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Abstract

Pragmatic reasoning allows humans to go be-
yond the literal meaning when interpreting
language in context. Previous work has shown
that such reasoning can improve the per-
formance of already-trained language under-
standing systems. Here, we explore whether
pragmatic reasoning during training can im-
prove the quality of learned meanings. Our
experiments on reference game data show that
end-to-end pragmatic training produces more
accurate utterance interpretation models, es-
pecially when data is sparse and language is
complex.

1 Introduction

We often draw pragmatic inferences about a
speaker’s intentions from what they choose to say,
but also from what they choose not to say in con-
text. This pragmatic reasoning arises from listen-
ers’ inferences based on speakers’ cooperativity
(Grice, 1975), and prior work has observed that
such reasoning enables human children to more
quickly learn word meanings (Frank and Good-
man, 2014). This suggests that pragmatic reason-
ing might allow modern neural network models to
more efficiently learn on grounded language data
from cooperative reference games.

As a motivating case, consider an instance of the
color reference task from Monroe et al. (2017)—
shown in the first row of Table 1. In this task,
a speaker communicates a target color to a lis-
tener in a context containing two distractor colors;
the listener picks out the target based on what the
speaker says. In the first instance from Table 1,
the speaker utters “dark blue” to describe the tar-
get. Whereas “dark” and “blue” also apply to the
target, they lose their informativity in the presence
of the distractors, and so the speaker pragmatically
opts for “dark blue”.

A listener who is learning the language from
such examples might draw several inferences from
the speaker’s utterance. First, under the assump-
tion that the speaker is informative, a “literal”
learner might infer that “dark blue” applies to the
target shade more than the distractors. Second,
a “pragmatic” learner might consider the cheaper
alternatives–“dark” and “blue”–that have occurred
in the presence of the same target in prior contexts,
and infer that these alternative utterances must also
apply to the distractors given the speaker’s fail-
ure to use them. The pragmatic learner might
thus gain more semantic knowledge from the same
training instances than the literal learner: prag-
matic reasoning can reduce the data complexity of
learning.

The pragmatic learning effects just described
depend on the existence of low cost alternative ut-
terances that the learner already knows can apply
to the target object. The existence of short alter-
natives will be more likely when the target objects
are more complex (as in row 2 of Table 1), be-
cause these objects require longer utterances (with
therefore more short alternatives) to individuate.
Thus, we further hypothesize that pragmatic in-
ference will reduce data complexity especially in
contexts that elicit more complex language.

In light of these arguments, we leverage the
pragmatic inference described here in training
neural network models to play reference games.
For formal, probabilistic representations of con-
textual reasoning in our training objectives, we
embed neural language models within pragmatic
listener and speaker distributions, as specified
by the Rational Speech Acts (RSA) framework
(Goodman and Frank, 2016; Frank and Goodman,
2012). Pragmatic inference allows our models
to learn from indirect pragmatic evidence of the
sort described above, yielding better calibrated,
context-sensitive models and more efficient use
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Target Distractors Utterance Cheaper Alternative Utterances

1. x x x “dark blue” “blue”, “dark”. . .
2. x x x x x x x x x “left dark blue” “dark blue”, “left dark”, “right black”. . .

Table 1: Speaker utterances describing (1) colors and (2) color grids to differentiate them from distractors. A
learner might draw inferences about fine-grained linguistic distinctions by explaining the speaker’s failure to use
cheaper alternatives in context (e.g. they might infer that “blue” and “dark” apply to some distractors in 1). These
inferences have the potential to increase in number and in strength as dimensionality of the referents and utterance
complexity increase (as in 2).

of the training data. We compare pragmatic and
non-pragmatic models at training and at test, while
varying conditions on the training data to test hy-
potheses regarding the utility of pragmatic infer-
ence for learning. In particular, we show that in-
corporating pragmatic reasoning at training time
yields improved, state-of-the-art accuracy for lis-
tener models on the color reference task from
Monroe et al. (2017), and the effect demonstrated
by this improvement is especially large under
small training data sizes. We further introduce a
new color-grid reference task and data set consist-
ing of higher dimensional objects and more com-
plex speaker language; we find that the effect of
pragmatic listener training is even larger in this
setting.

2 Related Work

Prior work has shown that neural network mod-
els trained to capture the meanings of utterances
can be improved using pragmatic reasoning at test
time via the RSA framework (Andreas and Klein,
2016; Monroe et al., 2017; Goodman and Frank,
2016; Frank and Goodman, 2012). For instance,
Monroe et al. (2017) train context-agnostic (i.e.
non-pragmatic) neural network models to learn the
meanings of color utterances using a corpus of
examples of the form shown in the first line of
Table 1. At evaluation, they add an RSA layer
on top of the trained model to draw pragmatic,
context-sensitive inferences about intended color
referents. Other related work explores additional
approaches to create context-aware models that
generate color descriptions (Meo et al., 2014), im-
age captions (Vedantam et al., 2017), spatial refer-
ences (Golland et al., 2010), and utterances in sim-
ple reference games (Andreas and Klein, 2016).
Each of these shows that adding pragmatics at test
time improves performance on tasks where con-
text is relevant. Whereas this prior work showed
the effectiveness of pragmatic inferences for mod-

els trained non-pragmatically, our current work
shows that these pragmatic inferences can also in-
form the training procedure, providing additional
gains in performance.

More similar to our work, Monroe and Potts
(2015) improve model performance by incorporat-
ing pragmatic reasoning into the learning proce-
dure for an RSA pragmatic speaker model. How-
ever, in contrast to our work, they consider a
much simpler corpus, and a simple non-neural
semantics. We consider richer corpora with se-
quential utterances and continuous referent objects
that pose several algorithmic challenges which
we solve using neural networks and Monte Carlo
methods.

3 Approach

We compare neural nets trained pragmatically and
non-pragmatically on a new color-grid reference
game corpus as well as the color reference corpus
from Monroe et al. (2017). In this section, we de-
scribe our tasks and models.

3.1 Reference Game Listener Tasks
The color reference game from Monroe et al.
(2017) consists of rounds played between a
speaker and a listener. Each round has a context of
two distractors and a target color (Figure 1a). Only
the speaker knows the target, and must communi-
cate it to the listener—who must pick out the target
based on the speaker’s English utterance. Simi-
larly, each round of our new color-grid reference
game contains target and distractor color-grid ob-
jects, and the speaker must communicate the tar-
get grid to the listener (Figure 1b). We train neural
network models to play the listener role in these
games.

3.2 Models
In both reference games, our listener models rea-
son about a round r represented by a single train-
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(a) Round of color reference (each object is a color) (b) Round of grid reference (each object is a grid)

Figure 1: Rounds from the reference game tasks. These rounds consist of messages sent between a speaker and
listener. The speaker communicates the target referent object (with a green border) to the listener.

ing/testing example of the form (O(r), U (r), t(r))
where O(r) is the set of objects observed in the
round (colors or color-grids), U (r) is a sequence of
utterances produced by the speaker about the tar-
get (represented as a token sequence), and t(r) is
the target index in O(r). The models predict the
most likely referent O(r)

t of an utterance within
a context O(r) according to an RSA listener dis-
tribution l(t(r) | U (r), O(r)) over targets given
the utterances and a context. In pragmatic mod-
els, a nested structure allows the listener to form
its beliefs about the intended referent by reason-
ing recursively about speaker intentions with re-
spect to a hypothetical “literal” (non-pragmatic)
listener’s interpretations of utterances. This recur-
sive reasoning allows listener models to account
for the speaker’s context-sensitive, pragmatic ad-
justments to the semantic content of utterances.

Formally, our pragmatic RSA model l1, with
learnable semantic parameters θ, for target refer-
ent t, given an observed context O and speaker ut-
terances U , is computed as:

l1(t | U,O; θ) =
s1(U | t, O; θ)p(t)∑
t′ s1(U | t′, O; θ)p(t′)

s1(U | t, O; θ) =
l0(t | U,O; θ)αp(U | O)∑
U′ l0(t | U ′, O; θ)αp(U ′ | O)

l0(t | U,O; θ) =
LθU,Ot

p(t)∑
t′ LθU,Ot′

p(t′)

In these equations, the top-level l1 listener model
estimates the target referent by computing a prag-
matic speaker s1 and a target prior p(t). Simi-
larly, the pragmatic speaker s1 computes an utter-
ance distribution with respect to a literal listener
l0, an utterance prior p(U | O), and a rationality
parameter α. Finally, the “literal” listener com-
putes its expectation about the target referent from

the target prior p(t) and the literal meaning, LθU,Ot ,
which captures the extent to which utteranceU ap-
plies to Ot. In both the l0 and l1 distributions, we
take p(t) to be a uniform distribution over target
indices.

Literal meanings The literal meanings LθU,Ot
in l0 are computed by an LSTM (Hochreiter and
Schmidhuber, 1997) that takes an input utterance
and an object (color or color-grid), and produces
output in the interval (0, 1) representing the de-
gree to which the utterance applies to the object
(see Figure 2b). The object is represented as a
single continuous vector, and is mapped into the
initial hidden state of the LSTM by a dense lin-
ear layer in the case of colors, and an average-
pooled, convolutional layer in the case of grids
(with weights shared across the grid-cell repre-
sentations described in Section 4.1.2). Given the
initialized hidden state, the LSTM runs over em-
beddings of the tokens of an utterance. The final
hidden state is passed through an affine layer, and
squished by a sigmoid to produce output in (0, 1).
This neural net contains all learnable parameters θ
of our listeners.

Utterance prior The utterance prior p(U | O)
in s1 is a non-uniform distribution over sequences
of English tokens—represented by a pre-trained
LSTM language model conditioned on an input
color or grid (see Figure 2a). Similar to the literal
meaning LSTM, we apply a linear transformation
to the input object to initialize the LSTM hidden
state. Then, each step of the LSTM applies to
and outputs successive tokens of an utterance. In
addition, when operating over grid inputs, we ap-
ply a layer of multiplicative attention given by the
“general” scoring function in (Luong et al., 2015)
between the LSTM output and the convolutional
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grid output before the final Softmax. This allows
the language model to “attend” to individual grid
cells when producing output tokens, yielding an
improvement in utterance prior sample quality.

The language model is pre-trained over speaker
utterances paired with targets, but the support of
the distribution encoded by this LSTM is too large
for the s1 normalization term within the RSA lis-
tener to be computed efficiently. Similar to Mon-
roe et al. (2017), we resolve this issue by taking
a small set of samples from the pre-trained LSTM
applied to each object in a context, to approximate
p(U | O), each time l1 is computed during training
and evaluation.

3.3 Learning

The full l1 neural RSA architecture for computing
pragmatic predictions over batches of input utter-
ances and contexts is given by Algorithm 1.1 Dur-
ing training, we backpropagate gradients through
the full architecture, including the RSA layers, and
optimize the pragmatic likelihood maxθ log l1(t |
U,O; θ). For clarity, we can rewrite this optimiza-
tion problem for a single (O,U, t) training exam-
ple in the following simplified form by manipu-
lating the RSA distributional equations from the
previous section:

max
θ

(
logLθU,Ot

− logZl0(U | O; θ)

− logZs1(t | O; θ)− logZl1(U | O; θ)
)

Here, Zl1 , Zs0 , and Zl0 are the normaliza-
tion terms in the denominators of the nested RSA
distributions, which we can rewrite using the
log-sum-exp function (LSE) as:

logZl0(U | O; θ) = LSE
t′

(
logLθU,Ot′

+ log p(t′)
)

logZs1(t | O; θ) = LSE
U′

(
log l0(t | U ′, O; θ)α

+ log p(U ′ | O)
)

logZl1(U | O; θ) = LSE
t′

(
log s1(U | t′, O; θ) + log p(t′)

)

1Note that this algorithm listing provides careful annota-
tion of the dimensionality of various distributional tensors,
which we hope might aid future research in reproducing our
model implementations.

Given this representation of the optimization
problem, we can see its relationship to the intu-
itive characterization of pragmatic learning that
we gave in the introduction. First, the two terms
logLθU,Ot − logZl0(U | O; θ) can be seen as
finding the optimal non-pragmatic parameters;
the first logLθU,Ot term upweights the model’s
estimate of the literal applicability of the ob-
served U to its intended target referent, and the
− logZl0(U | O; θ) term maximizes the margin
between this estimate and the applicability of U to
the contextual distractors.2 Next, the− logZs1(t |
O; θ) term makes pragmatic adjustments to the pa-
rameter estimates by enforcing a margin between
the l0 predictions given by low cost alternatives
U ′ and the observed utterance U on a referent ob-
ject t. The enforcement of this margin pushes
LθU ′,Ot′ upward for distractors t′, simulating the
pragmatic reasoning described in the introduction,
and drawing additional information about the low
cost alternative utterances from their omission in
context. Finally, the − logZl1(U | O; θ) term
enforces a margin between the speaker predic-
tion s1(U | t, O; θ) and predictions on the true
utterance U given distractors Ot′ . This ensures
that the true utterance is down-weighted on dis-
tractor objects following the speaker’s pragmatic
adjustments, such that our l1 listener predictions
are well-calibrated with respect to the s1 distribu-
tion’s cost-sensitive adjustments learned through
− logZs1(t | O; θ).

4 Experiments

We investigate the value of pragmatic training
by estimating the parameters θ in the RSA “lit-
eral meaning” function Lθ for l1 (pragmatic) and
l0 (non-pragmatic) distributions according to the
maximal likelihood of the training data for the
color and grid reference tasks. We then evaluate
meanings Lθ from each training procedure using
pragmatic l1 inference (and non-pragmatic l0 in-
ference, for completeness). We perform this com-
parison repeatedly to evaluate the value of prag-
matics at training and test under various data con-
ditions. In particular, we evaluate the hypotheses
that (1) the pragmatic inferences enabled by the
l1 training will reduce sample complexity, lead-
ing to more accurate meaning functions especially
under small data sizes, and (2) the effectiveness

2Here, we think informally of a margin by considering the
LSE as an approximation of max.
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Algorithm 1 RSA pragmatic listener (l1) neural network forward computation. The l1 function is applied
to batches of input utterances and observed contexts, and produces batches of distributions over objects
in the contexts, representing the listener’s beliefs about intended utterance referents.
1: b← data batch size
2: l← maximum utterance length
3: k ← number of objects per context (i.e. colors or color-grids)
4: d← dimension of each object
5: u← number utterances to sample per object in context to make speaker distribution supports
6: z ← ku+ 1 number of utterances in each support including input utterance
7: s0 ← pre-trained LSTM language model (Figure 2a)
8: L← LSTM meaning function architecture (Figure 2b)
9: function l1(utterances U ∈ Rb×l, observations O ∈ Rb×k×d)

10: Pt ← (S = (0, . . . , k − 1)b,P = 1b×k/k) . batch of uniform target priors of size b× k
11: S1 ← s1(S[Pt], O, U)T . speaker utterance distributions of size b× z × k
12: return Normalize-Rows(S1 · Repeat(P[Pt], z))[U ] . target distributions conditioned on utterances in U
13:
14: function s1(possible targets T ∈ Rb×k, observations O ∈ Rb×k×d, fixed input utterances U ∈ Rb×l)
15: Putt ← SAMPLE-UTTERANCE-PRIORS(U,O) . sample batch of utterance priors of size b× z
16: L0 ← l0(S[Pu], O)T . batch of distributions over targets of size b× k × z
17: return Normalize-Rows(Lα0 · Repeat(P[Pu], k)) . speaker utterance distributions of size b× k × z
18:
19: function l0(possible utterances U ∈ Rb×z×l, observations O ∈ Rb×k×d)
20: Pt ← (S = (0, . . . , k − 1)b,P = 1b×k/k) . batch of uniform target priors of size b× k
21: L ← COMPUTE-MEANINGS(U, S[Pt], O) . batch of meaning matrices of size b× z × k
22: return Normalize-Rows(L · Repeat(P[Pt], z)) . batch of distributions over targets of size b× z × k
23:
24: function SAMPLE-UTTERANCE-PRIORS(fixed input utterances U ∈ Rb×l, O ∈ Rb×k×d)
25: Putt ← (S = 0b×z×l,P = 1b×z

z
) . initialize supports and probabilities in utterance prior tensor

26: for i = 1 to b do . for each round in batch
27: for j = 1 to k do . for each object in a round
28: Sample u(v) from s0(〈s〉, O[i, j]) for v = 1, . . . , u . sample utterances for object O[i, j]
29: S[Putt][i, (j − 1)u : ju]← u . add sampled utterance to supports
30: S[Putt][:, ku, :]← U . add input utterances to supports
31: return Putt
32:
33: function COMPUTE-MEANINGS(U ∈ Rb×z×l,T ∈ Rb×k, O ∈ Rb×k×d)
34: L ← 0b×z×k . initialize meaning tensor to be filled
35: for i = 1 to b do . for each round in batch
36: (Ui, Ti)← cartesian product of utterances in U [i] and targets in T [i]
37: L[i]← Reshape(L(Ui, O[i, Ti]), z, k) . degrees to which each utterance applies to each object
38: return L . batch of meaning matrices (one per example context)

o

〈s〉 u1 u2

u1 u2 〈/s〉

Tanh

Embedding

LSTM

Softmax

(a) Architecture for the language model from which we sam-
ple for utterance priors. We recursively sample utterance to-
kens from a dense Softmax layer applied to the LSTM output.

o

u1 u2 u3

LθU,o

Tanh

Embedding

LSTM

Sigmoid

(b) Architecture for computing the literal meaning LθU,o
within RSA. A dense sigmoid layer computes the output
meaning LθU,o ∈ (0, 1) based on the final state of the LSTM
that was applied to u and o.

Figure 2: Neural networks for (a) the speaker language model used to construct utterance priors, and (b) the
meaning function LθU,o within the RSA listener distributions (diagram style inspired by Monroe et al. (2017)).
Both architectures apply a tanh layer to an input object o (a grid or color), and use the result as the initial hidden
state of an LSTM layer. In each case, the LSTM operates over embeddings of tokens u1, u2, . . . from utterance U .
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Model Color Dev Color Test Grid Dev Grid Test
l0 training, l0 test 0.8455± 0.0011 0.8656± 0.0012 0.5714± 0.0068 0.5443± 0.0122
l0 training, l1 test 0.8472± 0.0013 0.8671± 0.0017 0.5694± 0.0075 0.5455± 0.0123
l1 training, l1 test 0.8587± 0.0008 0.8771± 0.0008 0.6329± 0.0045 0.6200± 0.0063

Monroe et al. (2017) 0.8484 0.8698

Table 2: Listener accuracies on the color and grid data. All accuracies are reported with ±SE.
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(a) Length distributions of speaker utterances for colors and
grids. Grids usually have longer descriptions.

Color Utterances Grid Utterances
blue top left blue
purple purple top left
green purple top right

(b) Top three most frequent speaker utterances in the color
and grid data. Top color descriptions are single words. Multi-
word utterances like “dark green” are less frequent. Top grid
utterances tend to specify colors and locations.

Data Color Accuracy Grid Accuracy
Full 0.9003 0.9318
Close 0.8333 0.9024
Split 0.8970 0.9291
Far 0.9696 0.9642

(c) Human accuracies on full color and grid data, and in
close, split, and far conditions. Grid accuracy is higher than
color accuracy, possibly because there are more properties
for speakers to describe when referring to grids.

Figure 3: Comparison of the color and grid data sets

of the l1 training over l0 training will increase
on a more difficult reference game task contain-
ing higher-dimensional objects and utterances—
i.e. pragmatic training will help more in the grids
task than in the colors task.

4.1 Data

4.1.1 Color Reference
For the color reference task, we use the data col-
lected by Monroe et al. (2017) from human play
on the color reference task through Amazon Me-
chanical Turk using the framework of Hawkins

(2015). Each game consists of 50 rounds played
by a human speaker and listener. In each round,
the speaker describes a target color surrounded by
a context of two other distractor colors, and a lis-
tener clicks on the targets based on the speaker’s
description (see Figure 1a). The resulting data
consists of 46, 994 rounds across 948 games,
where the colors of some rounds are sampled to
be more likely to require pragmatic reasoning than
others. In particular, 15, 516 trials are close with
both distractors within a small distance to the tar-
get color in RGB space, 15, 782 are far with both
distractors far from the target, and 15, 693 are split
with one distractor near the target and one far
from the target. For model development, we use
the train/dev/test split from Monroe et al. (2017)
with 15, 665 training, 15, 670 dev, and 15, 659 test
rounds.

Within our models, we represent color objects
using a 3-dimensional CIELAB color space—
normalized so that the values of each dimension
are in [−1, 1]. Our use of the CIELAB color
space departs from prior work on the color data
which used a 54-dimensional Fourier space (Mon-
roe et al., 2017, 2016; Zhang and Lu, 2002). We
found that both the CIELAB and Fourier spaces
gave similar model performance, so we chose the
CIELAB space due to its smaller dimensional-
ity. Our speaker utterances are represented as se-
quences of cleaned English token strings. Follow-
ing Monroe et al. (2017), we preprocess the tokens
by lowercasing, splitting off punctuation, and re-
placing tokens that appear only once with [unk].
In the color data, we also follow the prior work
and split off -er, -est, and -ish, suffixes. Whereas
the prior work concatenated speaker messages into
a single utterance without limit, we limit the full
sequence length to 40 tokens for efficiency.

4.1.2 Grid Reference
Because initial simulations suggested that prag-
matic training would be more valuable in more
complex domains (where data sparsity is a greater
issue), we collected a new data set from human
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play on the color-grid reference task described in
Section 3.1. Data was collected on Amazon Me-
chanical Turk using an open source framework
for collaborative games (Hawkins, 2015). Each
game consists of 60 rounds played between a hu-
man speaker and listener, where the speaker de-
scribes a target grid in the presence of two distrac-
tor grids (see Figure 1b), resulting in a data set of
10,666 rounds spread across 197 games.3 Each
round consists of three 3× 3 grid objects, with the
grid colors at each cell location sampled accord-
ing to the same close, split, and far conditions as
the in color reference data—yielding 3,575 close,
3,549 far, and 3,542 split rounds. We also varied
the number of cells that differ between objects in
a round from 1 to 9. As shown in Figure 3, these
grid trials result in more complex speaker utter-
ances than the color data. We partitioned this data
into 158 train, 21 dev, 18 test games containing
8,453 training, 1,236 dev, and 977 test rounds. In
our models, we represent a single color-grid object
from the data as a concatenation of 9 vectors rep-
resenting the 9 grid cells. Each of the 9 cell vectors
consists of the normalized CIELAB representation
used in the color data appended to a one-hot vec-
tor representing the position of the cell within the
grid. For speaker utterances, we use the same rep-
resentation as in the color data, except that we do
not split off the -er, -est, and -ish endings.

4.2 Model Training Details

We implement our models in PyTorch (Paszke
et al., 2017), and train them using the Adam vari-
ant of stochastic gradient descent (Kingma and
Ba, 2015) with default parameters (β1, β2) =
(0.9, 0.999) and ε = 10−8. We train with
early-stopping based on dev set log-likelihood (for
speaker) or accuracy (for listener) model evalua-
tions. Before training our listeners, we pre-train
an LSTM language model to provide samples for
the utterance priors on target colors paired with
speaker utterances of length at most 12 on ex-
amples where human listeners picked the correct
color. We follow Monroe et al. (2017) for lan-
guage model hyper-parameters, with embedding
and LSTM layers of size 100. Also following this
prior work, we use a learning rate of 0.004, batch
size 128, and apply 0.5 dropout to each layer. We
train for 7, 000 iterations, evaluating the model’s

3The grid data and our model implementations are avail-
able at https://github.com/forkunited/ltprg.

accuracy on the dev set every 100 iterations. We
pick the model with the best dev set log-likelihood
from evaluations at 100 iteration intervals.

To train and compare various listeners, we opti-
mize likelihoods under non-pragmatic l0 and prag-
matic l1 with a literal meaning function com-
puted by the LSTM architecture described in Sec-
tion 3.2, sampling new utterance priors for each
mini-batch from our pre-trained language model
applied to the round’s three colors for use within
the s1 module of RSA (see Algorithm 1). We
draw 30 samples per round (10 per color or grid)
at a maximum length of 12. We generally use
speaker rationality α = 8.0 based on dev set
tuning, and we follow Monroe et al. (2017) for
other hyper-parameters—with embedding size of
100 and LSTM size of 100 in our meaning func-
tions. Also following this prior work, we allow
the LSTM to be bidirectional with learning rate
of 0.005, batch size 128, and gradient clipping at
5.0. We train listeners for 10, 000 iterations on the
color data and 15, 000 iterations on grid data, eval-
uating dev set accuracy every 500 iterations. We
pick the model with the best accuracy from those
evaluated at 500 iteration intervals.

4.3 Results

4.3.1 Color Reference

The accuracies of color target predictions by l0
and l1 models under both l0 and l1 training are
shown in the left columns of Table 2. For robust-
ness, average accuracies and standard errors were
computed by repeatedly retraining and evaluat-
ing with different weight initializations and train-
ing data orderings using 4 different random seeds.
The results in the top left panel of Table 2 show
that l1 pragmatic training coupled with l1 prag-
matic evaluation gives the best average accuracies.
The previously studied l1 pragmatic usage with
l0 non-pragmatic training is next best. These re-
sults provide evidence that literal meanings esti-
mated through pragmatic training are better cal-
ibrated for pragmatic usage than meanings esti-
mated through non-pragmatic l0 training. Fur-
thermore, relative to state-of-the-art in Monroe
et al. (2017), Table 2 shows that our pragmatically
trained model yields improved accuracy over their
best “blended” pragmatic Le model which com-
puted predictions based on the product of two sep-
arate non-pragmatically trained models.

The effect sizes are small for the pragmatic to

https://github.com/forkunited/ltprg
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Figure 4: Listener accuracies on the color and grid dev data for models learned under training data subsets of
various sizes (given by the horizontal axes). The separate plots give accuracies over the full data and the close,
split, and far conditions.

non-pragmatic comparisons when training on the
full color data (though approaching the ceiling
0.9108 human accuracy), but we hypothesized that
the effect of pragmatic training would increase
for training with smaller data sizes (as motivated
by arguments in the introduction). To test this,
we trained the listener models on smaller subsets
of the training data, and evaluated accuracy. As
shown by the top left plot of Figure 4, pragmatic
training results in a larger gain in accuracy when
less data is available for training.

Lastly, we also considered the effect of prag-
matic training under the varying close, split, and
far data conditions. As shown in the three plots
at the right of the top row of Figure 4, the ef-
fect of l1 training over l0 is especially pronounced
for inferences on close and split data conditions
where the target is more similar to the distractors,
and the language is more context-dependent. This
makes sense, as these conditions contain examples
where the pragmatic, cost-sensitive adjustments to
the learned meanings would be the most necessary.

4.3.2 Grid Reference

For the more complex grid reference task, the lis-
tener accuracies in the right columns of Table 2
show an even larger gain from pragmatic l1 train-
ing, and no gain is seen for pragmatic evaluation

with non-pragmatic training. This result is consis-
tent with the hypothesis motivated by arguments
in the introduction that pragmatic training should
be more effective in contexts containing targets
and distractors for which many low-cost alterna-
tive utterance are applicable. Furthermore, the
grid-reference data-complexity exploration in the
bottom row of Figure 4 shows that this improve-
ment given by pragmatic training remains large
across data sizes; the exception is the smallest
amount of training data under the most difficult
close condition, where the language is so sparse
that meanings may be difficult to estimate, even
with pragmatic adjustments. Altogether, these re-
sults suggest that pragmatic training helps with an
intermediate amount of data relative to the domain
complexity—with too little data, pragmatics has
no signal to work with, but with too much data, the
indirect evidence provided by pragmatics is less
necessary. Since real-world linguistic contexts are
more complex than either of our experimental do-
mains, we hypothesize that they often fit into this
intermediate data regime.

4.3.3 Literal Meaning Comparisons

To improve our understanding of the quantitative
results, we also investigate qualitative differences
between meaning functions Lθ estimated under
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Full Data Small Data
l0 l1 l0 l1

‘green’

‘greenish’

‘dark
green’

‘neon
green’

‘red’

‘redish’

‘yellow’

‘yellowish’

Table 3: Extensions of various utterances according to
the literal meaning functions (L) from listener mod-
els l0 and l1 learned on full (left) and smaller (250
example) subsets (right) of the color data. Each cell
shows a learned color utterance extension in the Hue×
Saturation color space depicted at the top left, with the
degree of darkness corresponding to the learned values
of LθU,O (given by the architecture in Figure 2b) for an
utterance U on colors O for regions of color space.

l0 and l1 on the color reference task. Table 3
shows representations of these meaning functions
for several utterances. For each utterance U , we
plot the extension LθU estimated under l0 and l1,
with the darkness of a pixel at c representing
LθU,c—the degree to which an utterance U applies
to a color c within a Hue×Saturation color space.
In these plots, the larger areas of medium gray
shades for l1 extensions suggest that the pragmatic
training yields more permissive interpretations for
a given utterance. This makes sense, as pragmatics
allows looser meanings to be effectively tightened
at interpretation time. Furthermore, the meanings
learned by the l1 also have lower curvature across
the color space, consistent with a view of prag-
matics as providing a regularizer (Section 3.3)—

preventing overfitting. This view is further sup-
ported by the plots on the right-hand side of Ta-
ble 3, which show that the meanings learned by
l0 from smaller amounts of training data tend to
overfit to idiosyncratic regions of the color space,
whereas the pragmatic l1 training tends to smooth
out these irregularities. These qualitative observa-
tions are also consistent with the data complexity
results shown in Figure 4, where the l1 training
gives an especially large improvement over l0 for
small data sizes.

5 Conclusion

Our experiments provide evidence that using prag-
matic reasoning during training can yield im-
proved neural semantics models. This was true
in the existing color reference corpus, where we
achieved state-of-the art results, and even more so
in the new color-grid corpus. We thus found that
pragmatic training is more effective when data is
relatively sparse and the domain yields complex,
high-cost utterances and low-cost omissions over
which pragmatic inferences might proceed.

Future work should provide further exploration
of the data regime in which pragmatic learning
is most beneficial and its correspondence to real-
world language use. This might include scaling
with linguistic complexity and properties of refer-
ents. In particular, the argument in our introduc-
tion suggests that especially frequent objects and
low-cost utterances are the seed from which prag-
matic inference can proceed over more complex
language and infrequent objects. This asymme-
try in object reference rates is expected for long-
tail, real-world regimes consistent with Zipf’s law
(Zipf, 1949).

Overall, we have shown that pragmatic reason-
ing regarding alternative utterances provides a use-
ful inductive bias for learning in grounded lan-
guage understanding systems—leveraging infer-
ences over what speakers choose not to say to re-
duce the data complexity of learning.
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