categories. The ground-truth category cr of
a referent r is used to calculate P (nu|cr) where
nu is the object name contained in the utterance u.
P (nu|cr) is estimated on the entire training set.

Leval(r|u, cr) = Seval(u|r) ∗ P (nu|cr) (7)

P (nu|cr) will be close to zero if the utterance
contains a rare or wrong name for the category cr,
andLeval will then assign a very low probability to
this referent. We apply this listener to all referents
in the scene and take the argmax.

Test set The set TS-image pairs each target with
other (annotated!) objects in the same image, a
typical set-up for reference resolution.As many
images in RefCOCO only have distractors of the
same category as the target (which is not ideal
for our purposes), we randomly sample an addi-
tional test set called TS-distractors, pairing zero-

Model TS-image TS-distractors

cat S0 0.516 0.343
S1 0.603 0.386

horse S0 0.644 0.096
S1 0.589 0.150

cup S0 0.721 0.483
S1 0.674 0.540

bottle S0 0.502 0.275
S1 0.517 0.306

bus S0 0.789 0.405
S1 0.759 0.361

train S0 0.658 0.202
S1 0.667 0.305

Table 3: Reference resolution accuracies obtained from
listener Leval on expressions by S0, S1

shot targets with 4 distractors of a similar cate-
gory, which we defined manually, shown in Table
2. This is slightly artificial as objects are taken
out of the coherent spatial context, but it helps us
determining whether our model can successfully
refer in a context with similar, but not identical,
categories.

Results As shown in Table 3, the S1 model im-
proves the resolution accuracy for all categories on
TS-distractors, except for bus. On TS-image, res-
olution accuracies are generally much higher and
the comparison between S0 and S1 gives mixed re-
sults. We take this as positive evidence that S1 im-
proves communicative success in a relevant num-
ber of cases, but it also indicates that combining
this model with the more standard RSA approach
could be promising. Figure 2 shows a qualitative
example for S1 being more successful than S0.

6 Conclusion

We have presented a pragmatic approach to mod-
eling zero-shot reference games, showing that
Bayesian reasoning inspired by RSA can help de-
coding a neural generator that refers to novel ob-
jects. The decoder is based on a pragmatic lis-
tener that has hidden beliefs about a referent’s cat-
egory, which leads the pragmatic speaker to use
fewer nouns when being uncertain about this cate-
gory. While some aspects of the experimental set-
ting are, admittedly, simplified (e.g. compilation
of an artificial test set, uncertainty estimation), we
believe that this is an encouraging result for scal-
ing models in computational pragmatics to real-
world conversation and its complexities.
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