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Abstract

This paper investigates the advantages and
limits of data programming for the task
of learning discourse structure. The data
programming paradigm implemented in the
Snorkel framework allows a user to label train-
ing data using expert-composed heuristics,
which are then transformed via the “generative
step” into probability distributions of the class
labels given the training candidates. These re-
sults are later generalized using a discrimina-
tive model. Snorkel’s attractive promise to cre-
ate a large amount of annotated data from a
smaller set of training data by unifying the out-
put of a set of heuristics has yet to be used for
computationally difficult tasks, such as that of
discourse attachment, in which one must de-
cide where a given discourse unit attaches to
other units in a text in order to form a coher-
ent discourse structure. Although approaching
this problem using Snorkel requires significant
modifications to the structure of the heuristics,
we show that weak supervision methods can
be more than competitive with classical super-
vised learning approaches to the attachment
problem.

1 Introduction

Discourse structures for texts represent relational
semantic structures that convey causal, topical, ar-
gumentative relations inter alia or more gener-
ally coherence relations. Following (Muller et al.,
2012; Li et al., 2014; Morey et al., 2018), we rep-
resent them as dependency structures or graphs
containing a set of nodes that represent discourse
units (DUs), or instances of propositional content,
and a set of labelled arcs that represent coherent
relations between DUs. For dialogues with mul-
tiple interlocutors, extraction of their discourse
structures could provide useful semantic informa-
tion to the “downstream” models used, for exam-
ple, in the production of intelligent meeting man-
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agers or the analysis of user interactions in on-
line fora. However, despite considerable efforts
on computational discourse-analysis (Duverle and
Prendinger, 2009; Joty et al., 2013; Ji and Eisen-
stein, 2014; Surdeanu et al., 2015; Yoshida et al.,
2014; Li et al., 2016), we are still a long way from
usable discourse models, especially for dialogue.
The problem of extracting full discourse structures
is difficult: standard supervised models struggle to
capture the sparse long distance attachments, even
when relatively large annotated corpora are avail-
able. In addition, the annotation process is time
consuming and often fraught with errors and dis-
agreements, even among expert annotators. This
motivated us to explore a weak supervision ap-
proach, data programming (Ratner et al., 2016), in
which we exploit expert linguistic knowledge in a
more compact and consistent rule-based form.

In our study, we restrict the structure learning
problem to predicting edges or attachments be-
tween DU pairs in the dependency graph. After
training a supervised deep learning algorithm to
predict attachments on the STAC corpus', we then
constructed a weakly supervised learning system
in which we used 10% of the corpus as a develop-
ment set. Experts on discourse structure wrote a
set of attachment rules, Labeling Functions (LFs),
with reference to this development set. Although
the whole of the STAC corpus is annotated, we
treated the remainder of the corpus as unseen/u-
nannotated data in order to simulate the conditions
in which the snorkel framework is meant to be
used, i.e. where there is a large amount of unla-
beled data but where it is only feasible to hand la-
bel a relatively small portion of it. Accordingly,
we applied the completed LFs to our “unseen”
training set, 80% of the corpus, and used the final
10% as our test set.
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After applying the LFs to the unannotated data
and training the generative model, the F1 score for
attachment was 4 points higher than that for the
supervised method, showing that hybrid learning
architectures combining expert linguistic concep-
tual knowledge with data-driven techniques can
be highly competitive with standard learning ap-
proaches.

2 State of the Art

Given that our interest lies in the analysis of mul-
tiparty dialogue, we followed (Afantenos et al.,
2015; Perret et al., 2016) and used the STAC cor-
pus, in which dialogue structures are assumed
to be directed acyclical graphs (DAG) as in
SDRT? (Asher and Lascarides, 2003; Asher et al.,
2016). An SDRT discourse structure is a graph,
(V,Eq, Ea, ¢, Last), where: V is a set of nodes
or discourse units (DUs); By C V2 is a set of
edges between DUs representing coherence rela-
tions; Fo C V2 represents a dependency relation
between DUs; ¢: Ey — R is a labeling function
that assigns a semantic type to an edge in E; from
a set R of discourse relation types, and Last is a
designated element of 1/ giving the last DU rela-
tive to textual or temporal order. E is used to rep-
resent Complex Discourse Units (CDUs), which
are clusters of two or more DUs which are con-
nected as an ensemble to other DUs in the graph.
As learning this recursive structure presents diffi-
culties beyond the scope of this paper, we followed
a “flattening” strategy similar to (Muller et al.,
2012) to remove CDUs. This process yields a set
V'x, which is V' without CDUs, and a set E'xq, a
flattened version of Fj.

To build an SDRT discourse structure, we need
to: (i) segment the text into DUs; (ii) predict the at-
tachments between DU, i.e. identify the elements
in E7; (iii) predict the semantic type of the edge in
F. This paper focuses on step (ii). Our dialogue
structures are thus of the form (V'x, E'x;,Last).
Step (ii) is a difficult problem for automatic pro-
cessing: attachments are theoretically possible be-
tween any two DUs in a dialogue or text, and often
graphs include long-distance relations. (Muller
et al., 2012) is the first paper we know of on the
discourse parsing attachment problem for mono-
logue. It also targets a restricted version of an
SDRT graph. It trains a simple MaxEnt algorithm
to produce probability distributions over pairs of
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elementary discourse units, a “local model”, with
a positive F1 attachment score of 63.5; global de-
coding constraints produce a slight improvement
in attachment scores. (Afantenos et al., 2015) uses
a similar strategy on an early version of the STAC
corpus. (Perret et al., 2016) targets a more elabo-
rate approximation of SDRT graphs on a later ver-
sion of the STAC corpus and reports a local model
F1 attachment of .483. It then uses Integer Lin-
ear Programming (ILP) to encode global decod-
ing constraints to improve the F1 attachment score
(0.689).

(Ratner et al., 2016) introduced the data pro-
gramming paradigm, along with a framework,
Snorkel (Ratner et al., 2017), which uses a weak
supervision method (Zhou, 2017), to apply labels
to large data sets by way of heuristic labeling func-
tions that can access distant, disparate knowledge
sources. These labels are then used to train classic
data-hungry machine learning (ML) algorithms.
The crucial step in the data programming process
uses a generative model to unify the noisy labels
by generating a probability distribution for all la-
bels for each data point. This set of probabili-
ties replaces the ground-truth labels in a standard
discriminative model outfitted with a noise-aware
loss function and trained on a sufficiently large
data set.

3 The STAC Annotated Corpus

3.1 Overview

While earlier versions only included linguistic
moves by players, the latest version of STAC is a
multi-modal corpus of multi-party chats between
players of an online game (Asher et al., 2016;
Hunter et al., 2018). It includes 2,593 dialogues
(each with a weakly connected DAG discourse
structure), 12,588 “linguistic” DUs, 31,811 “non-
linguistic” DUs and 31,251 semantic relations. A
dialogue begins at the beginning of a player’s turn,
and ends at the end of that player’s turn. In the
interim, players can bargain with each other or
make spontaneous conversation. These player ut-
terances are the “linguistic” turns. In addition
the corpus contains information given visually in
the game interface but transcribed in the corpus
into Server or interface messages, “non-linguistic”
turns (Hunter et al., 2018). All turns are seg-
mented into DUs, and these units are then con-
nected by semantic relations.



3.2 Data Preparation

To concentrate on the attachment task, we imple-
mented the following simplifying measures on the
corpus used:

1. Roughly 56% of the dialogues in the corpus
contain only non-linguistic DUs. The dis-
course structure of these dialogues are more
regular and thus less challenging; so we ig-
nore these dialogues for our prediction task.

. 98% of the discourse relations in our devel-
opment corpus span 10 DUs or less. To re-
duce class imbalance, we restricted the rela-
tions we consider to a distance of < 10.

. Following (Muller et al., 2012; Perret et al.,
2016) we “flatten” CDUs by connecting all
relations incoming or outgoing from a CDU
to the “head” of the CDU, or its first DU.

The STAC corpus as we use it in our learning ex-
periments thus includes 1,130 dialogues, 13,734
linguistic DUs, 18,767 non-linguistic DUs and
22,098 semantic relations.

4 Data Programming Experiments

4.1 Candidates and Labeling Functions

Our weak supervision approach follows the
Snorkel implementation of the data programming
paradigm. The first step is candidate extraction,
followed by LF creation. Candidates are the units
of data for which labels will be predicted: all pairs
of DUs in a dialogue for attachment problem in
discourse. LFs are expert-composed functions that
make an attachment prediction for a given can-
didate: each LF returns a 1, a 0 or a -1 (“at-
tached”/“do not know”/“not attached”). The LFs
should have maximal and if possible overlapping
coverage of the candidates to optimize the results
of the generative model.

To predict dialogue attachment, our LFs exploit
information about candidates including whether
they are linguistic or non-linguistic DUs, the di-
alogue acts they express, their speaker identities,
lexical content and grammatical category, as well
as the distance between DUs: all features also used
in supervised learning methods (Perret et al., 2016;
Afantenos et al., 2015; Muller et al., 2012). Fur-
thermore, our LFs take into account the particu-
lar behavior of each relation type, information that
expert annotators consider when deciding whether
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two DUs are attached. Thus the LFs were di-
vided among the 9 relation types as well as the
combination of DU endpoints for each type, e.g.
linguistic/non-linguistic. We also fix the order in
which each LF “sees” the candidates such that it
considers adjacent DUs before distant DUs. This
allows LFs to exploit information about previously
predicted attachments and dialogue history in new
predictions. Our complete rule set, along with de-
scriptions of each of the relation types, is available
here: https://tizirinagh.github.io/ac12019/.

In Table 1 we list the rules and their perfor-
mances on the portion of the development set
to which they apply. For example, the LF for
Question-answer-pair between two linguistic end-
points (QAP LL) has a coverage of 32% — which is
the proportion of the development set containing
relations between two linguistic endpoints— and
has an accuracy of 89%.

4.2 The Generative Model

Once the LFs are applied to all the candidates, we
have a matrix of labels (A) given by each LF A for
each candidate. The generative model as specified
in (1) provides a general distribution of marginal
probabilities relative to n accuracy dependencies
¢j(Ai,y;) for an LF \; with respect inputs x;, the
LF’s outputs on i A;; and true labels y; that depend
on parameters ¢; where:

b5 (Ni,yi) := yil\ij

m n

po(A,Y) ocexp(Y Y 0;65(Ai,yi))

i=1 j=1

(1

The parameters are estimated by minimizing the
negative log marginal likelihood of the output of
an observed matrix A as in (2).

argming — log Z po(AY) 2)
Y

The generative model thus estimates the accu-
racy of each LF, a marginal probability for each
label, and consequently a probability for positive
attachment. In this model, the true class labels y;
are latent variables that generate the labeling func-
tion outputs. The model in (1) presupposes that the
LFs are independent, but this assumption doesn’t
always hold: one LF might be a variation of an-
other or they might depend on a common source
of information (Mintz et al., 2009). We will look
at dependencies between LFs in future work.


https://tizirinagh.github.io/acl2019/

Individual LF Performances

Coverage True Pos

True Neg False Pos

False Neg Accuracy

QAPLL 0.32 282
QAP NLNL 0.31 84
Result NLNL 0.31 758
Result LNL 0.16 13
Result LL 0.32 21
Result NLL 0.21 2
Continuation LL 0.32 16
Continuation NLNL 0.31 613
Sequence NLL 0.21 82
Sequence NLNL 0.31 236
Comment LL 0.32 123
Comment NLL 0.21 12
Conditional LL 0.32 9
Elaboration LL 0.32 67
Elaboration NLNL 0.31 48
Acknowledgement LL 0.32 50
Contrast LL 0.32 14

9397 239 150 0.8928
9476 4 0 0.9995
8636 134 36 0.9822
4596 319 97 0.9117
9371 617 41 0.9345
6535 0 2 0.9996
9818 110 106 0.9785
8867 83 1 0.9912
6351 &4 22 0.9837
8199 1053 76 0.8819
8632 1140 0 0.8847
6369 57 101 0.9758
10026 7 0 0.9993
9694 214 75 0.9712
9420 96 0 0.9899
9612 251 137 0.9613
9978 11 47 0.9942

Table 1: Performances of each LF on the development set. ”Coverage” describes the percentage of the development
set to which the LF applies, and is determined by the types of endpoints of the relation.

Generative Model

Discriminative Model on Test

Dev Train Test | with Marginals with Gold annotations
Precision 0.45 050 0.40 0.28 0.33
Recall 0.70 0.74 0.72 0.59 0.80
Flscore 0.55 0.59 0.51 0.38 0.47
Accuracy 0.87 0.88 0.84 0.74 0.75

Table 2: Evaluations of attachment with the weakly supervised and supervised approaches.

4.3 Discriminative Model

The standard Snorkel approach inputs the
marginal probabilities from the generative step
directly into a discriminative model, which is
trained on those probabilities using a noise-aware
loss function (Ratner et al., 2016). Ideally, this
step generalizes the LFs by augmenting the fea-
ture representation - from, say, dozens of LFs to
a high dimensional feature space - and allows the
model to predict labels for more new data. Thus
the precision potentially lost in the generalization
is offset by a larger increase in recall.

The discriminative model we use in our study is
a single layer BI-LSTM with 300 neurons, which
takes as input 100 dimensional-embeddings for
the text of each EDU in the candidate pair. We
concatenated the outputs of the BI-LSTM and
fed them to a simple perceptron with one hidden
layer and Rectified Linear Unit (ReLU) (Hahn-
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loser et al., 2000; Jarrett et al., 2009; Nair and Hin-
ton, 2010) activation and optimized with Adam
(Kingma and Ba, 2014). Given that our data is
extremely unbalanced in favor of the “unattached”
class (“attached” candidates make up roughly 13%
of the development set), we also implement a
class-balancing method inspired by (King and
Zeng, 2001) which maps class indices to weight
values used for weighting the loss function during
training.

In order to use this method, we had to binarize
the marginals before moving to the discriminative
step using a threshold of p > .5 (the threshold
that gave us the best F1 score on the development
corpus). Though this marks a departure from the
standard Snorkel approach, we found that our dis-
criminative model results were higher when the
marginals were binarized and when the class re-
balancing was used, albeit much lower than ex-
pected overall.



S Results and Analysis

We first evaluated our LFs individually on the de-
velopment corpus, which permitted us to measure
their coverage and accuracy on a subset of the
data®>. We then evaluated the generative model
and the generative + discriminative model with the
Snorkel architecture on the test set with the results
in Table 2.

While our supervised discriminative model
gave results on a par with the local model of
(Perret et al., 2016) (which had an F1 of 0.483),
our generative model (using a threshold value of
p > .5 for positive attachment) had significantly
better results, competitive with those in the lit-
erature on the attachment problem. Our models
show strong recall but weaker precision than (Per-
ret et al., 2016), and we believe this is in part be-
cause our LFs were expressly written to broadly
cover relations and we have written very few rules
on non-attachments.

The Snorkel coupling of generative and dis-
criminative models did not produce the anticipated
improvement over the results of generative model.
When we trained the discriminative model directly
on the marginals, we got a score of 0.26 for F1.
To improve these results (column 4 in the Table
2), we used the class re-balancing method above.
However in order to do this, we had to binarize
the outputs of the generative model before training
the discriminative model, which also contributed
to lower precision scores by effectively reducing
the total information available to the model.

6 Conclusions and Future Work

We have compared a weak supervision approach,
as implemented in Snorkel, with a standard super-
vised model on the difficult task of discursive at-
tachment. The results of the model from Snorkel’s
generative step surpass those of a standard su-
pervised learning approach, showing it to be a
promising method for generating a lot of anno-
tated data in a very short time relative to what is
needed for a traditional approach: from (Asher
et al., 2016) we infer that the STAC corpus took
at least 4 years to build; we created and refined
our label functions in 2 months. Still it is clear
that we must further investigate the interaction of
the generative and discriminative models in order
to eventually leverage the power of generalization

3https://tizirinagh.github.io/acl2019/
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a discriminative model is supposed to afford.

In future work, we will enrich our weak supervi-
sion system by giving the LFs access to more so-
phisticated contexts that take into account global
structuring constraints in order to see how they
compare to exogenous decoding constraints ap-
plied in (Muller et al., 2012; Perret et al., 2016).
We hope such experiments with the weak super-
vision paradigm will eventually lead us to under-
stand how weakly supervised methods might ef-
fectively capture the global structural constraints
on discourse structures without decoding or more
elaborate learning architectures.
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