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Abstract

Open-domain targeted sentiment analysis aims
to detect opinion targets along with their senti-
ment polarities from a sentence. Prior work
typically formulates this task as a sequence
tagging problem. However, such formulation
suffers from problems such as huge search
space and sentiment inconsistency. To ad-
dress these problems, we propose a span-based
extract-then-classify framework, where multi-
ple opinion targets are directly extracted from
the sentence under the supervision of target
span boundaries, and corresponding polarities
are then classified using their span representa-
tions. We further investigate three approaches
under this framework, namely the pipeline,
joint, and collapsed models. Experiments on
three benchmark datasets show that our ap-
proach consistently outperforms the sequence
tagging baseline. Moreover, we find that the
pipeline model achieves the best performance
compared with the other two models.

1 Introduction

Open-domain targeted sentiment analysis is a fun-
damental task in opinion mining and sentiment
analysis (Pang et al., 2008; Liu, 2012). Com-
pared to traditional sentence-level sentiment anal-
ysis tasks (Lin and He, 2009; Kim, 2014), the task
requires detecting target entities mentioned in the
sentence along with their sentiment polarities, thus
being more challenging. Taking Figure 1 as an ex-
ample, the goal is to first identify “Windows 7” and
“Vista” as opinion targets and then predict their
corresponding sentiment classes.

Sentence: I love [Windows 7]+ which is a vast improv-
ment over [Vista]-.
Targets: Windows 7, Vista
Polarities: positive, negative

Figure 1: Open-domain targeted sentiment analysis.

Typically, the whole task can be decoupled into
two subtasks. Since opinion targets are not given,
we need to first detect the targets from the in-
put text. This subtask, which is usually denoted
as target extraction, can be solved by sequence
tagging methods (Jakob and Gurevych, 2010; Liu
et al., 2015; Wang et al., 2016a; Poria et al., 2016;
Shu et al., 2017; He et al., 2017; Xu et al., 2018).
Next, polarity classification aims to predict the
sentiment polarities over the extracted target en-
tities (Jiang et al., 2011; Dong et al., 2014; Tang
et al., 2016a; Wang et al., 2016b; Chen et al., 2017;
Xue and Li, 2018; Li et al., 2018; Fan et al., 2018).
Although lots of efforts have been made to design
sophisticated classifiers for this subtask, they all
assume that the targets are already given.

Rather than using separate models for each sub-
task, some works attempt to solve the task in a
more integrated way, by jointly extracting targets
and predicting their sentiments (Mitchell et al.,
2013; Zhang et al., 2015; Li et al., 2019). The
key insight is to label each word with a set of tar-
get tags (e.g., B, I, O) as well as a set of polarity
tags (e.g., +, -, 0), or use a more collapsed set of
tags (e.g., B+, I-) to directly indicate the bound-
ary of targeted sentiment, as shown in Figure 2(a).
As a result, the entire task is formulated as a se-
quence tagging problem, and solved using either
a pipeline model, a joint model, or a collapsed
model under the same network architecture.

However, the above annotation scheme has sev-
eral disadvantages in target extraction and polarity
classification. Lee et al. (2016) show that, when
using BIO tags for extractive question answering
tasks, the model must consider a huge search space
due to the compositionality of labels (the power
set of all sentence words), thus being less effec-
tive. As for polarity classification, the sequence
tagging scheme turns out to be problematic for two
reasons. First, tagging polarity over each word
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Sentence:

Pipeline/
Joint:

I   love  Windows  7  ...  over  Vista   .

O O B I O B O

0 0 + + 0 - 0

Collapsed: O O B+ I+ O B- O

(a) Sequence tagging. The B/I/O labels indicate target
span boundaries, while +/-/0 refer to sentiment polarities.

Sentence:

Pipeline/
Joint:

I   love  Windows  7  ...  over  Vista   .

Target start: 3, 11     Target end: 4, 11

Collapsed:

Polarity: +, -

Target start: 3+, 11-  Target end: 4+, 11-

(b) Span-based labeling. The number denotes the start/end
position of the given target in the sentence.

Figure 2: Comparison of different annotation schemes for the pipeline, joint, and collapsed models.

ignores the semantics of the entire opinion tar-
get. Second, since predicted polarities over tar-
get words may be different, the sentiment consis-
tency of multi-word entity can not be guaranteed,
as mentioned by Li et al. (2019). For example,
there is a chance that the words “Windows” and
“7” in Figure 2(a) are predicted to have different
polarities due to word-level tagging decisions.

To address the problems, we propose a span-
based labeling scheme for open-domain targeted
sentiment analysis, as shown in Figure 2(b). The
key insight is to annotate each opinion target with
its span boundary followed by its sentiment po-
larity. Under such annotation, we introduce an
extract-then-classify framework that first extracts
multiple opinion targets using an heuristic multi-
span decoding algorithm, and then classifies their
polarities with corresponding summarized span
representations. The advantage of this approach
is that the extractive search space can be reduced
linearly with the sentence length, which is far less
than the tagging method. Moreover, since the po-
larity is decided using the targeted span represen-
tation, the model is able to take all target words
into account before making predictions, thus natu-
rally avoiding sentiment inconsistency.

We take BERT (Devlin et al., 2018) as the
default backbone network, and explore two re-
search questions. First, we make an elaborate
comparison between tagging-based models and
span-based models. Second, following previous
works (Mitchell et al., 2013; Zhang et al., 2015),
we compare the pipeline, joint, and collapsed
models under the span-based labeling scheme. Ex-
tensive experiments on three benchmark datasets
show that our models consistently outperform se-
quence tagging baselines. In addition, the pipeline
model firmly improves over both the joint and col-
lapsed models. Source code is released to facilitate
future research in this field1.

1https://github.com/huminghao16/SpanABSA

2 Related Work

Apart from sentence-level sentiment analysis (Lin
and He, 2009; Kim, 2014), targeted sentiment
analysis, which requires the detection of senti-
ments towards mentioned entities in the open do-
main, is also an important research topic.

As discussed in §1, this task is usually di-
vided into two subtasks. The first is target ex-
traction for identifying entities from the input sen-
tence. Traditionally, Conditional Random Fields
(CRF) (Lafferty et al., 2001) have been widely ex-
plored (Jakob and Gurevych, 2010; Wang et al.,
2016a; Shu et al., 2017). Recently, many works
concentrate on leveraging deep neural networks to
tackle this task, e.g., using CNNs (Poria et al.,
2016; Xu et al., 2018), RNNs (Liu et al., 2015;
He et al., 2017), and so on. The second is po-
larity classification, assuming that the target en-
tities are given. Recent works mainly focus on
capturing the interaction between the target and
the sentence, by utilizing various neural architec-
tures such as LSTMs (Hochreiter and Schmidhu-
ber, 1997; Tang et al., 2016a) with attention mech-
anism (Wang et al., 2016b; Li et al., 2018; Fan
et al., 2018), CNNs (Xue and Li, 2018; Huang and
Carley, 2018), and Memory Networks (Tang et al.,
2016b; Chen et al., 2017; Li and Lam, 2017).

Rather than solving these two subtasks with
separate models, a more practical approach is to
directly predict the sentiment towards an entity
along with discovering the entity itself. Specifi-
cally, Mitchell et al. (2013) formulate the whole
task as a sequence tagging problem and propose
to use CRF with hand-crafted linguistic features.
Zhang et al. (2015) further leverage these linguis-
tic features to enhance a neural CRF model. Re-
cently, Li et al. (2019) have proposed a unified
model that contains two stacked LSTMs along
with carefully-designed components for maintain-
ing sentiment consistency and improving target
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Figure 3: An overview of the proposed framework. Word embeddings are fed to the BERT encoder (Devlin et al.,
2018) that contains L pre-trained Transformer blocks (Vaswani et al., 2017). The last block’s hidden states are
used to (a) propose one or multiple candidate targets based on the probabilities of the start and end positions, (b)
predict the sentiment polarity using the span representation of the given target.

word detection. Our work differs from these ap-
proaches in that we formulate this task as a span-
level extract-then-classify process instead.

The proposed span-based labeling scheme is in-
spired by recent advances in machine comprehen-
sion and question answering (Seo et al., 2017; Hu
et al., 2018), where the task is to extract a con-
tinuous span of text from the document as the an-
swer to the question (Rajpurkar et al., 2016). To
solve this task, Lee et al. (2016) investigate sev-
eral predicting strategies, such as BIO prediction,
boundary prediction, and the results show that pre-
dicting the two endpoints of the answer is more
beneficial than the tagging method. Wang and
Jiang (2017) explore two answer prediction meth-
ods, namely the sequence method and the bound-
ary method, finding that the later performs better.
Our approach is related to this line of work. How-
ever, unlike these works that extract one span as
the final answer, our approach is designed to dy-
namically output one or multiple opinion targets.

3 Extract-then-Classify Framework

Instead of formulating the open-domain targeted
sentiment analysis task as a sequence tagging
problem, we propose to use a span-based label-
ing scheme as follows: given an input sentence
x = (x1, ..., xn) with length n, and a target list
T = {t1, ..., tm}, where the number of targets is
m and each target ti is annotated with its start po-
sition, its end position, and its sentiment polarity.
The goal is to find all targets from the sentence as
well as predict their polarities.

The overall illustration of the proposed frame-
work is shown in Figure 3. The basis of our frame-

work is the BERT encoder (Devlin et al., 2018):
we map word embeddings into contextualized to-
ken representations using pre-trained Transformer
blocks (Vaswani et al., 2017) (§3.1). A multi-
target extractor is first used to propose multiple
candidate targets from the sentence (§3.2). Then,
a polarity classifier is designed to predict the sen-
timent towards each extracted candidate using its
summarized span representation (§3.3). We fur-
ther investigate three different approaches under
this framework, namely the pipeline, joint, and
collapsed models in §3.4.

3.1 BERT as Backbone Network
We use Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2018), a
pre-trained bidirectional Transformer encoder that
achieves state-of-the-art performances across a va-
riety of NLP tasks, as our backbone network.

We first tokenize the sentence x using a 30,522
wordpiece vocabulary, and then generate the in-
put sequence x̃ by concatenating a [CLS] token,
the tokenized sentence, and a [SEP] token. Then
for each token x̃i in x̃, we convert it into vector
space by summing the token, segment, and posi-
tion embeddings, thus yielding the input embed-
dings h0 2 R(n+2)⇥h, where h is the hidden size.

Next, we use a series of L stacked Transformer
blocks to project the input embeddings into a se-
quence of contextual vectors h

i 2 R(n+2)⇥h as:

h
i
= TransformerBlock(h

i�1
), 8i 2 [1, L]

Here, we omit an exhaustive description of the
block architecture and refer readers to Vaswani
et al. (2017) for more details.



540

3.2 Multi-Target Extractor
Multi-target extractor aims to propose multiple
candidate opinion targets (Figure 3(a)). Rather
than finding targets via sequence tagging methods,
we detect candidate targets by predicting the start
and end positions of the target in the sentence, as
suggested in extractive question answering (Wang
and Jiang, 2017; Seo et al., 2017; Hu et al., 2018).
We obtain the unnormalized score as well as the
probability distribution of the start position as:

g
s
= wsh

L , ps
= softmax(g

s
)

where ws 2 Rh is a trainable weight vector. Simi-
larly, we can get the probability of the end position
along with its confidence score by:

g
e
= weh

L , pe
= softmax(g

e
)

During training, since each sentence may con-
tain multiple targets, we label the span boundaries
for all target entities in the list T. As a result, we
can obtain a vector ys 2 R(n+2), where each el-
ement ys

i indicates whether the i-th token starts a
target, and also get another vector y

e 2 R(n+2)

for labeling the end positions. Then, we define the
training objective as the sum of the negative log
probabilities of the true start and end positions on
two predicted probabilities as:

L = �
Xn+2

i=1
y
s
i log(p

s
i )�

Xn+2

j=1
y
e
j log(p

e
j)

At inference time, previous works choose the
span (k, l) (k  l) with the maximum value of
g
s
k + g

e
l as the final prediction. However, such de-

coding method is not suitable for the multi-target
extraction task. Moreover, simply taking top-K
spans according to the addition of two scores is
also not optimal, as multiple candidates may re-
fer to the same text. Figure 4 gives a qualitative
example to illustrate this phenomenon.

Sentence: Great food but the service was dreadful!
Targets: food, service
Predictions: food but the service, food, Great food, ser-
vice, service was dreadful, ...

Figure 4: An example shows that there are many re-
dundant spans in top-K predictions.

To adapt to multi-target scenarios, we pro-
pose an heuristic multi-span decoding algorithm
as shown in Algorithm 1. For each example, top-
M indices are first chosen from the two predicted

scores g
s and g

e (line 2), and the candidate span
(si, ej) (denoted as rl) along with its heuristic-
regularized score ul are then added to the lists R

and U respectively, under the constraints that the
end position is no less than the start position as
well as the addition of two scores exceeds a thresh-
old � (line 3-8). Note that we heuristically calcu-
late ul as the sum of two scores minus the span
length (line 6), which turns out to be critical to
the performance as targets are usually short enti-
ties. Next, we prune redundant spans in R using
the non-maximum suppression algorithm (Rosen-
feld and Thurston, 1971). Specifically, we remove
the span rl that possesses the maximum score ul

from the set R and add it to the set O (line 10-
11). We also delete any span rk that is overlapped
with rl, which is measured with the word-level F1
function (line 12-14). This process is repeated for
remaining spans in R, until R is empty or top-K
target spans have been proposed (line 9).

Algorithm 1 Heuristic multi-span decoding
Input: gs, ge, �, K

g
s denotes the score of start positions

g
e denotes the score of end positions

� is a minimum score threshold
K is the maximum number of proposed targets

1: Initialize R,U,O = {}, {}, {}
2: Get top-M indices S, E from g

s, ge

3: for si in S do
4: for ej in E do
5: if si  ej and g

s
si + g

e
ej � � then

6: ul = g
s
si + g

e
ej � (ej � si + 1)

7: rl = (si, ej)
8: R = R [ {rl}, U = U [ {ul}
9: while R 6= {} and size(O) < K do

10: l = argmaxU
11: O = O [ {rl}; R = R� {rl}; U = U� {ul}
12: for rk in R do
13: if f1(rl, rk) 6= 0 then
14: R = R� {rk}; U = U� {uk}
15: return O

3.3 Polarity Classifier

Typically, polarity classification is solved using
either sequence tagging methods or sophisticated
neural networks that separately encode the target
and the sentence. Instead, we propose to sum-
marize the target representation from contextual
sentence vectors according to its span boundary,
and use feed-forward neural networks to predict
the sentiment polarity, as shown in Figure 3(b).

Specifically, given a target span r, we calculate
a summarized vector v using the attention mech-
anism (Bahdanau et al., 2014) over tokens in its
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corrsponding bound (si, ej), similar to Lee et al.
(2017) and He et al. (2018):

↵ = softmax(w↵h
L
si:ej )

v =

Xej

t=si
↵t�si+1h

L
t

where w↵ 2 Rh is a trainable weight vector.
The polarity score is obtained by applying two

linear transformations with a Tanh activation in
between, and is normalized with the softmax func-
tion to output the polarity probability as:

g
p
= Wptanh(Wvv) , p

p
= softmax(g

p
)

where Wv 2 Rh⇥h and Wp 2 Rk⇥h are two
trainable parameter matrices.

We minimize the negative log probabilities of
the true polarity on the predicted probability as:

J = �
Xk

i=1
y
p
i log(p

p
i )

where y
p is an one-hot label indicating the true

polarity, and k is the number of sentiment classes.
During inference, the polarity probability is cal-

culated for each candidate target span in the set O,
and the sentiment class that possesses the maxi-
mum value in p

p is chosen.

3.4 Model Variants
Following Mitchell et al. (2013); Zhang et al.
(2015), we investigate three kinds of models un-
der the extract-then-classify framework:

Pipeline model We first build a multi-target ex-
tractor where a BERT encoder is exclusively used.
Then, a second backbone network is used to pro-
vide contextual sentence vectors for the polarity
classifier. Two models are separately trained and
combined as a pipeline during inference.

Joint model In this model, each sentence is fed
into a shared BERT backbone network that finally
branches into two sibling output layers: one for
proposing multiple candidate targets and another
for predicting the sentiment polarity over each ex-
tracted target. A joint training loss L + J is used
to optimize the whole model. The inference pro-
cedure is the same as the pipeline model.

Collapsed model We combine target span
boundaries and sentiment polarities into one label
space. For example, the sentence in Figure 2(b)
has a positive span (3+, 4+) and a negative span

Dataset #Sent #Targets #+ #- #0

LAPTOP 1,869 2,936 1,326 990 620
REST 3,900 6,603 4,134 1,538 931
TWITTER 2,350 3,243 703 274 2,266

Table 1: Dataset statistics. ‘#Sent’ and ‘#Targets’ de-
note the number of sentences and targets, respectively.
‘+’, ‘-’, and ‘0’ refer to the positive, negative, and neu-
tral sentiment classes.

(11-, 11-). We then modify the multi-target ex-
tractor by producing three sets of probabilities of
the start and end positions, where each set corre-
sponds to one sentiment class ( e.g., ps+ and p

e+

for positive targets). Then, we define three objec-
tives to optimize towards each polarity. During
inference, the heuristic multi-span decoding algo-
rithm is performed on each set of scores (e.g., gs+

and g
e+), and the output sets O+, O�, and O

0 are
aggregated as the final prediction.

4 Experiments

4.1 Setup
Datasets We conduct experiments on three
benchmark sentiment analysis datasets, as shown
in Table 1. LAPTOP contains product reviews
from the laptop domain in SemEval 2014 ABSA
challenges (Pontiki et al., 2014). REST is the
union set of the restaurant domain from SemEval
2014, 2015 and 2016 (Pontiki et al., 2015, 2016).
TWITTER is built by Mitchell et al. (2013), con-
sisting of twitter posts. Following Zhang et al.
(2015); Li et al. (2019), we report the ten-fold
cross validation results for TWITTER, as there is
no train-test split. For each dataset, the gold tar-
get span boundaries are available, and the targets
are labeled with three sentiment polarities, namely
positive (+), negative (-), and neutral (0).

Metrices We adopt the precision (P), recall (R),
and F1 score as evaluation metrics. A predicted
target is correct only if it exactly matches the gold
target entity and the corresponding polarity. To
separately analyze the performance of two sub-
tasks, precision, recall, and F1 are also used for
the target extraction subtask, while the accuracy
(ACC) metric is applied to polarity classification.

Model settings We use the publicly available
BERTLARGE

2 model as our backbone network,
2https://github.com/google-research/bert
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Model LAPTOP REST TWITTER

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

UNIFIED 61.27 54.89 57.90 68.64 71.01 69.80 53.08 43.56 48.01

TAG-pipeline 65.84 67.19 66.51 71.66 76.45 73.98 54.24 54.37 54.26
TAG-joint 65.43 66.56 65.99 71.47 75.62 73.49 54.18 54.29 54.20
TAG-collapsed 63.71 66.83 65.23 71.05 75.84 73.35 54.05 54.25 54.12

SPAN-pipeline 69.46 66.72 68.06 76.14 73.74 74.92 60.72 55.02 57.69
SPAN-joint 67.41 61.99 64.59 72.32 72.61 72.47 57.03 52.69 54.55
SPAN-collapsed 50.08 47.32 48.66 63.63 53.04 57.85 51.89 45.05 48.11

Table 2: Main results on three benchmark datasets. A BERTLARGE backbone network is used for both the “TAG”
and “SPAN” models. State-of-the-art results are marked in bold.

and refer readers to Devlin et al. (2018) for de-
tails on model sizes. We use Adam optimizer with
a learning rate of 2e-5 and warmup over the first
10% steps to train for 3 epochs. The batch size is
32 and a dropout probability of 0.1 is used. The
number of candidate spans M is set as 20 while
the maximum number of proposed targets K is 10
(Algorithm 1). The threshold � is manually tuned
on each dataset. All experiments are conducted on
a single NVIDIA P100 GPU card.

4.2 Baseline Methods

We compare the proposed span-based approach
with the following methods:
TAG-{pipeline, joint, collapsed} are the se-
quence tagging baselines that involve a BERT en-
coder and a CRF decoder. “pipeline” and “joint”
denote the pipeline and joint approaches that uti-
lize the BIO and +/-/0 tagging schemes, while
“collapsed” is the model following the collapsed
tagging scheme (Figure 2(a)).
UNIFIED (Li et al., 2019) is the current state-
of-the-art model on targeted sentiment analysis3.
It contains two stacked recurrent neural networks
enhanced with multi-task learning and adopts the
collapsed tagging scheme.

We also compare our multi-target extractor with
the following method:
DE-CNN (Xu et al., 2018) is the current state-
of-the-art model on target extraction, which com-
bines a double embeddings mechanism with con-
volutional neural networks (CNNs)4.

Finally, the polarity classifier is compared with
the following methods:

3https://github.com/lixin4ever/E2E-TBSA
4https://www.cs.uic.edu/hxu/

MGAN (Fan et al., 2018) uses a multi-grained at-
tention mechanism to capture interactions between
targets and sentences for polarity classification.
TNet (Li et al., 2018) is the current state-of-the-art
model on polarity classification, which consists of
a multi-layer context-preserving network architec-
ture and uses CNNs as feature extractor5.

4.3 Main Results

We compare models under either the sequence tag-
ging scheme or the span-based labeling scheme,
and show the results in Table 2. We denote our ap-
proach as “SPAN”, and use BERTLARGE as back-
bone networks for both the “TAG” and “SPAN”
models to make the comparison fair.

Two main observations can be obtained from
the Table. First, despite that the “TAG” base-
lines already outperform previous best approach
(“UNIFIED”), they are all beaten by the “SPAN”
methods. The best span-based method achieves
1.55%, 0.94% and 3.43% absolute gains on three
datasets compared to the best tagging method, in-
dicating the efficacy of our extract-then-classify
framework. Second, among the span-based meth-
ods, the SPAN-pipeline achieves the best perfor-
mance, which is similar to the results of Mitchell
et al. (2013); Zhang et al. (2015). This suggests
that there is only a weak connection between tar-
get extraction and polarity classification. The con-
clusion is also supported by the result of SPAN-
collapsed method, which severely drops across all
datasets, implying that merging polarity labels into
target spans does not address the task effectively.

5https:// github.com/lixin4ever/TNet
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Model LAPTOP REST TWITTER

DE-CNN 81.59 - -
TAG 85.20 84.48 73.47
SPAN 83.35 82.38 75.28

Table 3: F1 comparison of different approaches for
target extraction.

Figure 5: F1 on LAPTOP and REST w.r.t different sen-
tence lengths for target extraction.

4.4 Analysis on Target Extraction
To analyze the performance on target extraction,
we run both the tagging baseline and the multi-
target extractor on three datasets, as shown in Ta-
ble 3. We find that the BIO tagger outperforms
our extractor on LAPTOP and REST. A likely rea-
son for this observation is that the lengths of input
sentences on these datasets are usually small (e.g.,
98% of sentences are less than 40 words in REST),
which limits the tagger’s search space (the power
set of all sentence words). As a result, the com-
putational complexity has been largely reduced,
which is beneficial for the tagging method.

In order to confirm the above hypothesis, we
plot the F1 score with respect to different sen-
tence lengths in Figure 5. We observe that the
performance of BIO tagger dramatically decreases
as the sentence length increases, while our extrac-
tor is more robust for long sentences. Our extrac-
tor manages to surpass the tagger by 16.1 F1 and
1.0 F1 when the length exceeds 40 on LAPTOP

and REST, respectively. The above result demon-
strates that our extractor is more suitable for long
sentences due to the fact that its search space only
increases linearly with the sentence length.

Since a trade-off between precision and recall
can be adjusted according to the threshold � in
our extractor, we further plot the precision-recall
curves under different ablations to show the ef-
fects of heuristic multi-span decoding algorithm.
As can be seen from Figure 6, ablating the length

Figure 6: Precision-recall curves on LAPTOP and
REST for target extraction. “NMS” and “heuristics”
denote the non-maximum suppression and the length
heuristics in Algorithm 1.

heuristics results in consistent performance drops
across two datasets. By sampling incorrect predic-
tions we find that there are many targets closely
aligned with each other, such as “perfect [size]+

and [speed]+”, “[portions]+ all at a reasonable

[price]+”, and so on. The model without length
heuristics is very likely to output the whole phrase
as a single target, thus being totally wrong. More-
over, removing the non-maximum suppression
(NMS) leads to significant performance degrada-
tions, suggesting that it is crucial to prune redun-
dant spans that refer to the same text.

4.5 Analysis on Polarity Classification

To assess the polarity classification subtask, we
compare the performance of our span-level polar-
ity classifier with the CRF-based tagger in Table
5. The results show that our approach signifi-
cantly outperforms the tagging baseline by achiev-
ing 9.97%, 8.15% and 15.4% absolute gains on
three datasets, and firmly surpasses previous state-
of-the-art models on LAPTOP. The large improve-
ment over the tagging baseline suggests that de-
tecting sentiment with the entire span representa-
tion is much more beneficial than predicting polar-
ities over each word, as the semantics of the given
target has been fully considered.

To gain more insights on performance improve-
ments, we plot the accuracy of both methods with
respect to different target lengths in Figure 7. We
find that the accuracy of span-level classifier only
drops a little as the number of words increases
on the LAPTOP and REST datasets. The per-
formance of tagging baseline, however, signif-
icantly decreases as the target becomes longer.
It demonstrates that the tagging method indeed
suffers from the sentiment inconsistency problem
when it comes to multi-word target entities. Our
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Sentence TAG SPAN

1. I thought the transition would be difficult at best and would take some time
to fully familiarize myself with the new [Mac ecosystem]0. [ecosystem]+ (7) [Mac ecosystem]0

2. I would normally not finish the [brocolli]+ when I order these kinds of food
but for the first time, every piece was as eventful as the first one... the [scallops]+
and [prawns]+ was so fresh and nicely cooked.

[brocolli]- (7),
[scallops and prawns]+ (7),

[food]0 (7)

[brocolli]+,
[scallops]+,
[prawns]+

3. I like the [brightness]+ and [adjustments]+. [brightness]+, [adjustments]+ [brightness]+, None (7)

4. The [waiter]- was a bit unfriendly and the [feel]- of the restaurant was crowded. [waiter]-, [feel]- [waiter]-, None (7)

5. However, it did not have any scratches, zero [battery cycle count]+ (pretty
surprised), and all the [hardware]+ seemed to be working perfectly.

[battery cycle count]0 (7),
[hardware]+

[battery cycle count]+,
[hardware]+

6. I agree that dining at [Casa La Femme]- is like no other dining experience! [Casa La Femme]+ (7) [Casa La Femme]-

Table 4: Case study. The extracted targets are wrapped in brackets with the predicted polarities given as subscripts.
Incorrect predictions are marked with 7.

Model LAPTOP REST TWITTER

MGAN 75.39 - -
TNet 76.54 - -
TAG 71.42 81.80 59.76
SPAN 81.39 89.95 75.16

Table 5: Accuracy comparison of different approaches
for polarity classification.

span-based method, on the contrary, can naturally
alleviate such problem because the polarity is clas-
sified by taking all target words into account.

4.6 Case Study

Table 4 shows some qualitative cases sampled
from the pipeline methods. As observed in the
first two examples, the “TAG” model incorrectly
predicts the target span by either missing the word
“Mac” or proposing a phrase across two targets
(“scallps and prawns”). A likely reason of its fail-
ure is that the input sentences are relatively longer,
and the tagging method is less effective when deal-
ing with them. But when it comes to shorter in-
puts (e.g., the third and the fourth examples), the
tagging baseline usually performs better than our
approach. We find that our approach may some-
times fail to propose target entities (e.g., “adjust-

ments” in (3) and “feel” in (4)), which is due to
the fact that a relatively large � has been set. As
a result, the model only makes cautious but confi-
dent predictions. In contrast, the tagging method
does not rely on a threshold and is observed to
have a higher recall. For example, it additionally
predicts the entity “food” as a target in the sec-
ond example. Moreover, we find that the tagging
method sometimes fails to predict the correct sen-

Figure 7: Accuracy on LAPTOP and REST w.r.t differ-
ent number of target words for polarity classification.

timent class, especially when the target consists of
multiple words (e.g., “battery cycle count” in (5)
and “Casa La Femme” in (6)), indicating the tag-
ger can not effectively maintain sentiment consis-
tency across words. Our polarity classifier, how-
ever, can avoid such problem by using the target
span representation to predict the sentiment.

5 Conclusion

We re-examine the drawbacks of sequence tagging
methods in open-domain targeted sentiment anal-
ysis, and propose an extract-then-classify frame-
work with the span-based labeling scheme instead.
The framework contains a pre-trained Transformer
encoder as the backbone network. On top of it,
we design a multi-target extractor for proposing
multiple candidate targets with an heuristic multi-
span decoding algorithm, and introduce a polarity
classifier that predicts the sentiment towards each
candidate using its summarized span representa-
tion. Our approach firmly outperforms the se-
quence tagging baseline as well as previous state-
of-the-art methods on three benchmark datasets.
Model analysis reveals that the main performance
improvement comes from the span-level polarity
classifier, and the multi-target extractor is more
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suitable for long sentences. Moreover, we find that
the pipeline model consistently surpasses both the
joint model and the collapsed model.
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